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Today's topics
• Set Identities

• Methods of proof
• Relationships to logical equivalences
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Recall from last lecture that set operations bear a striking resemblance to 
logical operations

• Disjunction (∨) and set union (∪)
• Conjunction (∧) and set intersection (∩)
• Negation (¬) and complement (   )

Just as logical equivalences helped us manipulate logical expressions, set
identities help us simplify and understand complex set definitions.

Set identities help us manipulate complex expressions
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Some important set identities
Identity Name
A ∪ ∅ = A
A ∩ U = A

Identity laws

A ∪ U = U
A ∩ ∅ = ∅

Domination laws

A ∪ A = A
A ∩ A = A

Idempotent laws

A = A
Complementation law

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Commutative laws

A ∪ (B ∪ C) = (A ∪ B) ∪ C
A ∩ (B ∩ C) = (A ∩ B) ∩ C

Associative laws

Note that set difference is not commutative 
nor associative!
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Identity Name
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 

Distributive laws

A ∪ B = A ∩ B

A ∩ B = A ∪ B

DeMorgan’s laws

A ∪ (A ∩ B) = A
A ∩ (A ∪ B) = A

Absorption laws

A ∪ A = U

A ∩ A = ∅

Complement laws

Some important set identities
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Today, we’ll discuss four common methods:
1. Membership tables
• Similar to using truth tables to prove logical equivalence.

2. Logical argument (“mutual subset” method)
• Similar to the biconditional method for proving logical equivalence.

3. Using set builder notation
• (No direct comparison to equivalences.)

4. Applying other known set identities
• Similar to using existing logical equivalences to prove new ones.
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There are many ways to prove set identities



The membership table for an expression has columns for sub-expressions and 
rows to indicate the ways in which an arbitrary element may or may not be 
included.

Example: A membership table for set intersection

A B A ∩ B

1 1 1

1 0 0

0 1 0

0 0 0

An element is in A ∩ B iff it is in both A and B

7

Membership tables allow us to write proofs like we did 
using truth tables!



Since the appropriate columns of the membership table are 
the same, we can conclude that A ∩ (B ∪ C) = (A ∩ B) ∪ (A 
∩ C).   ❏

A B C B∪C A ∩ (B ∪ C) A ∩ B A ∩ C (A ∩ B) ∪ (A ∩ C)

1 1 1 1 1 1 1 1

1 1 0 1 1 1 0 1

1 0 1 1 1 0 1 1

1 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0
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Prove that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)



Recall:  A = B iff A ⊆ B and B ⊆ A

As a result, we can prove a set identity by arguing that each side of the equality 
is a subset of the other.

Example: Prove that A ∩ B = A ∪ B
1.First prove that A ∩ B ⊆ A ∪ B
2.Then prove that A ∪ B ⊆ A ∩ B

Let’s see how this is done…
• Compare this mutual subset method to the biconditional (mutual implication) 

method!
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Sometimes, it’s easier to make a logical argument about 
a set identity



Prove that A ∩ B = A ∪ B
First show A ∩ B ⊆ A ∪ B

• Let x be an arbitrary element of A ∩ B
• By def'n of complement, x ∉ (A ∩ B)
• By def'n of ∉, ¬(x ∈ A ∩ B)
• By def'n of intersection, ¬(x ∈ A ∧ x ∈ B)
• By DeMorgan's, ¬(x ∈ A) ∨ ¬(x ∈ B)

• In the first case, x ∉ A, so x ∈ A
• In the second case, x ∉ B, so x ∈ B
• Combining both cases, x ∈ A ∪ x ∈ B

• Thus, if x ∈ A ∩ B, then x ∈ A ∪ B
• Therefore, A ∩ B ⊆ A ∪ B
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Prove that A ∩ B = A ∪ B
Next show A ∪ B ⊆ A ∩ B

• Let x be an arbitrary element of A ∪ B
• By def'n of union, x ∈ A ∨ x ∈ B
• By def'n of complement, x ∉ A ∨ x ∉ B

• In the first case, x ∉ A, so x cannot be in both A and B
• In the second case, x ∉ B, so x cannot be in both A and B

• Thus, if x ∈ A ∪ B, then x ∈ A ∩ B
• Therefore, A ∪ B ⊆ A ∩ B

Since we have shown A ∩ B ⊆ A ∪ B and A ∪ B ⊆ A ∩ B, we have shown that A ∩ B = A ∪ B
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Example: Prove that A ∩ B = A ∪ B

Proof:
1. A ∩ B = {x | x ∉ (A ∩ B)} Def’n of complement
2. = {x | ¬(x ∈ (A ∩ B))} Def’n of ∉
3. = {x | ¬(x ∈ A ∧ x ∈ B)} Def’n of ∩
4. = {x | ¬(x ∈ A) ∨ ¬(x ∈ B)} DeMorgan’s law
5. = {x | x ∉ A ∨ x ∉ B} Def’n of ∉
6. = {x | x ∈ A ∨ x ∈ B} Def’n of complement
7. = {x | x ∈ A ∪ B} Def’n of ∪
8. = A ∪ B Set builder notation

❏
Note that the argument here uses equivalence rather than subset (deduction), so 

we do not need to argue in both directions
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We can use set builder notation and logical definition to 
make very precise proofs



Example: Prove that A ∪ (B ∩ C) = (C ∪ B) ∩ A

Proof:

1. A ∪ (B ∩ C) = A ∩ (B ∩ C) DeMorgan’s law
2. = A ∩ (B ∪ C) DeMorgan’s law
3. = (B ∪ C) ∩ A Commutative law
4. = (C ∪ B) ∩ A Commutative law

❏

Note how similar this process is to that of proving logical equivalences using 
known logical equivalences.

As with set builder, only one direction is needed since we’re using equivalence at 
every step.
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We can also construct proofs by repeatedly applying 
known set identities



In-class exercises
Problem 1: Prove DeMorgan’s law for complement over intersection using a 
membership table.

Problem 2: Prove the complementation law using set builder notation.

Problem 3: Prove that if 𝐴 and 𝐵 are sets with 𝐴 ⊆ 𝐵, then 𝐴̅ ∩ '𝐵 = '𝐵.  Note 
that since we have “side information,” we must use a deduction-based method 
(i.e., mutual subset).
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Final thoughts
• Set identities are useful tools!

• We can prove set identities in a number of (equivalent) ways

• Next time:
• Functions (Section 2.3)
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