CS 441: Infinite Cardinalities

PhD. Nils Murrugarra-Llerena nem177@pitt.edu

2

Today's topics

- Defining cardinality for infinite sets
 - How can sequences help?
 - Countability and proving sets countable
 - Proving a set uncountable

We can use the notion of sequences to analyze the cardinality of infinite sets

Definition: Two sets A and B have the same cardinality if and only if there is a one-to-one correspondence (a bijection) from A to B.

Definition: A finite set or a set that has the same cardinality as the natural numbers (or the positive integers) is called countable. A set that is not countable is called uncountable.

Implication: Any sequence $\{a_n\}$ ranging over the natural numbers is countable.

Yes, the cardinalities of the natural numbers and positive integers are the same!

f: $\mathbf{N} \rightarrow \mathbf{Z}^{+}$, f(x) = x + 1

- This maps natural numbers to positive integers
- Every positive integer k (codomain) is mapped by natural number k-1 [surjection]
- No two natural numbers have the same mapping [injection]
 - That is, if x+1 = y+1, then x = y
- Thus, f is a bijection, and $|\mathbf{N}| = |\mathbf{Z}^+|$
- Both have cardinality countably infinite
- Even though **N** contains 0 and **Z**⁺ does not, cardinality is equal

What about **Z**?

- Seemingly twice as many elements as Z⁺
- Exercise on the board

Yes, the cardinalities of the natural numbers and positive integers are the same!

$$\mathsf{f} \colon \mathbf{Z} \longrightarrow \mathbf{Z}^{\mathsf{+}}, \ f(x) = egin{cases} 2x, & ext{if } x > 0, \ 1, & ext{if } x = 0, \ -2x+1, & ext{if } x < 0. \end{cases}$$

- This maps integers to positive integers
- Every positive integer k (codomain) is mapped by interleaved positive/negative integers [surjection]
- No two integer numbers have the same mapping [injection]
 - That is, if f(x) = f(y), then x = y
- Thus, f is a bijection, and |**Z**| = |**Z**⁺|
- Both have cardinality countably infinite
- Even though Z contains 0 and negative numbers, and Z⁺ does not, cardinality is equal

Show that the set of even positive integers is countable

Proof #1 (Graphical): We have the following one-toone correspondence between the positive integers and the even positive integers:

So, the even positive integers are countable. \Box

Proof #2: We can define the even positive integers as the sequence $\{2k\}$ for all $k \in \mathbb{Z}^+$, so it has the same cardinality as \mathbb{Z}^+ , and is thus countable. \Box

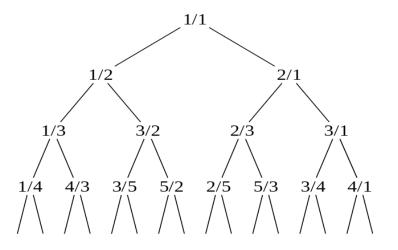
Surprisingly, the set of positive rationals is also countable

Consider a binary tree of rationals, with root node $\frac{1}{1}$

• For each node containing $\frac{a}{b}$, let its children be $\frac{a}{a+b}$ and $\frac{a+b}{b}$

Traverse this tree in level-order fashion, assigning to the natural numbers in order

- i.e., go across the first level, then second level, etc.
- $\frac{1}{1}$, $\frac{1}{2}$, $\frac{2}{1}$, $\frac{1}{3}$, $\frac{3}{2}$, $\frac{2}{3}$, $\frac{3}{1}$, ...
- We just need to show that all positive rational numbers appear exactly once



7

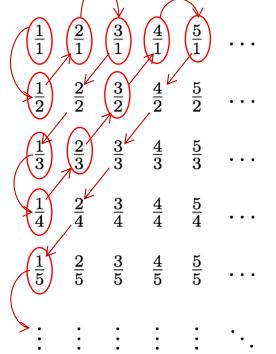
Proof sketch that Calkin-Wilf tree contains every positive rational

- First, note that every child has a larger sum of numerator + denominator than its parent
- Consider an arbitrary positive rational, $\frac{a}{b}$, where *a* and *b* are positive integers
 - If $\frac{a}{b} = 1$ and thus a = b:
 - This is the root, so it is in the tree
 - If $\frac{a}{b} < 1$ and thus a < b:
 - This would be the left child of $\frac{a}{b-a}$, also a positive rational
 - If $\frac{a}{b} > 1$ and thus a > b:
 - This would be the right child of $\frac{a-b}{b}$, also a positive rational
 - Since all non-root cases have a parent that is closer to $\frac{1}{1}$, repeatedly applying this logic will eventually reach the root
 - Analyze most to the left, and most to the right branches
 - Apply this logic for all intermediate node in the tree

and b 1/1 1/2 1/2 1/2 1/3 3/2 2/3 3/1 1/4 4/3 3/5 5/2 2/5 5/3 3/4 4/1

8

Another way to show the rationals are countable $(\frac{1}{4}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{5}, \dots)$



This yields the sequence 1/1, 1/2, 2/1, 3/1, 1/3, ..., so the set of rational numbers is countable. \Box

Is the set of real numbers countable?

No, it is not. We can prove this using a proof method called diagonalization, invented by Georg Cantor.

Proof: Assume that the set of real numbers is countable. Then the subset of real numbers between 0 and 1 is also countable, by definition. This implies that the real numbers can be listed in some order, say, *r*1, *r*2, *r*3

Let the decimal representation these numbers be:

$$r1 = 0.d_{11}d_{12}d_{13}d_{14}...$$

$$r2 = 0.d_{21}d_{22}d_{23}d_{24}...$$

$$r3 = 0.d_{31}d_{32}d_{33}d_{34}...$$

. . .

Where $d_{ij} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \forall i, j$

Proof (continued)

Now, form a new decimal number $r=0.d_1d_2d_3...$ where $d_i = 0$ if $d_{ii} = 1$, and $d_i=1$ otherwise.

Example:

 $r_1 = 0.123456...$ $r_2 = 0.234524...$ $r_3 = 0.631234...$...r = 0.010...

Note that the *i*th decimal place of r differs from the *i*th decimal place of each r_i , by construction. Thus r is not included in the list of all real numbers between 0 and 1. This is a contradiction of the assumption that all real numbers between 0 and 1 could be listed. Thus, not all real numbers can be listed, and **R** is uncountable. \Box

Note: r can not be the same number as r_1 , r_2 , r_3 , because it already has a different digit.

Final thoughts

- We can use sequences to help us compare the cardinality of infinite sets
 - Prove a set is countable by demonstrating a bijection to another countable set
 - Prove a set uncountable using diagonalization
- Next time:
 - Algorithms (Section 3.1)