CS 441: Infinite Cardinalities

PhD. Nils Murrugarra-Llerena [nem177@pitt.ed](mailto:nmurrugarrallerena@weber.edu)u

2

Today's topics

- Defining cardinality for infinite sets
	- How can sequences help?
	- Countability and proving sets countable
	- Proving a set uncountable

We can use the notion of sequences to analyze the cardinality of infinite sets

Definition: Two sets A and B have the same cardinality if and only if there is a one-to-one correspondence (a bijection) from A to B.

Definition: A finite set or a set that has the same cardinality as the natural numbers (or the positive integers) is called countable. A set that is not countable is called uncountable.

Implication: Any sequence {*an*} ranging over the natural numbers is countable.

Yes, the cardinalities of the natural numbers and positive integers are the same!

f: $N \rightarrow Z^+$, $f(x) = x + 1$

- This maps natural numbers to positive integers
- Every positive integer k (codomain) is mapped by natural number k-1 [surjection]
- No two natural numbers have the same mapping linjection
	- That is, if $x+1 = y+1$, then $x = y$
- Thus, f is a bijection, and |**N**| = |**Z+**|
- Both have cardinality **countably infinite**
- Even though **N** contains 0 and **Z**⁺ does not, cardinality is equal

What about **Z**?

- *Seemingly* twice as many elements as **Z**⁺
- Exercise on the board

Yes, the cardinalities of the natural numbers and positive integers are the same!

$$
\mathsf{f}: \mathsf{Z} \longrightarrow \mathsf{Z}^*,
$$

$$
f(x) = \begin{cases} 2x, & \text{if } x > 0, \\ 1, & \text{if } x = 0, \\ -2x + 1, & \text{if } x < 0. \end{cases}
$$

- This maps integers to positive integers
- Every positive integer k (codomain) is mapped by interleaved positive/negative integers [surjection]
- No two integer numbers have the same mapping [injection]
	- That is, if $f(x) = f(y)$, then $x = y$
- Thus, f is a bijection, and |**Z**| = |**Z+**|
- Both have cardinality **countably infinite**
- Even though **Z** contains 0 and negative numbers, and **Z**⁺ does not, cardinality is equal

Show that the set of even positive integers is countable

Proof #1 (Graphical): We have the following one-toone correspondence between the positive integers and the even positive integers:

So, the even positive integers are countable. ❏

2 4 6 8 10 12 14 16 18 20 …

Proof #2: We can define the even positive integers as the sequence $\{2k\}$ for all $k \in \mathbb{Z}^+$, so it has the same cardinality as Z^+ , and is thus countable. \Box

Surprisingly, the set of positive rationals is also countable

Consider a binary tree of rationals, with root node $\frac{1}{4}$!

• For each node containing $\frac{a}{b}$, let its children be $\frac{a}{a+b}$ and $\frac{a+b}{b}$

Traverse this tree in level-order fashion, assigning to the natural numbers in order

- \bullet i.e., go across the first level, then second level, etc.
- $\frac{1}{1}$, $\frac{1}{2}$, $\frac{2}{1}$, $\frac{1}{3}$, $\frac{3}{2}$, $\frac{2}{3}$, $\frac{3}{1}$, ...
- $\bullet\;$ We just need to show that all positive rational numbers appear exactly once

7

Proof sketch that Calkin-Wilf tree contains every positive rational

- First, note that every child has a larger sum of numerator + denominator than its parent
- Consider an arbitrary positive rational, $\frac{a}{b}$, where a and b are positive integers
	- If $\frac{a}{b} = 1$ and thus $a = b$:
		- This is the root, so it is in the tree
	- If $\frac{a}{b}$ < 1 and thus $a < b$:
		- This would be the left child of $\frac{a}{b-a}$, also a positive rational
	- If $\frac{a}{b} > 1$ and thus $a > b$:
		- This would be the right child of $\frac{a-b}{b}$, also a positive rational
	- Since all non-root cases have a parent that is closer to $\frac{1}{1}$, repeatedly applying this logic will eventually reach the root
		- Analyze most to the left, and most to the right branches
		- Apply this logic for all intermediate node in the tree

 $2/1$ $\dot{3}/1$ $1/3$ $3/2$ $2/3$ $2/5$ $\overrightarrow{5}/3$ $3/4$ $3/5$ $5/2$ $1/4$ $4/3$ $4/1$

8

Another way to show the rationals are countable $\frac{5}{1}$ $\frac{2}{1}$ $\frac{3}{1}$ $rac{4}{1}$ $\frac{2^k}{2}$ $\frac{3}{2}$ $\frac{4}{2}$ $\frac{5}{2}$ $\frac{3}{3}$ $\frac{4}{3}$ $\frac{5}{3}$ $\frac{2}{3}$ $\frac{5}{4}$ $\frac{3}{4}$ $\frac{4}{4}$ $rac{2}{4}$ \cdots $\frac{2}{5}$ $\frac{3}{5}$ $\frac{4}{5}$ $\frac{5}{5}$ $(\frac{1}{5})$ $\frac{1}{2}$ \vdots $\frac{1}{2}$

This yields the sequence 1/1, 1/2, 2/1, 3/1, 1/3, …, so the set of rational numbers is countable. $□$

Is the set of real numbers countable?

No, it is not. We can prove this using a proof method called diagonalization, invented by Georg Cantor.

Proof: Assume that the set of real numbers is countable. Then the subset of real numbers between 0 and 1 is also countable, by definition. This implies that the real numbers can be listed in some order, say, *r1, r2, r3 ….*

Let the decimal representation these numbers be:

$$
r1 = 0.d_{11}d_{12}d_{13}d_{14}...
$$

\n
$$
r2 = 0.d_{21}d_{22}d_{23}d_{24}...
$$

\n
$$
r3 = 0.d_{31}d_{32}d_{33}d_{34}...
$$

…

Where d_{ij} ∈ {0,1,2,3,4,5,6,7,8,9} ∀i,j

Proof (continued)

Now, form a new decimal number r=0.d₁d₂d₃... where d_i = 0 if d_{ii} = 1, and d_i=1 otherwise.

Example:

 $r_1 = 0.123456...$ $r_2 = 0.234524...$ $r_3 = 0.631234...$ …

 $r = 0.010...$

Note that the *i*th decimal place of r differs from the *i*th decimal place of each r_i, by construction. Thus r is not included in the list of all real numbers between 0 and 1. This is a contradiction of the assumption that all real numbers between 0 and 1 could be listed. Thus, not all real numbers can be listed, and **R** is uncountable. ❏

Note: r can not be the same number as r_1 , r_2 , r_3 , because it already has a different digit.

Final thoughts

- We can use sequences to help us compare the cardinality of infinite sets
	- Prove a set is countable by demonstrating a bijection to another countable set
	- Prove a set uncountable using diagonalization
- Next time:
	- Algorithms (Section 3.1)