
CS 441: Algorithms and Pseudocode

PhD. Nils Murrugarra-Llerena
nem177@pitt.edu

mailto:nmurrugarrallerena@weber.edu

Today's topics

2

• Algorithms and pseudocode
• What is an algorithm?
• Pseudocode allows us to describe an algorithm in a semi-

structured way
• Algorithms for basic problems

What is an algorithm?
Definition: An algorithm is a finite sequence of precise instructions for solving
a problem

Note these important features!
• Finite: In order to execute, it must be finite
• Sequence: The steps needs to be in the correct order
• Precise: Each step must be unambiguous
• Instructions: Each step can be carried out
• Solving a problem: ?

3

What is a problem?
A “problem” should be general enough to be broadly useful, but specific
enough to dictate strategies

• “Sort the numbers (6, 8, 5, 3)” is too specific; let’s allow the input to be specified
• “Return the numeric solution to the input query” is too general; different instances

may not be solved similarly

In computing, we usually represent a problem using its desired solutions
• Inputs: What is provided to identify the instance of the problem?
• Outputs: What are the correct outputs for each input?

4

Sorting: Put the provided values in ascending order
• Input: A sequence of numeric values 𝑛!
• Output: A sequence 𝑟! containing the same elements as 𝑛! , arranged such that

∀𝑖, 𝑗 𝑖 < 𝑗 → 𝑟! < 𝑟"

If we specify the input(s), we create an instance of the problem
• We consider each input sequence to be one instance of the more general problem,

not a different problem
• A solution to an instance is an output that corresponds to the input

• Could a problem instance have multiple correct outputs?

5

An example problem: Sorting

The searching problem
Intuition: Given a list, find a specific element (if possible)

• How would you solve this?
• To help with describing a solution, let’s assign our inputs to have variable names

that we can refer to, and describe the desired output more precisely

Problem: Given a sequence of values a1, a2, …, an, and a target value, x,
return an index i such that ai = x (or 0 if no such index exists)

• One possible algorithm to solve this:

Compare each ai to x, starting from a1 and proceeding sequentially. Return the first i
which yields ai = x.

6

Search: Example

7

Example: Search 19 in the list:
1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Values: 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

7

19

If we start describing a way to solve sorting, it may not feel very precise
• Examples?

Pseudocode is a semi-structured set of notations
• More precise than describing in prose
• Less overhead than a programming language

Compare to proof techniques
• A formal proof is analogous to a program in (say) Java

• Meant to be executed by a machine, very precise
• An informal proof is analogous to an algorithm in pseudocode

• Meant to be understood by a human, so steps can be abstracted. Different communities
may prefer different conventions.

8

Pseudocode provides a structured way to represent an
algorithm

procedure linear search(x: integer, a1, a2, …, an: distinct
integers)

i := 1
while (i ≤ n and x ≠ ai)

i := i + 1
if i ≤ n then

location := i
else

location := 0
return location {location is the subscript of the term that
equals x, or is 0 if x is not found}

Algorithm name Input variables Input data types

Assigning a variable

Repetition structure

Selection structure

Return the solution Comment (exposition; no effect)

9

An algorithm for the searching problem

if condition then statement 1
else statement 2

if condition then
statement 1
statement 2
…
statement n

statement n+1

if condition 1 then statement 1
else if condition 2 then statement 2
…
else if condition n then statement n
else statement n+1

optional else case

multiple conditional statements

mutually-exclusive cases

statements after are always executed

10

Selection structure executes instructions conditionally

for variable := initial value to final value
statement

while condition
statement

for-loop: execute statement(s)
for each value in a sequence

variable is assumed to update
automatically for each iteration

while-loop: if condition is true, execute
statement(s), then check again

statements must update variable(s)
to make condition false

11

Repetition structure executes instructions multiple times

sum := 0
for i := 1 to n

sum := sum + i

sum := 0
i := 1
while i ≤ n

sum := sum + i
i := i + 1

In-class exercises
Problem 1: Consider a version of the search problem where the sequence to
search is in sorted order. Write an updated version of the linear search
algorithm that stops searching once it is determined that the target element is
not present.

Problem 2: What is the output of this algorithm given input 100?

procedure problem 2(t: integer)
x := 1
while (x ≤ t)

x := x * 2
return x

12

If the input is sorted, we can implement an even faster search

Binary search, main idea
• Track an interval within the sequence where the target must be

• Initially set to the entire sequence
• Divide the interval in half and determine whether the target would be in the left or

right half
• Repeat until the item is found or the interval is empty

3 6 11 18 22 26 32 40 52 55 58 60 64 68 77 80

Search for 64

13

More efficient approaches to searching?

procedure binary search(x: integer, a1, a2, …, an: integers in non-
decreasing order)

start := 1
end := n
while start < end

mid := ⌊ (start + end) / 2 ⌋
if x > amid then

start := mid + 1
else if x < amid then

end := mid – 1
else

start := mid
end := mid

if x = astart then
location := start

else
location := 0

return location

14

Binary search, pseudocode

Example: The steps taken by a binary search for 19 in the list:

1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

1. The list has 16 elements, so the midpoint is 8. The value in the 8th position is 10. Since 19 > 10, further
search is restricted to positions 9 through 16.

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Values: 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

2. The midpoint of the list (positions 9 through 16) is now the 12th position with a value of 16. Since 19 >
16, further search is restricted to the 13th position and above.

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Values: 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

15

Binary search: Example

3. The midpoint of the current list is now the 14th position with a value of 19. Since
19 ≯ 19, further search is restricted to the portion from the 13th through the 14th positions .

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Values: 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

4. The midpoint of the current list is now the 13th position with a value of 18.
Since 19> 18, search is restricted to the portion from the 14th position through the 14th.

Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Values: 1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22

5. Now the list has a single element and the loop ends. Since 19=19, the location 14 is returned.

16

Binary search: Example

Sorting: Put the provided values in ascending order
• Input: A sequence of numeric values 𝑛!
• Output: A sequence 𝑟! containing the same elements as 𝑛! , arranged such that

∀𝑖 𝑖 < 𝑗 → 𝑟! < 𝑟"

Bubble sort, intuition
• When comparing two adjacent elements, they should be relatively sorted (if not, let’s

swap interchange them)
• Traverse the sequence left to right, swapping whenever necessary
• Repeat as many times as necessary

• How many times?

17

Let’s revisit a problem we specified earlier

18

Bubble Sort: Example
Example: Show the steps of bubble sort with 3 2 4 1 5

At the first pass the largest element has been put into the correct position
At the end of the second pass, the 2nd largest element has been put into the
correct position.
In each subsequent pass, an additional element is put in the correct position.

McGraw Hill

Bubble sort pseudocode
procedure bubble sort(a1, a2, …, an: real numbers)

for i := 1 to n-1
for j := 1 to n-1

if aj > aj+1 then
swap aj and aj+1

Any optimizations?
• Inner loop stopping value: Consider how much progress we can guarantee from

each pass
• Outer loop responsive termination: Might we finish sorting before i = n-1?

Do we need to go all the
way to the end?

19

Definition: An optimization problem is a problem in which the goal is to find the
solution (among a set of possible solutions) that maximizes or minimizes the
value of some parameter

Examples:
• Given the locations of a set of cities, what visitation order minimizes total travel?

(Traveling salesperson problem)
• Given an amount of change, what denominations should be given to minimize the

number of coins? (Change-making problem)
• Given an actor, what is the minimum number of “hops” (each to an actor that appeared

with the previous in some movie) to arrive at Kevin Bacon?

20

Specific types of problems and algorithms

Definition: A greedy algorithm is an algorithm that makes what seems to be
the “best” choice at each step while iteratively constructing a solution.

A greedy approach to change-making:
• At each step, select the greatest denomination that can fit within the remaining

change to give

A greedy approach to traveling salesperson:
• At each step, visit the (unvisited) city closest to your current location

Note that, depending on the problem, a greedy algorithm might not find the
optimal solution!

21

One strategy for optimization problems: Greedy
algorithms

procedure cashier’s change (c1, c2, …, cr: values of denominations in
decreasing order; n: a positive integer)

for i := 1 to r
di := 0 {counts how many coins of denom. i}
while n ≥ ci

di := di + 1 {add a coin of denom. i}
n := n – ci {remove value from remaining change to give}

return {di} {this sequence specifies how many of each denom.}

Does this always return the optimal solution?

22

Cashier’s algorithm, pseudocode

Lemma: When giving change with US currency, the optimal solution contains
at most 2 dimes, at most 1 nickel, at most 4 pennies, and cannot have 2 dimes
and a nickel.

• Intuition: If we had (e.g.) more than 2 dimes, we could replace them with fewer coins
but equivalent value

Theorem: The cashier’s algorithm makes change using the fewest possible
coins when using US denominations

• Briefly: Quarters are selected first, and selecting fewer quarters always increases
total coins. Dimes are selected next, and fewer dimes always increases total coins
based on the above lemma…

23

For US currency, the cashier’s algorithm is optimal

Final thoughts
• Algorithms are a major foundation of computer science

• More structured than prose, easier to write than “real” code

• Greedy algorithms are convenient for optimization problems,
but don’t always give optimal results

• Next time:
• Growth rates and Big-O notations (Section 3.2)

24

