CS 441: Growth Rates

PhD. Nils Murrugarra-Llerena
nem177@pitt.edu

T University of
@ Pittsburgh

mailto:nmurrugarrallerena@weber.edu

2
Today's topics

- Growth rates of functions
- Big-O notation and its relation to CS
* Growth rates of combined functions
- Big-Omega and Big-Theta notations

Let’s define this “big-O notation™” that you've probably
heard of (and maybe used)

Definition: Let f and g be functions from the set of integers (or real numbers) to
the set of real numbers. We say that f(x) is O(g(x)) if there are constants C
and k such that |f(x)| < C|g(x)| whenever x > k.

C and k are referred to as witnesses which prove the relationship

Formally, 0(g(x)) is a set of functions:
0(g(x)) ={f |3k, C Vx(x >k — |f ()| < Clg(x))}

When considering positive values only, we
Examples: will often drop the absolute value

2x2 is 0(x?) because of withesses C =3 and k = 1:
2x% < 3x?% whenever x > 1

3x + 5 is 0(x) because of withesses C = 4 and k = 5:
3x+5<4xwhenx>5

g (x)

f(x)isO(g(x)

g(x) The part of the graph f(x) that satisfies
f(x)< C g(x) is shown in color.

f(x) < Cg(x) forx >k

Why does this matter to computing?

This notation predates its use in computer science by ~70 years!

Consider the intuition behind the math: “The growth of f(x) is bounded above
by some multiple of g(x).”

- What does this tell us, if f(x) describes an algorithm’s cost to solve an instance of
size x?

Big-O notation is used in algorithm analysis to group algorithms together
Simple growth rate is more important than exact runtime

Algorithm analysis describes how algorithms scale to larger and larger problem
instances

How to find withesses to prove a big-O relationship

When f(x) is 0(g(x)), there are infinite witnesses

e.g., if k works, then any k' > k also works
but, we only need to identify one pair (k, C) to prove the relationship

Simple key idea: Round up
To prove that 2x? + 3x + 2 is 0(x?), “round up” each term to a multiple of x?
2x% +3x 4+ 2 < 2x% + 3x2% 4+ 2x% = 7x%, whenever x > 1

So,letC=7and k=1

In general: Pick a threshold where it is easy to calculate an upper bound for
f(x) in terms of g(x)

But wait, doesn’t this mean that any greater g(x)
would also work?

In fact, yes!
« 2x%is 0(x?), butalso 0(2x?), 0(10x?), 0(x?), and 0(x*)...

However, it is most useful to state the most specific or descriptive relationship
that you can prove
* Multiplicative constants can be anything and are generally left out

« 0(x?) is a proper subset of 0(x3), so stating f(x) is in the former also implies it is in
the latter, but not vice-versa

- If we know it is 0(x?), then stating it is 0(x3) leaves out information unnecessarily

« Nobody cares that f(x) is 0 (xxxx) unless you really can’t prove something more

specific!

How do we know when we can’t use a smaller bound?

Let’'s see by example: Prove that x? is not 0(x)

* We need to prove that there is no choice of C and k that satisfy the constraints. Let’s
use contradiction.

- Suppose there is a C and k where x? < Cx whenever x > k
 When x > 0, we can divide both sides by x tosee x < C

« However, we cannot pick C that satisfies this, since there is no C that is greater than
any (arbitrarily large) integer

- This contradiction proves that C and k do not exist where x? < Cx whenever x > k

Therefore, x? is not 0(x)!
- Thatis, x has a strictly smaller rate of growth than x?

A heuristic for growth rates of polynomials: Drop
multiplicative constants and lower-order terms

Theorem: Let f(x) = a,x™ + a,_x™*! + .-+ a;x + a,, where each q; is a real
number. Then, f(x) is O0(x™).

In other words, every n-degree polynomial is 0(x™)
See §3.2.3 for a proof

This means that we can calculate growth rates without explicitly finding witnesses

Drop lower-order terms: 3x3 + 6x? — 3x + 9 becomes 3x3
Drop multiplicative constants: 3x3 becomes x3
Thus, 3x3 + 6x%> —3x+9is 0(x®)

This informal approach matches our goals with algorithm analysis
Highest-order term will dominate at scale
Multiplicative constants are equivalent to hardware choice

Common rates of growth

4096 -
2048 -
1024
512
256
128
64
32
16

n!

8
4
2
1

Growth rates of combined functions

Theorem: If f;(x) is O(gl(x)) and f,(x) is O(gz(x)), then (f; + f5)(x) is
0(g(x)), where g(x) = max(g;(x), g,(x)) for all x.

In other words, the sum of two functions has a growth rate equal to the max of
their individual growth rates

Examples:
- x3+xlogxis 0(x3)
« logx + (logx)? is 0(log? x)

Note that this is a generalization of the previous theorem regarding polynomials

Growth rates of combined functions

Theorem: If f;(x) is 0(g1(x)) and f,(x) is 0(g,(x)), then (fif5)(x) is
0(91(x)92(x))-

In other words, the product of two functions has a growth rate equal to the
product of their individual growth rates

Examples:
(x%2 +x)(x +5) is 0(x®)
(logx + loglog x)(8 + log x) is 0(log? x)

This is especially useful for analyzing nested loops in algorithm analysis
* As we’'ll see next time!

e
Related notations to big-O

Definition: Let f and g be functions from the set of integers (or real numbers)
to the set of real numbers. We say that f(x) is Q(g(x)) if there are constants C
and k such that |f(x)| = C|g(x)| whenever x > k.

If big-O represents an asymptotic upper bound, big-Omega represents an
asymptotic lower bound

(Asymptotic = at scale, as x increases toward infinity)

Examples:
2x% is Q(x?), Q(x), and Q(1)
In addition to being 0(x2), 0(x3), 0(x*), ...

When f(x) is both 0(g(x)) and Q(g(x)), we say itis 8(g(x)), so 2x? is ©(x?)
“Big theta”

In-class exercises

On Top Hat

5
Final thoughts

Growth rates are commonly expressed using big-O and related notations

These notations were not developed for computing, but fit well for
algorithm analysis

Next time:
Algorithm analysis (Section 3.3)

