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Today's topics

- Growth rates of functions
- Big-O notation and its relation to CS
*  Growth rates of combined functions
- Big-Omega and Big-Theta notations




Reminder: What is an algorithm?

Definition: An algorithm is a finite sequence of precise instructions for solving
a problem

Note these important features!
* Finite: In order to execute, it must be finite
- Sequence: The steps needs to be in the correct order
* Precise: Each step must be unambiguous
« Instructions: Each step can be carried out
« Solving a problem: ?



Reminder: Big-O notation

Definition: Let f and g be functions from the set of integers (or real numbers)
to the set of real numbers. We say that f(x) is 0(g(x)) if there are constants C
and k such that |f(x)| < C|g(x)| whenever x > k.

C and k are referred to as witnesses which prove the relationship

Formally, 0(g(x)) is a set of functions:
0(g(x)) ={f |3k, CVx(x 2 k - |f ()| < Clg(x)])}

When considering positive values only, we
Examples: will often drop the absolute value

2x2 is 0(x?) because of withesses C =3 and k = 1:
2x% < 3x?% whenever x > 1

3x + 5is O(x) because of witnesses C = 4 and k = 5:
3x+5<4xwhenx>5



Reminder: Related notations to big-O

Definition: Let f and g be functions from the set of integers (or real numbers)
to the set of real numbers. We say that f(x) is Q(g(x)) if there are constants C
and k such that |f(x)| = C|g(x)| whenever x > k.

If big-O represents an asymptotic upper bound, big-Omega represents an
asymptotic lower bound

(Asymptotic = at scale, as x increases toward infinity)

Examples:
2x% is Q(x?), Q(x), and Q(1)
In addition to being 0(x2), 0(x3), 0(x*), ...

When f(x) is both 0(g(x)) and Q(g(x)), we say itis 8(g(x)), so 2x?2 is ©(x?)
“Big theta”



Reminder: Why does algorithm analysis matter?

“The growth of f(x) is bounded above by some multiple of g(x).”

- What does this tell us, if f(x) describes an algorithm’s cost to solve an instance of
size x?

Big-O notation is used in algorithm analysis to group algorithms together
«  Simple growth rate is more important than exact runtime

« Algorithm analysis describes how algorithms scale to larger and larger problem
instances

«  The difference between algorithms is much wider than the differences in hardware
can overcome

- Hardware improvements are constant multiplicative factors



Today: Applying growth rates to algorithms

Resource utilization functions and applying big-O

Complexity of algorithms
Worst case
Best case
Average case



Let’'s motivate with an example

Problem: Sum the integers from 1 through n

Algorithm A Algorithm B Algorithm C
sum =0 sum =0 sum = n*(n+1)/2
fori:=1ton fori:=1ton return sum
sum :=sum+ i forj.=1toi
return sum sum = sum + 1
return sum

Analysis idea: Identify repeated instructions, count frequency



How many operations for these algorithms?
—

Additions nx (Z -
Multiplications 1
Divisions 1
Total operations n n; g 3

Some operations may take longer...

... but as the input gets larger, the frequency is
the most important factor



How many operations does this work out to be, for
different inputs?

_ Algorithm A Algorithm B Algorithm C
n=1 1 1 3

n=10 10 55 3
n=100 100 5,050 3
n = 1000 1,000 500,500 3

Algorithm analysis focuses on trends as the

problem instances grow in size
(Measure runtimes as input size grows)

Next year, computers might be twice as fast, but a
bad algorithm is still 500 times slower



How do we measure the runtime of an algorithm?

First, consider expressing the runtime as a function
*  Domain: Natural numbers (Why?)
« Preimages represent the size of a problem instance

We rarely need to articulate this function exactly
- Different hardware can change multiplicative constants
«  Optimization can reduce constants and lower-order terms

« As such, growth rates are effective at describing what is inherent in the algorithm
* (rather than how it is implemented)

For runtime: Identify the operations that happen most frequently, and determine
the growth rate of how many



Practice: Max algorithm, pseudocode

procedure max(a,, a,, ..., a,. integers)
max =1
fori:=2ton
if a;> a,,, then
max ;= |
return max

What is the most frequent operations?

How many of these operations occur, expressed as
a growth rate?



What about an algorithm with variability, even for a given
size”?

procedure linear search(x: integer, a4, a,, ..., a,: distinct integers)
=1
while (i< nand x # a)
=i+

if i < n then

location =i
else

location := 0

return /ocation {location is the subscript of the term that equals x, oris O if x is
not found}



T
We can consider different scenarios for an algorithm

Worst case runtime

*  Growth rate of the worst possible input of size n
* This is the default, if a case is not specified

* e.g., Linear search for the very last item, or an item that is not found

Best case runtime
« Growth rate of the best possible input of size n
* e.g., Linear search for the very first item

Average case runtime
«  Growth rate of the average input of size n
* Average in what way? Need a probability distribution over possible inputs

Note: We can use big-0, big-Q, and big-O for each case!



Worst case? Best case?

procedure linear search(x: integer, a,, a,, ..., a,: distinct integers)
=1
while (i< nand x # a))

=i+
if i < n then
location = |
else
location := 0

return /ocation {location is the subscript of the term that equals x, oris O if
x is not found}



What about average case?

In order to calculate runtime in the average case, we need a probability
distribution for inputs

* i.e., how frequently each input is expected
«  What if we almost always search for the first item?
«  What if we almost always search for an item that can’t be found?

Most commonly, we’ll consider the uniform distribution, where all inputs are
equally likely

« Forinstance, consider linear search where the target is found, and each location is
equally likely to contain the target

« Average the cost, weighted by the probability for each input
Pr(i) xCost(i)
iEInputs

Demonstrate for linear search!



What about average case?

On Whiteboard



Let’s analyze bubble sort

procedure bubble sort(a,, a,, ..., a,. real numbers)
fori:=1to n-1
forj:=1 to n-1
if a;> a;,4 then
swap a; and aj

How many operations? (i.e., comparisons)
«  Quter loop has 0(n) iterations
* Inner loop has O(n) iterations for each outer-loop iteration
«  Work inside loop (plus loop overhead) is ©(1)
*  Remember that repetition can be calculated using multiplication
- Total runtime: O(n *n * 1) = O(n?)



What about an improved version?

procedure bubble sort(a,, a,, ..., a,. real numbers)
fori:=1 to n-1
forj:=1ton-i
if a, > a;,4 then swap a; and a;,

How many operations? (i.e., comparisons)
Outer loop has 0(n) iterations
Inner loop is variable
0(n) iterations
Q(1) iterations
0(n?) and Q(n). Can we get an exact bound?



Common growth rates and their terminologies for
complexity

Complexity in n Terminology

0(1) Constant complexity
O©(logn) Logarithmic complexity
o(n) Linear complexity
O(nlogn) Linearithmic complexity
0(n?) Polynomial complexity
o(p™) Exponential complexity
o(n!) Factorial complexity

These are considered intractable

Consider increasing the instance size:
How will runtime change for each?



In-class exercises

Problem 1: Prove that log, (n) is O(logn) for any constant b.

Problem 2: What is the worst-case complexity of this algorithm? (Express in terms
of n.)

procedure problem 2(n: integer)

x:=1
result =0
while (x < n)

fori:=1to x
result := result + 1

X:=x*2
return result



Final thoughts

We can use growth rates to study algorithms and their runtime

Big-O and related notations are useful for complexity since they represent
the runtime trends at scale

Next time:

Starting number theory: Divisibility and modular arithmetic (Section 4.1)



