
CS 441: Complexity of Algorithms

PhD. Nils Murrugarra-Llerena
nem177@pitt.edu

mailto:nmurrugarrallerena@weber.edu

Today's topics

2

• Growth rates of functions
• Big-O notation and its relation to CS
• Growth rates of combined functions
• Big-Omega and Big-Theta notations

Reminder: What is an algorithm?
Definition: An algorithm is a finite sequence of precise instructions for solving
a problem

Note these important features!
• Finite: In order to execute, it must be finite
• Sequence: The steps needs to be in the correct order
• Precise: Each step must be unambiguous
• Instructions: Each step can be carried out
• Solving a problem: ?

3

Definition: Let 𝑓 and 𝑔 be functions from the set of integers (or real numbers)
to the set of real numbers. We say that 𝑓 𝑥 is 𝑂 𝑔 𝑥 if there are constants 𝐶
and 𝑘 such that 𝑓 𝑥 ≤ 𝐶 𝑔 𝑥 whenever 𝑥 ≥ 𝑘.

• 𝐶 and 𝑘 are referred to as witnesses which prove the relationship

Formally, 𝑂 𝑔 𝑥 is a set of functions:
𝑂 𝑔 𝑥 = 𝑓 | ∃𝑘, 𝐶 ∀𝑥 𝑥 ≥ 𝑘 → 𝑓 𝑥 ≤ 𝐶 𝑔 𝑥

Examples:
• 2𝑥! is 𝑂 𝑥! because of witnesses 𝐶 = 3 and 𝑘 = 1:

2𝑥! ≤ 3𝑥! whenever 𝑥 ≥ 1
• 3𝑥 + 5 is 𝑂 𝑥 because of witnesses 𝐶 = 4 and 𝑘 = 5:

3𝑥 + 5 ≤ 4𝑥 when 𝑥 ≥ 5

When considering positive values only, we
will often drop the absolute value

Reminder: Big-O notation

4

Definition: Let 𝑓 and 𝑔 be functions from the set of integers (or real numbers)
to the set of real numbers. We say that 𝑓 𝑥 is Ω 𝑔 𝑥 if there are constants 𝐶
and 𝑘 such that 𝑓 𝑥 ≥ 𝐶 𝑔 𝑥 whenever 𝑥 ≥ 𝑘.

• If big-O represents an asymptotic upper bound, big-Omega represents an
asymptotic lower bound

• (Asymptotic = at scale, as 𝑥 increases toward infinity)

Examples:
• 2𝑥! is Ω 𝑥! , Ω 𝑥 , and Ω 1

• In addition to being 𝑂 𝑥! , 𝑂 𝑥" , 𝑂 𝑥# , …

When 𝑓 𝑥 is both 𝑂 𝑔 𝑥 and Ω 𝑔 𝑥 , we say it is Θ 𝑔 𝑥 , so 2𝑥# is Θ 𝑥#
• “Big theta”

5

Reminder: Related notations to big-O

“The growth of 𝑓 𝑥 is bounded above by some multiple of 𝑔 𝑥 .”
• What does this tell us, if 𝑓 𝑥 describes an algorithm’s cost to solve an instance of

size 𝑥?

Big-O notation is used in algorithm analysis to group algorithms together
• Simple growth rate is more important than exact runtime
• Algorithm analysis describes how algorithms scale to larger and larger problem

instances
• The difference between algorithms is much wider than the differences in hardware

can overcome
• Hardware improvements are constant multiplicative factors

6

Reminder: Why does algorithm analysis matter?

Resource utilization functions and applying big-O

Complexity of algorithms
• Worst case
• Best case
• Average case

7

Today: Applying growth rates to algorithms

Let’s motivate with an example
Problem: Sum the integers from 1 through n

Analysis idea: Identify repeated instructions, count frequency

Algorithm A

sum := 0
for i := 1 to n

sum := sum + i
return sum

Algorithm B

sum := 0
for i := 1 to n

for j := 1 to i
sum := sum + 1

return sum

Algorithm C

sum := n*(n+1)/2
return sum

8

Algorithm A Algorithm B Algorithm C

Additions 𝑛 𝑛 ∗ (𝑛 + 1)
2

1

Multiplications 1

Divisions 1

Total operations 𝑛
𝑛2

2 +
𝑛
2 3

Some operations may take longer…

… but as the input gets larger, the frequency is
the most important factor

9

How many operations for these algorithms?

How many operations does this work out to be, for
different inputs?

Algorithm A Algorithm B Algorithm C

n = 1 1 1 3

n = 10 10 55 3

n = 100 100 5,050 3

n = 1000 1,000 500,500 3

Algorithm analysis focuses on trends as the
problem instances grow in size

(Measure runtimes as input size grows)

Next year, computers might be twice as fast, but a
bad algorithm is still 500 times slower

10

First, consider expressing the runtime as a function
• Domain: Natural numbers (Why?)
• Preimages represent the size of a problem instance

We rarely need to articulate this function exactly
• Different hardware can change multiplicative constants
• Optimization can reduce constants and lower-order terms
• As such, growth rates are effective at describing what is inherent in the algorithm

• (rather than how it is implemented)

For runtime: Identify the operations that happen most frequently, and determine
the growth rate of how many

11

How do we measure the runtime of an algorithm?

procedure max(a1, a2, …, an: integers)
max := 1
for i := 2 to n

if ai > amax then
max := i

return max

What is the most frequent operations?

How many of these operations occur, expressed as
a growth rate? Θ(n)

12

Practice: Max algorithm, pseudocode

procedure linear search(x: integer, a1, a2, …, an: distinct integers)
i := 1
while (i ≤ n and x ≠ ai)

i := i + 1
if i ≤ n then

location := i
else

location := 0
return location {location is the subscript of the term that equals x, or is 0 if x is
not found}

13

What about an algorithm with variability, even for a given
size?

Worst case runtime
• Growth rate of the worst possible input of size 𝑛

• This is the default, if a case is not specified
• e.g., Linear search for the very last item, or an item that is not found

Best case runtime
• Growth rate of the best possible input of size 𝑛
• e.g., Linear search for the very first item

Average case runtime
• Growth rate of the average input of size 𝑛
• Average in what way? Need a probability distribution over possible inputs

Note: We can use big-O, big-Ω, and big-Θ for each case!

14

We can consider different scenarios for an algorithm

procedure linear search(x: integer, a1, a2, …, an: distinct integers)
i := 1
while (i ≤ n and x ≠ ai)

i := i + 1
if i ≤ n then

location := i
else

location := 0
return location {location is the subscript of the term that equals x, or is 0 if
x is not found}

15

Worst case? Best case?

What about average case?
In order to calculate runtime in the average case, we need a probability
distribution for inputs

• i.e., how frequently each input is expected
• What if we almost always search for the first item?
• What if we almost always search for an item that can’t be found?

Most commonly, we’ll consider the uniform distribution, where all inputs are
equally likely

• For instance, consider linear search where the target is found, and each location is
equally likely to contain the target

• Average the cost, weighted by the probability for each input

1
)∈+,-./0

Pr 𝑖 ×Cost 𝑖

Demonstrate for linear search!

16

What about average case?

17

On Whiteboard

Let’s analyze bubble sort
procedure bubble sort(a1, a2, …, an: real numbers)

for i := 1 to n-1
for j := 1 to n-1

if aj > aj+1 then
swap aj and aj+1

How many operations? (i.e., comparisons)
• Outer loop has Θ 𝑛 iterations
• Inner loop has Θ 𝑛 iterations for each outer-loop iteration
• Work inside loop (plus loop overhead) is Θ 1
• Remember that repetition can be calculated using multiplication
• Total runtime: Θ 𝑛 ∗ 𝑛 ∗ 1 = Θ 𝑛!

18

What about an improved version?
procedure bubble sort(a1, a2, …, an: real numbers)

for i := 1 to n-1
for j := 1 to n-i

if aj > aj+1 then swap aj and aj+1

How many operations? (i.e., comparisons)
• Outer loop has Θ 𝑛 iterations
• Inner loop is variable

• 𝑂 𝑛 iterations
• Ω 1 iterations

• 𝑂 𝑛! and Ω 𝑛 . Can we get an exact bound?

19

Complexity in 𝑛 Terminology

Θ 1 Constant complexity

Θ log𝑛 Logarithmic complexity

Θ 𝑛 Linear complexity

Θ 𝑛 log𝑛 Linearithmic complexity

Θ 𝑛! Polynomial complexity

Θ 𝑏" Exponential complexity

Θ 𝑛! Factorial complexity

These are considered intractable

Consider increasing the instance size:
How will runtime change for each?

20

Common growth rates and their terminologies for
complexity

In-class exercises
Problem 1: Prove that log! 𝑛 is 𝑂 log 𝑛 for any constant 𝑏.

Problem 2: What is the worst-case complexity of this algorithm? (Express in terms
of 𝑛.)

procedure problem 2(n: integer)
x := 1
result := 0
while (x ≤ n)

for i := 1 to x
result := result + 1

x := x * 2
return result

21

Final thoughts
• We can use growth rates to study algorithms and their runtime

• Big-O and related notations are useful for complexity since they represent
the runtime trends at scale

• Next time:
• Starting number theory: Divisibility and modular arithmetic (Section 4.1)

22

