
CS 441: Integer representation and 
Algorithms

PhD. Nils Murrugarra-Llerena
nem177@pitt.edu

mailto:nmurrugarrallerena@weber.edu


Today's topics

2

• Integer representations
• Base b expansions
• Common bases: Binary, octal, hexadecimal
• Base conversions

• Integer algorithms
• Addition
• Multiplication
• Connection to computing and pen-and-paper 

arithmetic



Recall: Decimal expansion of integers, e.g.,
3528 = 3 ∗ 10! + 5 ∗ 10" + 2 ∗ 10# + 8 ∗ 10$

Theorem: Let 𝑏 be an integer greater than 1. Any
𝑛 ∈ 𝐙% can be expressed uniquely in the form:

𝑛 = 𝑎&𝑏& + 𝑎&'#𝑏&'# +⋯+ 𝑎#𝑏# + 𝑎$𝑏$

where 𝑘 ∈ 𝐍, each 𝑎( ∈ 𝐍 where 𝑎( < 𝑏, and 𝑎& ≠ 0.

This representation is called the base 𝑏 expansion of 𝑛, which we write 
compactly as 𝑎&𝑎&'#…𝑎#𝑎$ )

• When 𝑏 > 10, we write each 𝑎! as a single symbol in an extended “alphabet” of 
digits
• e.g., 0123456789ABCDEFGH…

3

While we typically use decimal, other base systems 
work very similarly



Express each of these expansions in decimal:
• 675 " = 6 ∗ 8# + 7 ∗ 8$ + 5 ∗ 8%

= 384 + 56 + 5 = 445
• 110101 # = 1 ∗ 2& + 1 ∗ 2' + 0 ∗ 2( + 1 ∗ 2# + 0 ∗ 2$ + 1 ∗ 2%

= 32 + 16 + 4 + 1 = 53
• 2A4 $# = 2 ∗ 12# + 10 ∗ 12$ + 4 ∗ 12%

= 288 + 120 + 4 = 412

Here, A has value 10

4

Examples of base 𝑏 expansions



These base systems are very common in computing:
• Base 2, binary: Expansions are bit strings

412 = 110011100 !
• Base 8, octal: Each digit 𝑎" is 0 ≤ 𝑎" < 8

412 = 634 #
• Base 16, hexadecimal: Each digit 𝑎" ∈ 0, 1,… , 9, A, B,… , F

412 = 19C $%

Trends to note:
• Base 𝑏 requires 𝑏 digits in the “alphabet”
• Lesser 𝑏 yields longer expansions, greater 𝑏 yields shorter 

expansions

Why are these important?
• Data is stored in binary, octal represents 3 bits per digit, 

hexadecimal represents 4 bits per digit

5

Common base expansions



procedure base b expansion(n, b: positive integers with b > 1)
q := n
k := 0
while q ≠ 0

ak := q mod b
q := q div b
k := k + 1

return (ak-1, ak-2 …, a1, a0)
{(ak-1ak-2⋯a1a0)b is the base b expansion of n}

Repeat: Divide q by b; 
remainder becomes a digit, 

quotient replaces q

Digits are produced right-to-left

Return when q = 0

6

Constructing base 𝑏 expansions



1. Express 1501 in hex
• 1501 divided by 16

q = 93, r = 13 = (D)16
• 93 divided by 16

q = 5, r = 13 = (D)16
• 5 divided by 16

q = 0, r = 5
• Thus, 1501 = (5DD)16

2. Express 441 in octal
• 441 divided by 8

q = 55, r = 1
• 55 divided by 8

q = 6, r = 7
• 6 divided by 8

q = 0, r = 6
• Thus, 441 = (671)8

3. Express 441 in base-30
• 441 divided by 30

q = 14, r = 21 = (I)30
• 14 divided by 30

q = 0, r = 14 = (E)30
• Thus, 441 = (EI)30

4. Express 441 in base-4
• 441 divided by 4

q = 110, r = 1
• 110 divided by 4

q = 27, r = 2
• 27 divided by 4

q = 6, r = 3
• 6 divided by 4

q = 1, r = 2
• 1 divided by 4

q = 0, r = 1
• Thus, 441 = (12321)4

7

Constructing base 𝑏 expansions, examples



Since an octal digit encodes 3 bits and a hex digit encodes 4 bits, we can use 
binary to help convert

3720 "

011111010000 #

7D0 $%

8

When 𝑏 = 2!, conversion can be done on 𝑖 bits at a 
time



In-class exercises
Problem 1: Find the octal expansion of 100

Problem 2: Find the octal expansion of (100)2

Problem 3: Find the octal expansion of (100)16

Problem 4: Find the octal expansion of (100)36

9



procedure add(x, y: positive integers, b: integer > 1)
{The base b expansions of x and y are (xn-1xn-2⋯x1x0)b
and (yn-1yn-2⋯y1y0)b, respectively}
c := 0
for j := 0 to n–1 {Move right-to-left}

t := xj + yj + c {Add the jth digits together}
c := ⌊t/b⌋ {Carry a digit if needed}
sj := t – bc {Remove carry and save as sj}

sn := c {Final carry becomes sn}
return (sn, sn-1, …, s1, s0)
{The base b expansion of the sum is (snsn-1⋯s1s0)b}

Does this sound familiar?
What is its complexity?

10

Adding base 𝑏 expansions



₁
B8C0

+ 827F
13B3F

₁₁
13AC4F

+ 3B9E00
4F4A4F

₁₁
5630

+ 3766
11616

₁  ₁
723405

+  27305
752712

Hex      | Octal

11

Addition examples in hexadecimal/octal



procedure multiply(x, y: positive integers, b: integer > 1)
{The base b expansions of x and y are (xn-1xn-2⋯x1x0)b and (yn-1yn-
2⋯y1y0)b, respectively}
p := 0 {Resulting product}
for j := 0 to n–1 {Move right-to-left in y}

c := 0 {Reset carry}
for i := 0 to n-1 {Move right-to-left in x}

t := xi * yj + c {Multiply digits and add carry}
c := ⌊t/b⌋ {Carry a digit if needed}
ri := t - bc {Partial product, digit i}

rn := c {Final carry becomes rn}
r := r shifted j places {Shift position to align with j}
p := add(p, r) {Add r to the result}

return (p2n, p2n-1, …, p1, p0)
{The base b expansion of the sum is (p2np2n-1⋯p1p0)b}

What is its complexity?

12

Multiplying base 𝑏 expansions



C38
* 6A4
30E0

7A30
+ 4950

5123E0

365
* 457
3263

2311
+ 1724

220773

Hex      | Octal

13

Multiplication examples in hexadecimal/octal



In previous exercises, didn’t we assume basic arithmetic operations were Θ 1 ?
• This is often true! Modern CPUs can compute (at least) 32-bit integer multiplication 

in circuitry in a few cycles
• What about numbers bigger than your CPU’s MUL?

• e.g., for cryptography
• Let 𝑏 = 2(#, consider 𝑏-bit expansions where each “digit” is a 32-bit word

We can compare a CPU’s MUL (etc.) circuits to the multiplication tables we 
memorized in grade school

• For small enough values, we know the answer very quickly
• For larger values, we learn an algorithm that utilizes many smaller multiplications

14

How are these algorithms used in practice?



Algorithm Complexity Threshold example*

Grade school 𝑂 𝑛! (native MUL)

Karatsuba 𝑂 𝑛"#$! % ≈ 𝑂 𝑛&.()( 832 bits

Toom–Cook (Toom-3) 𝑂 𝑛"#$" ( ≈ 𝑂 𝑛&.*+ 6208 bits

Schönhage–Strassen 𝑂 𝑛 log𝑛 log log𝑛 159744 bits

Fürer 𝑂 𝑛 log𝑛2,("#$∗ .) —

Harvey–van der Hoeven 𝑂 𝑛 log𝑛 —

15

Other multiplication algorithms for even larger values



In-class exercises
Problem 5: Use the integer addition algorithm to compute (734)8 + (225)8

Problem 6: Use the integer multiplication algorithm to compute (110110)2 ×
(100101)2

Problem 7: Calculate (FF)16 × (FF)16, (77)8 × (77)8, and 99 × 99 and compare

16



Final thoughts
• Integers can be represented uniquely in any specified base

• Integer arithmetic can be computed in other bases, and even pen-and-
paper algorithms can be useful in computing

• Arithmetic isn’t always constant

• Next time:
• Primes and composites (Section 4.3)

17


