# CS 441: Integer representation and Algorithms

PhD. Nils Murrugarra-Llerena nem177@pitt.edu



# **Today's topics**

- Integer representations
  - Base b expansions
  - Common bases: Binary, octal, hexadecimal
  - Base conversions
- Integer algorithms
  - Addition
  - Multiplication
  - Connection to computing and pen-and-paper arithmetic



# While we typically use decimal, other base systems work very similarly

Recall: Decimal expansion of integers, e.g.,  $3528 = 3 * 10^3 + 5 * 10^2 + 2 * 10^1 + 8 * 10^0$ 

**Theorem:** Let *b* be an integer greater than 1. Any  $n \in \mathbb{Z}^+$  can be expressed uniquely in the form:  $n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b^1 + a_0 b^0$ 

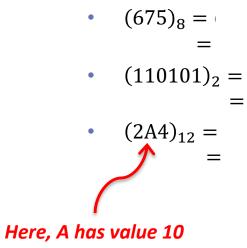
where  $k \in \mathbf{N}$ , each  $a_i \in \mathbf{N}$  where  $a_i < b$ , and  $a_k \neq 0$ .

This representation is called the base *b* expansion of *n*, which we write compactly as  $(a_k a_{k-1} \dots a_1 a_0)_b$ 

- When b > 10, we write each  $a_i$  as a single symbol in an extended "alphabet" of digits
  - e.g., 0123456789ABCDEFGH...

## Examples of base *b* expansions

Express each of these expansions in decimal:



#### **Common base expansions**

These base systems are very common in computing:

- Base 2, binary: Expansions are bit strings  $412 = (110011100)_2$
- Base 8, octal: Each digit  $a_i$  is  $0 \le a_i < 8$  $412 = (634)_8$
- Base 16, hexadecimal: Each digit  $a_i \in \{0, 1, \dots, 9, A, B, \dots, F\}$  $412 = (19C)_{16}$

Trends to note:

- Base *b* requires *b* digits in the "alphabet"
- Lesser b yields longer expansions, greater b yields shorter expansions

Why are these important?

 Data is stored in binary, octal represents 3 bits per digit, hexadecimal represents 4 bits per digit

## Constructing base *b* expansions

**procedure** *base b expansion*(*n*, *b*: positive integers with *b* > 1)

 $\begin{array}{l} q:=n\\ k:=0 \end{array} \quad \textit{Digits are produced right-to-left}\\ \textbf{while } q \neq 0\\ a_k:=q \ \textbf{mod } b\\ q:=q \ \textbf{div } b\\ k:=k+1 \end{aligned} \quad \begin{array}{l} \textbf{Repeat: Divide } q \ by \ b;\\ remainder \ becomes \ a \ digit,\\ k:=k+1 \end{aligned} \quad \begin{array}{l} \textbf{quotient replaces } q\\ \textbf{return } (a_{k-1}, a_{k-2} \hdots, a_1, a_0)\\ \{(a_{k-1}a_{k-2} \hdots a_{1}a_{0})_{b} \ \text{is the base } b \ expansion \ of \ n\} \end{array}$ 

Return when q = 0

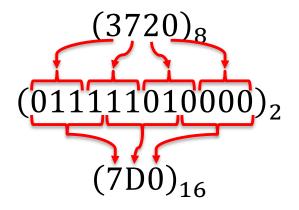
## Constructing base *b* expansions, examples

- 1. Express 1501 in hex
  - 1501 divided by 16 q = 93, r = 13 = (D)<sub>16</sub>
  - 93 divided by 16 q = 5, r = 13 = (D)<sub>16</sub>
  - 5 divided by 16 q = 0, r = 5
  - Thus, 1501 = (5DD)16
- 2. Express 441 in octal
  - 441 divided by 8 q = 55, r = 1
  - 55 divided by 8 q = 6, r = 7
  - 6 divided by 8 q = 0, r = 6
  - Thus, 441 = (671)<sub>8</sub>

- 3. Express 441 in base-30
  - 441 divided by 30 q = 14, r = 21 = (I)<sub>30</sub>
  - 14 divided by 30 q = 0, r = 14 = (E)<sub>30</sub>
  - Thus, 441 = (EI)<sub>30</sub>
- 4. Express 441 in base-4
  - 441 divided by 4 q = 110, r = 1
  - 110 divided by 4 q = 27, r = 2
  - 27 divided by 4 q = 6, r = 3
  - 6 divided by 4 q = 1, r = 2
  - 1 divided by 4 q = 0, r = 1
  - Thus, 441 = (12321)<sub>4</sub>

# When $b = 2^i$ , conversion can be done on *i* bits at a time

Since an octal digit encodes 3 bits and a hex digit encodes 4 bits, we can use binary to help convert



#### In-class exercises

**Problem 1:** Find the octal expansion of 100

**Problem 2:** Find the octal expansion of  $(100)_2$ 

**Problem 3:** Find the octal expansion of  $(100)_{16}$ 

**Problem 4:** Find the octal expansion of  $(100)_{36}$ 

### Adding base *b* expansions

**procedure** add(x, y: positive integers, b: integer > 1) {The base b expansions of x and y are  $(x_{n-1}x_{n-2}\cdots x_1x_0)_b$ and  $(y_{n-1}y_{n-2}\cdots y_1y_0)_b$ , respectively} c := 0 **for** j := 0 **to** n-1 {Move right-to-left}  $t := x_j + y_j + c$  {Add the *j*th digits together}  $c := \lfloor t/b \rfloor$  {Carry a digit if needed}  $s_j := t - bc$  {Remove carry and save as  $s_j$ }  $s_n := c$  {Final carry becomes  $s_n$ } **return**  $(s_n, s_{n-1}, ..., s_1, s_0)$ {The base b expansion of the sum is  $(s_n s_{n-1} \cdots s_1 s_0)_b$ }

> Does this sound familiar? What is its complexity?

## Addition examples in hexadecimal/octal

|                       | Нех | I | Octal                    |
|-----------------------|-----|---|--------------------------|
| B8C0<br><u>+ 827F</u> |     |   | 5630<br><u>+ 3766</u>    |
| 13AC4<br>+ 3B9E00     |     |   | 723405<br><u>+ 27305</u> |

#### Multiplying base *b* expansions

**procedure** *multiply*(x, y: positive integers, b: integer > 1) {The base b expansions of x and y are  $(x_{n-1}x_{n-2}\cdots x_1x_0)_b$  and  $(y_{n-1}y_{n-1}x_{n-2}\cdots x_1x_0)_b$  $_2 \cdots y_1 y_0)_b$ , respectively} {Resulting product} p := 0for *j* := 0 to *n*–1 {Move right-to-left in y} *c* := 0 {Reset carry} for *i* := 0 to *n*-1 {Move right-to-left in *x*}  $t := x_i * y_i + c$ {Multiply digits and add carry} c := |t/b|{Carry a digit if needed} {Partial product, digit *i*}  $r_i := t - bc$ {Final carry becomes  $r_n$ }  $r_n := c$ r := r shifted *j* places {Shift position to align with *j*} p := add(p, r){Add *r* to the result} return  $(p_{2n}, p_{2n-1}, ..., p_1, p_0)$ {The base *b* expansion of the sum is  $(p_{2n}p_{2n-1}\cdots p_1p_0)_b$ }

What is its complexity?

# Multiplication examples in hexadecimal/octal

|              | Нех | Octal |   |            |
|--------------|-----|-------|---|------------|
| C38          |     |       |   | 365        |
| <u>* 6A4</u> |     |       | * | <u>457</u> |

# How are these algorithms used in practice?

In previous exercises, didn't we assume basic arithmetic operations were  $\Theta(1)$ ?

- This is often true! Modern CPUs can compute (at least) 32-bit integer multiplication in circuitry in a few cycles
- What about numbers bigger than your CPU's MUL?
  - e.g., for cryptography
- Let  $b = 2^{32}$ , consider *b*-bit expansions where each "digit" is a 32-bit word

We can compare a CPU's MUL (etc.) circuits to the multiplication tables we memorized in grade school

- For small enough values, we know the answer very quickly
- For larger values, we learn an algorithm that utilizes many smaller multiplications

#### Other multiplication algorithms for even larger values

| Algorithm             | Complexity                                                            | Threshold example* |  |  |
|-----------------------|-----------------------------------------------------------------------|--------------------|--|--|
| Grade school          | $O(n^2)$                                                              | (native MUL)       |  |  |
| Karatsuba             | $\mathcal{O}\left(n^{\log_2 3}\right) \approx \mathcal{O}(n^{1.585})$ | 832 bits           |  |  |
| Toom–Cook (Toom-3)    | $O\left(n^{\log_3 5}\right) \approx O(n^{1.46})$                      | 6208 bits          |  |  |
| Schönhage-Strassen    | $O(n\log n\log\log n)$                                                | 159744 bits        |  |  |
| Fürer                 | $O(n\log n  2^{\Theta(\log^* n)})$                                    | —                  |  |  |
| Harvey-van der Hoeven | $O(n\log n)$                                                          | —                  |  |  |

#### In-class exercises

**Problem 5:** Use the integer addition algorithm to compute  $(734)_8 + (225)_8$ 

**Problem 6:** Use the integer multiplication algorithm to compute  $(110110)_2 \times (100101)_2$ 

**Problem 7:** Calculate  $(FF)_{16} \times (FF)_{16}$ ,  $(77)_8 \times (77)_8$ , and 99 × 99 and compare

## Final thoughts

- Integers can be represented uniquely in any specified base
- Integer arithmetic can be computed in other bases, and even pen-andpaper algorithms can be useful in computing
  - Arithmetic isn't always constant
- Next time:
  - Primes and composites (Section 4.3)