CS 441: Primes, GCDs, and LCMs

PhD. Nils Murrugarra-Llerena [nem177@pitt.ed](mailto:nmurrugarrallerena@weber.edu)u

2

Today's topics

- Primes & Greatest Common Divisors
	- Prime factorizations
	- Important theorems about primality
	- Greatest Common Divisors
	- Least Common Multiples
	- Euclid's algorithm

Let's (finally) define the primes formally

Definition: A prime number is a positive integer p greater than 1 that is divisible by only 1 and itself. If a number is not prime, it is called a composite number.

Mathematically: p is prime \Leftrightarrow p>1 \land \forall x∈Z⁺ [(x≠1 \land x≠*p*) \rightarrow x \angle *p*]

Examples: Are the following numbers prime or composite?

- \cdot 23
- 42
- 17
- \bullet 3
- 9 $\overline{9}$

Any positive integer can be represented as a unique product of prime numbers!

Theorem (The Fundamental Theorem of Arithmetic)**:** Every positive integer greater than 1 can be written uniquely as a prime or the product of two or more primes where the prime factors are written in order of non-decreasing size.

Examples:

- $100 = 2 \times 2 \times 5 \times 5 = 2^2 \times 5^2$
- $641 = 641$
- 999 = $3 \times 3 \times 3 \times 37 = 3^3 \times 37$
- $1024 = 2 \times 2 = 2^{10}$

Note: Proving the fundamental theorem of arithmetic requires some mathematical tools that we have not yet learned.

This leads to a related theorem…

Theorem: If n is a composite integer, then n has a prime divisor less than or equal to \sqrt{n} .

Proof:

- If n is composite, then it has a positive integer factor a with $1 \le a \le n$ by definition. This means that $n = ab$, where b is an integer greater than 1.
- Assume a > \sqrt{n} and b > \sqrt{n} . Then ab > $\sqrt{n}\sqrt{n}$ = n, which is a contradiction. So either a $\leq \sqrt{n}$ or $b \leq \sqrt{n}$.
- Thus, n has a divisor less than or equal to \sqrt{n} .
- By the fundamental theorem of arithmetic, this divisor is either prime, or is a product of primes. In either case, n has a prime divisor less than or equal to \sqrt{n} . \Box

Applying contraposition leads to a naive primality test

Corollary: If n is a positive integer that does not have a prime divisor less than or equal to \sqrt{n} , then n is prime.

Example: Is 101 prime?

- The primes less than or equal to $\sqrt{101}$ are 2, 3, 5, and 7
- Since 101 is not divisible by 2, 3, 5, or 7, it must be prime

Example: Is 1147 prime?

- The primes less than or equal to $\sqrt{1147}$ are 2, 3, 5, 7, 11, 13, 17, 23, 29, and 31
- \cdot 1147 = 31 × 37, so 1147 must be composite

This approach can be generalized

The Sieve of Eratosthenes is a brute-force algorithm for finding all prime numbers less than some value *n*

Step 2: If the next available number is less than \sqrt{n} , cross out all of its multiples

Step 3: Repeat until the next available number is $> \sqrt{n}$

Step 4: All remaining numbers are prime

How many primes are there?

Theorem: There are infinitely many prime numbers.

Proof: By contradiction

- Assume that there are only a finite number of primes $p_1, ..., p_n$
- Let $Q = p_1 \times p_2 \times ... \times p_n + 1$
- By the fundamental theorem of arithmetic, Q can be written as the product of two or more primes.
- Q is not divisible by any of the primes $p_1, p_2, p_3, ..., p_n$ because dividing Q by any of these primes would leave a remainder of 1.
- Since Q is not divisible by any of the previous prime number, there must be some prime number not in our list. This prime number is either Q (if Q is prime) or a prime factor of Q (if Q is composite).
- This is a contradiction since we assumed that all primes were listed. Therefore, there are infinitely many primes. ❏

This is a non-constructive existence proof!

In-class exercises

- **Problem 1:** What is the prime factorization of 984?
- **Problem 2:** Is 157 prime? Is 97 prime?
- **Problem 3:** Is the set of all prime numbers countable or uncountable? If it is countable, show a 1-to-1 correspondence between the prime numbers and the natural numbers.

Greatest common divisors

Definition: Let *a* and *b* be integers, not both zero. The largest integer *d* such that *d* | *a* and *d* | *b* is called the greatest common divisor of *a* and *b*, denoted by gcd(*a*, *b*).

Note: We can (naively) find GCDs by comparing the common divisors of two numbers.

Example: What is the GCD of 24 and 36?

- Factors of 24: 1, 2, 3, 4, 6, 8, (12) 24
- Factors of 36: 1, 2, 3, 4, 6, 9, $\overline{12}$ 18, 36
- $: \text{gcd}(24, 36) = 12$

Sometimes, the GCD of two numbers is 1

Example: What is gcd(17, 22)?

- Factors of 17: (1) 17
- Factors of $22(1)2, 11, 22$
- \therefore gcd(17, 22) = 1

Definition: If gcd(*a*, *b*) = 1, we say that *a* and *b* are relatively prime, or coprime. We say that a_1 , a_2 , ..., a_n are pairwise relatively prime if $\gcd(a_i, a_j)$ = 1 ∀*i*, *j*.

Example: Are 10, 17, and 21 pairwise coprime?

- Factors of $10(1)2, 5, 10$
- Factors of $17(1)$ 17
- Factors of $21(1, 3, 7, 21)$

We can leverage the fundamental theorem of arithmetic to develop a better algorithm

Let:
$$
a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}
$$
 and $b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$
\nThen:
\n $gcd(a, b) \equiv p_1^{min(a_1, b_1)} p_2^{min(a_2, b_2)} \cdots p_n^{min(a_n, b_n)}$
\n**Greates that multiple of p₁ in both a**
\nand b
\nand b

Example: Compute gcd(120, 500)

- $120 = 2^3 \times 3 \times 5$
- $500 = 2^2 \times 5^3$
- So gcd(120, 500) = $2^2 \times 3^0 \times 5 = 20$

Better still is Euclid's algorithm

Observation: If $a = bq + r$, then gcd(a, b) = gcd(b, r) *Proved in section 4.3 of the book*

So, let $r_0 = a$ and $r_1 = b$. Then:

• $r_0 = r_1q_1 + r_2$ 0 ≤ r_2 < r_1 • $r_1 = r_2q_2 + r_3$ 0 ≤ r_3 < r_2 • *…* • $r_{n-2} = r_{n-1}q_{n-1} + r_n$ 0 r_{n-1} • $r_{n-1} = r_n q_n$ $gcd(a, b) = r_n$

13

Examples of Euclid's algorithm

Example: Compute gcd(414, 662)

- $662 = 414 \times 1 + 248$
- $414 = 248 \times 1 + 166$
- 248 = $\frac{166}{16}$ × 1 + 82 • $166 = 82 \times 2 + 2$ • $82 = 2 \times 41$ $gcd(414, 662) = 2$

Example: Compute gcd(9888, 6060)

- 9888 = 6060 \times 1 + 3828
- \cdot 6060 = 3828 × 1 + 2232
- $3828 = 2232 \times 1 + 1596$
- $2232 = 1596 \times 1 + 636$
- $1596 = 636 \times 2 + 324$
- 636 = $\frac{324}{1} \times 1 + \frac{312}{1}$ • $324 = 312 \times 1 + 12$

gcd(9888, 6060) = 12

• $312 = 12 \times 26$

Least common multiples

Definition: The least common multiple of the integers *a* and *b*, where neither is 0, is the smallest positive integer that is divisible by both *a* and *b*. The least common multiple of *a* and *b* is denoted lcm(*a*, *b*).

Example: What is lcm(3,12)?

- Multiples of 3: 3, 6, 9, (12) 15, ...
- Multiples of 12: (12) 24, 36, ...
- So $lcm(3,12) = 12$

Note: lcm(*a*, *b*) is guaranteed to exist, since a common multiple exists (i.e., *ab*).

Let: $a = p_1^{a_1} p_2^{a_2} \cdots p_n^{a_n}$ and $b = p_1^{b_1} p_2^{b_2} \cdots p_n^{b_n}$ We can leverage the fundamental theorem of arithmetic to develop a better algorithm

Icm(*a*, *b*) = $p_1^{max(a_1,b_1)} p_2^{max(a_2,b_2)} \cdots p_n^{max(a_n,b_n)}$ *Greatest multiple of p₁ in either a or b Greatest multiple of p₂ in either a or b*

Example: Compute $\text{lcm}(120, 500)$

- $120 = 2^3 \times 3 \times 5$
- $500 = 2^2 \times 5^3$
- So lcm(120, 500) = $2^3 \times 3 \times 5^3 = 3000 \ll 120 \times 500 =$ 60,000

LCMs are closely tied to GCDs

Note: $ab = \text{lcm}(a, b) \times \text{gcd}(a, b)$

Example: $a = 120 = 2^3 \times 3 \times 5$, $b = 500 = 2^2 \times 5^3$

- $120 = 2^3 \times 3 \times 5$
- $500 = 2^2 \times 5^3$
- lcm(120, 500) = $2^3 \times 3 \times 5^3$ = 3000
- gcd(120, 500) = $2^2 \times 3^0 \times 5 = 20$
- $lcm(120, 500) \times gcd(120, 500)$

✔

In-class exercises

- **Problem 4:** Use Euclid's algorithm to compute gcd(92928, 123552).
- **Problem 5:** Compute gcd(24, 36) and lcm(24, 36). Verify that gcd(24, 36) \times $lcm(24, 36) = 24 \times 36.$

(Submit both on Top Hat)

Final Thoughts

- Prime numbers play an important role in number theory
- There are an infinite number of prime numbers
- Any number can be represented as a product of prime numbers; this has implications when computing GCDs and LCMs
- Next time: Solving congruences, modular inverses