CS 441: Applications of Number
Theory

PhD. Nils Murrugarra-Llerena
nem177@pitt.edu

T University of
@ Pittsburgh

mailto:nmurrugarrallerena@weber.edu

Today's topics

- Hashing non-numeric data
* Horner’'s method for efficient computation

- Check digits and error-correcting codes
 |SBN, Luhn, Reed—Solomon

- Cryptography
« Block ciphers
* Public-key cryptography
- RSA

Hash functions, recap

Problem: Given a large collection of records, how can we find the one we want quickly?

Solution: Apply a hash function that determines the storage location of the record based on the
record’s ID. A common hash function is h(k) = k mod n, where n is the number of available

storage locations.

0 1 2 3 4 5 6 7
Memory:
A A A
42 mod 8 = 2 276mod8=:1\ £m0d8=7

ID: 276 ID: 23

A
What if we want to use non-numeric IDs?

For example, say your IDs are alphanumeric strings

Thanks to base-b expansion, we can interpret these as integers!
« Let b = 36, with digits 0-9 then A-Z
« |f case sensitive, b = 62 to include 0-9, A-Z, a—z
- Base64 is a standard where b = 64 using A-Z, a-z, 0-9, +, /
* Why might this be preferred over b = 627

We can even hash arbitrary binary data
* Any binary data can be interpreted as a base-b integer! Let b = 2

- Or, we can read k bits at a time (say, 1 byte = 8 bits) and let b = 2%, interpreting
each “block” as an integer in Z,

To calculate these more efficiently, we can use Horner’s
method

An k-digit string in base b:
k—1 k-2 4 ... 1 0
ak_lb + ak_zb + + alb + aob
If k and b are large, values like b*~1 are very time-consuming to calculate

Instead, we can use Horner’s method:
((..(ag—1*b+ax—)*b+--+ay)*xb+ay)*b+ag

procedure Horner(b, ay, a4, ..., a@y.1)

Y = 8y
for I . k—2 tO 0 Each a; is multiplied by b a total of i

/ times
y:=y*b+a;
return y \

We can add “mod n” here if using this for

hashing!

Congruences are also used for check bits and check
digits
The textbook describes parity bits and UPC/ISBN check digits

The Luhn algorithm is used for credit cards
Calculates the 16th digit based on the first 15
Double the rightmost digit and every second digit, moving right to left
Let s be the sum of the resulting digits
Set the check digitto 10 — (s mod 10)

1234 5678 4321
zlﬁlml 4 841
24 6 8 31 5

S=242+64+4+(1+0)+6+(1+4)+8+8+3+4+1+(1+0)+5+
(140) =57

321 555
v 4]
e

Error-correcting codes are used to store data when
reading is error-prone

Examples: Optical media, QR codes

Goal: Store k digits* with extra check digits so that erasures/errors can be
detected/corrected

Store n > k digits, where t = n — k are check digits

If any ¢ digits are lost, they can be recovered

If any ¢ digits are changed, it can be detected

If any [¢/2] digits are changed, it can be corrected

Reed—Solomon: Let each digit represent a point on a curve
Any k points identify a (k — 1)-degree polynomial
Extend the curve to generate check digits, interpolate to recover lost digits

T
Recall the Caesar cipher

To encode a message using the Caesar cipher:
Choose a shiftindex s
Convert each letter A-Z into a number 0-25
Compute f(p) = (p + s) mod 26

Example: Let s =9. Encode “ATTACK".
ATTACK=019190210
f0)=9, (19) =2, f(2) =11, f(10) =19
Encrypted message: 92291119 =JCCJLT

Affine ciphers use bijections of the form f(p) = (ap + b) mod 26
To be a bijection, requires gcd(a, 26) =1

I
These simple ciphers are not secure!

Patterns become obvious even though the letters are replaced
* Frequencies of letters, digraphs, trigraphs, etc.

However, modern secure block ciphers might look similar at first!
- Replace each k-bit block with another k-bit block
° Say, k = 128, as with Advanced Encryption Standard (AES)
- Use a key (e.g., also 128 bits) to determine the substitution

- There are 2% possible blocks, similar number of keys, so there are way more
combinations

- Even so, to be used securely, a block cipher needs to be combined with a secure
mode of operation (block mode)

« A secure block mode ensures that the same block encrypts differently depending on
its location

These ciphers, including modern block ciphers, are
examples of secret-key cryptography

Symmetric-key (or private-key, or secret-key) cryptography uses the same key
to encrypt and decrypt

The ability to encrypt is the same as the ability to decrypt

This means we need to share a key with each other party we want to communicate
with!

Public-key cryptography: The encryption and decryption key are distinct

The two keys are paired, but the decryption key is hard to get from the encryption
key

| can generate a key pair, keep the decryption key, and distribute the encryption
key to multiple parties!

- w7
The RSA cryptosystem

To generate an RSA key pair:
Choose two primes, p and g, and let n = pq
* Compute p(n) =(p—1(@—-1)
* The count of integers less than n that are coprime with n

* Choose an integer e such that is coprime with ¢(n)
* How can we ensure this?

* Calculate d such that ed = 1 (mod ¢(n)) 0
°* How can we do this?

* Let (n,e) and be the public key
* Letd be the private key

To use an RSA key pair:
* Encrypt a message m € Z,, to public key (n,e): c = m® mod n
« Decrypt a ciphertext to (n,e): r = c? modn = m®“ modn = m

2
Why does RSA decryption work?

Why does m®? mod n = m? O O

- __Recall: ed =1 (mod ¢(n)), and p(n) = (p — D(qg — 1)
.er = meéd = mkeM+1 — k(P-1D(g-1+1
-eBy Fermat's Little Theorem, this means r = m (mod p) and r = m (mod q)
e Thus,p|(r—m)andq|(r—m)
« Since p and q are distinct and both prime, they are coprime
* Lemma:Ifa|candb|cforcoprimeaandb,thenab|c

* Good practice proof!

° Ifp|r—-m)andq|(r—m)thenp=*q|(r—m)

* n|(r-m

Thismeans thatn | (r —m), sor = m (mod n)

Why does RSA decryption work?: Fermat’s Little
Theorem

. = med — mk(p(n)+1 — mk(p—l)(q—1)+1

9 - By Fermat’s Little Theorem, this means r = m (mod p) and r = m (mod q)

* Let's assume gcd(m, p) = 1 and gcd(m,q) = 1. m and p are coprimes; m and q are
coprimes [See slide 22 from congruences]

- Since p is prime, and m is not divisible by p [gcd(m, p) = 1] > m®1 =1 (mod p)
Since q is prime, and m is not divisible by p [gcd(m, q) = 1] 2 m@1 =1 (mod q)
o 7 =mk-D@-D+1 _ 4, 4 ;pk@-D(@-1)
=mx* 1 (mod p)
= m (mod p)
o =mk-D@-D+1 _ 1y 4, Mk@-D(-1)
=m=1 (mod q)
=m (mod q)
- Thus,p|(r—m)andq|(r —m)

A brief practical security note...

The textbook includes examples and exercises where they encrypt a message
using RSA, one “chunk” at a time

THIS IS INSECURE, DO NOT DO THIS

Remember what we learned from block ciphers!
* Done this way, if the plaintext chunk is the same, the ciphertext chunk is the same

- Even if the encryption approach is very sophisticated in isolation, encrypting piece-
by-piece reveals patterns

- Best practice is to use RSA to encrypt a single-use symmetric key, then encrypt the
message using a block cipher with a secure mode of operation

° In part, because block ciphers are way faster than RSA

5
Why is RSA secure?

That is, if you know ¢ = m® mod n, why can’t you get m?

This is called the RSA problem, and the fastest known approach is to factor n

* Inturn, the fastest factoring algorithm is slower than polynomial complexity (*hard”)

- Factoring n reveals p and g, and thus ¢(n), and then d can be computed from e just
like in key generation

- If you can get d, then you can get p and q
* By contrapositive, if factoring is hard, then getting d is hard
- Similarly, if you can get ¢(n), you can get p and g

To be secure for the near future, n should be 2048 bits in size

eg.,
28980031691694357068918562487659336178577290872139729240999721884150682654823846774504439389267921793843771740233811602035640310196929500591908624781
66152016032673099683618999980615311782821864256646973478297214481647222660269569400841134169754396451340590101145507012183878091040551030992366712077
51888612680781200445138803757546069773284441936327610981983867727670435168737551110881172718728253861892500326058954623805626985122349587194747221280
36031389620442812631321984742581817025098263901240154322179135628982031399236433383170589170534724928725807887253791412053381878561858347628938989347
523578617950829846264

I T
Final thoughts

Number theory has many applications in computing
Hashing for storage
Check digits and error-correcting codes
Cryptography

Symmetric-key cryptography relies on complex substitutions, while public-
key cryptography uses number theory
... and mathematical problems with no known efficient algorithms

Next: Proof by induction! (Start reading Chapter 5)

