
CS 441: Applications of Number
Theory

PhD. Nils Murrugarra-Llerena
nem177@pitt.edu

mailto:nmurrugarrallerena@weber.edu

Today's topics

2

• Hashing non-numeric data
• Horner’s method for efficient computation

• Check digits and error-correcting codes
• ISBN, Luhn, Reed–Solomon

• Cryptography
• Block ciphers
• Public-key cryptography
• RSA

Problem: Given a large collection of records, how can we find the one we want quickly?

Solution: Apply a hash function that determines the storage location of the record based on the
record’s ID. A common hash function is h(k) = k mod n, where n is the number of available
storage locations.

0 1 2 3 4 5 6 7

ID: 276
…
…

ID: 23
…
…

ID: 42
…
…

Memory:

42 mod 8 = 2 276 mod 8 = 4 23 mod 8 = 7

3

Hash functions, recap

For example, say your IDs are alphanumeric strings

Thanks to base-𝑏 expansion, we can interpret these as integers!
• Let 𝑏 = 36, with digits 0–9 then A–Z
• If case sensitive, 𝑏 = 62 to include 0–9, A–Z, a–z
• Base64 is a standard where 𝑏 = 64 using A–Z, a–z, 0–9, +, /

• Why might this be preferred over 𝑏 = 62?

We can even hash arbitrary binary data
• Any binary data can be interpreted as a base-𝑏 integer! Let 𝑏 = 2
• Or, we can read 𝑘 bits at a time (say, 1 byte = 8 bits) and let 𝑏 = 2!, interpreting

each “block” as an integer in Zb

4

What if we want to use non-numeric IDs?

An 𝑘-digit string in base 𝑏:
𝑎%&'𝑏%&' + 𝑎%&(𝑏%&(+⋯+ 𝑎'𝑏' + 𝑎)𝑏)

• If 𝑘 and 𝑏 are large, values like 𝑏!"# are very time-consuming to calculate

Instead, we can use Horner’s method:
((… (𝑎!"#∗ 𝑏 + 𝑎!"$) ∗ 𝑏 +⋯+ 𝑎$) ∗ 𝑏 + 𝑎#) ∗ 𝑏 + 𝑎%

procedure Horner(b, a0, a1, …, ak-1)
y := ak-1
for i : k–2 to 0

y := y * b + ai
return y

Each 𝒂𝒊 is multiplied by 𝒃 a total of 𝒊
times

We can add “mod n” here if using this for
hashing!

5

To calculate these more efficiently, we can use Horner’s
method

The textbook describes parity bits and UPC/ISBN check digits

The Luhn algorithm is used for credit cards
• Calculates the 16th digit based on the first 15
• Double the rightmost digit and every second digit, moving right to left
• Let 𝑠 be the sum of the resulting digits
• Set the check digit to 10 − (s 𝐦𝐨𝐝 10)

• 𝑠 = 2 + 2 + 6 + 4 + 1 + 0 + 6 + 1 + 4 + 8 + 8 + 3 + 4 + 1 + 1 + 0 + 5 +
1 + 0 = 57

1234 5678 4321 5553

6

Congruences are also used for check bits and check
digits

2 6 10 14 8 4 10 10
2 4 6 8 3 1 5

Examples: Optical media, QR codes

Goal: Store 𝑘 digits* with extra check digits so that erasures/errors can be
detected/corrected

• Store 𝑛 > 𝑘 digits, where 𝑡 = 𝑛 − 𝑘 are check digits
• If any 𝑡 digits are lost, they can be recovered
• If any 𝑡 digits are changed, it can be detected
• If any 𝑡/2 digits are changed, it can be corrected

Reed–Solomon: Let each digit represent a point on a curve
• Any 𝑘 points identify a (𝑘 − 1)-degree polynomial
• Extend the curve to generate check digits, interpolate to recover lost digits

7

Error-correcting codes are used to store data when
reading is error-prone

To encode a message using the Caesar cipher:
• Choose a shift index s
• Convert each letter A-Z into a number 0-25
• Compute 𝑓 𝑝 = 𝑝 + 𝑠 𝐦𝐨𝐝 26

Example: Let s = 9. Encode “ATTACK”.
• ATTACK = 0 19 19 0 2 10
• f(0) = 9, f(19) = 2, f(2) = 11, f(10) = 19
• Encrypted message: 9 2 2 9 11 19 = JCCJLT

Affine ciphers use bijections of the form 𝑓 𝑝 = 𝑎𝑝 + 𝑏 𝐦𝐨𝐝 26
• To be a bijection, requires gcd 𝑎, 26 = 1

8

Recall the Caesar cipher

Patterns become obvious even though the letters are replaced
• Frequencies of letters, digraphs, trigraphs, etc.

However, modern secure block ciphers might look similar at first!
• Replace each 𝑘-bit block with another 𝑘-bit block

• Say, 𝑘 = 128, as with Advanced Encryption Standard (AES)
• Use a key (e.g., also 128 bits) to determine the substitution
• There are 2! possible blocks, similar number of keys, so there are way more

combinations
• Even so, to be used securely, a block cipher needs to be combined with a secure

mode of operation (block mode)
• A secure block mode ensures that the same block encrypts differently depending on

its location

9

These simple ciphers are not secure!

Symmetric-key (or private-key, or secret-key) cryptography uses the same key
to encrypt and decrypt

• The ability to encrypt is the same as the ability to decrypt
• This means we need to share a key with each other party we want to communicate

with!

Public-key cryptography: The encryption and decryption key are distinct
• The two keys are paired, but the decryption key is hard to get from the encryption

key
• I can generate a key pair, keep the decryption key, and distribute the encryption

key to multiple parties!

10

These ciphers, including modern block ciphers, are
examples of secret-key cryptography

The RSA cryptosystem
To generate an RSA key pair:

• Choose two primes, 𝑝 and 𝑞, and let 𝑛 = 𝑝𝑞
• Compute 𝜑 𝑛 = 𝑝 − 1 𝑞 − 1

• The count of integers less than 𝑛 that are coprime with 𝑛
• Choose an integer 𝑒 such that is coprime with 𝜑 𝑛

• How can we ensure this?
• Calculate 𝑑 such that 𝑒𝑑 ≡ 1 mod 𝜑 𝑛

• How can we do this?
• Let 𝑛, 𝑒 and be the public key
• Let 𝑑 be the private key

To use an RSA key pair:
• Encrypt a message 𝑚 ∈ 𝐙$ to public key 𝑛, 𝑒 : 𝑐 = 𝑚% 𝐦𝐨𝐝 𝑛
• Decrypt a ciphertext to 𝑛, 𝑒 : 𝑟 = 𝑐& 𝐦𝐨𝐝 𝑛 = 𝑚%& 𝐦𝐨𝐝 𝑛 = 𝑚

11

1

2

3

Why does 𝑚-. 𝐦𝐨𝐝 𝑛 = 𝑚?
• Recall: 𝑒𝑑 ≡ 1 mod 𝜑 𝑛 , and 𝜑 𝑛 = 𝑝 − 1 𝑞 − 1
• 𝑟 = 𝑚&' = 𝑚!() *# = 𝑚! +"# ,"# *#

• By Fermat’s Little Theorem, this means 𝑟 ≡ 𝑚 mod 𝑝 and 𝑟 ≡ 𝑚 mod 𝑞
• Thus, 𝑝 | 𝑟 − 𝑚 and 𝑞 | 𝑟 − 𝑚
• Since 𝑝 and 𝑞 are distinct and both prime, they are coprime
• Lemma: If 𝑎 | 𝑐 and 𝑏 | 𝑐 for coprime 𝑎 and 𝑏, then 𝑎𝑏 | 𝑐

• Good practice proof!
• If 𝑝 | 𝑟 − 𝑚 and 𝑞 | 𝑟 − 𝑚 then p ∗ 𝑞 | 𝑟 − 𝑚

• 𝑛 | 𝑟 −𝑚

• This means that 𝑛 | 𝑟 − 𝑚 , so 𝑟 ≡ 𝑚 mod 𝑛

12

Why does RSA decryption work?
2 1

3

4

• 𝑟 = 𝑚&' = 𝑚() * +, = 𝑚(-., /., +,

• By Fermat’s Little Theorem, this means 𝑟 ≡ 𝑚 mod 𝑝 and 𝑟 ≡ 𝑚 mod 𝑞
• Let’s assume gcd(m, p) = 1 and gcd(m,q) = 1. m and p are coprimes; m and q are

coprimes [See slide 22 from congruences]
• Since p is prime, and m is not divisible by p [gcd(m, p) = 1] à 𝑚 '() = 1 (mod p)
• Since q is prime, and m is not divisible by p [gcd(m, q) = 1] à 𝑚 *() = 1 (mod q)
• 𝑟 = 𝑚+ '() *() ,) = 𝑚 ∗𝑚+ '() *()

= 𝑚 ∗ 1 𝑚𝑜𝑑 𝑝
= 𝑚 (𝑚𝑜𝑑 𝑝)

• 𝑟 = 𝑚+ '() *() ,) = 𝑚 ∗𝑚+ '() *()

= 𝑚 ∗ 1 𝑚𝑜𝑑 𝑞
= 𝑚 (𝑚𝑜𝑑 𝑞)

• Thus, 𝑝 | 𝑟 − 𝑚 and 𝑞 | 𝑟 − 𝑚

13

Why does RSA decryption work?: Fermat’s Little
Theorem

4

A brief practical security note…
The textbook includes examples and exercises where they encrypt a message
using RSA, one “chunk” at a time

THIS IS INSECURE, DO NOT DO THIS

Remember what we learned from block ciphers!
• Done this way, if the plaintext chunk is the same, the ciphertext chunk is the same
• Even if the encryption approach is very sophisticated in isolation, encrypting piece-

by-piece reveals patterns
• Best practice is to use RSA to encrypt a single-use symmetric key, then encrypt the

message using a block cipher with a secure mode of operation
• In part, because block ciphers are way faster than RSA

14

Why is RSA secure?
That is, if you know 𝑐 = 𝑚- 𝐦𝐨𝐝 𝑛, why can’t you get 𝑚?

This is called the RSA problem, and the fastest known approach is to factor 𝑛
• In turn, the fastest factoring algorithm is slower than polynomial complexity (“hard”)
• Factoring 𝑛 reveals 𝑝 and 𝑞, and thus 𝜑 𝑛 , and then 𝑑 can be computed from 𝑒 just

like in key generation
• If you can get 𝑑, then you can get 𝑝 and 𝑞

• By contrapositive, if factoring is hard, then getting 𝑑 is hard
• Similarly, if you can get 𝜑 𝑛 , you can get 𝑝 and 𝑞

To be secure for the near future, 𝑛 should be 2048 bits in size
• e.g.,

28980031691694357068918562487659336178577290872139729240999721884150682654823846774504439389267921793843771740233811602035640310196929500591908624781
66152016032673099683618999980615311782821864256646973478297214481647222660269569400841134169754396451340590101145507012183878091040551030992366712077
51888612680781200445138803757546069773284441936327610981983867727670435168737551110881172718728253861892500326058954623805626985122349587194747221280
36031389620442812631321984742581817025098263901240154322179135628982031399236433383170589170534724928725807887253791412053381878561858347628938989347
523578617950829846264

15

Final thoughts
• Number theory has many applications in computing

• Hashing for storage
• Check digits and error-correcting codes
• Cryptography

• Symmetric-key cryptography relies on complex substitutions, while public-
key cryptography uses number theory

• … and mathematical problems with no known efficient algorithms

• Next: Proof by induction! (Start reading Chapter 5)

16

