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Today's topics
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• Proof by Induction

• Examples
• Equations
• Inequalities
• Sets



Basic proof methods
• Direct proof, contradiction, contraposition, cases, …

Proof of quantified statements
• Existential statements (i.e., ∃x P(x))

• Finding a single example suffices

• Universal statements (i.e., ∀x P(x)) can be harder to prove

•

•

Bottom line: We need new tools!

We’ve learned a lot of proof methods…
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Goal: Prove ∀x∈N P(x).

Procedure:
1. Prove P(0)
2. Show that P(k) → P(k+1) for any arbitrary k
3. Conclude that P(x) is true ∀x∈N

Intuition:  If P(0)  is true, then P(1) is 
true.  If P(1) is true, then P(2) is true…

P(0)
For arb. k, P(k) → P(k+1)

∴∀x∈N P(x)

Mathematical induction lets us prove universally 
quantified statements!
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Analogy: Climbing a ladder
Proving P(0):

• You can get on the first rung of the 
ladder

Proving P(k) → P(k+1):
• If you are on the kth step, you can get 

to the (k+1)th step

∴ ∀x P(x)
• You can get to any step on the ladder
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Analogy: Playing with dominoes

Proving P(0):
• The first domino falls

Proving P(k) → P(k+1):
• If the kth domino falls, then 

the (k+1)th domino will fall

∴ ∀x P(x)
• All dominoes will fall!
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P(x) ≡

Base case:

Inductive Hypothesis:

Inductive step:

Conclusion:

Define the property that you are trying to prove

Prove the “first step onto the ladder.”  Typically,
but not always, this means proving P(0) or P(1).

Assume that P(k) is true for an arbitrary k

Show that P(k) → P(k + 1).  That is, prove that once you’re on 
one step, you can get to the next step.  This is where many 
proofs will differ from one another.

Since you’ve proven the base case and
P(k) → P(k + 1), the claim is true!  ❏

All of your proofs should have the same overall structure
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P(n) ≡

Base case:

I.H.:

Inductive step:

Conclusion:

• 1+2+…+k = k(k+1)/2 by I.H.
• 1+2+…+k+(k+1) = k(k+1)/2 + (k+1) k+1 to both sides
• 1+2+…+k+(k+1) = k(k+1)/2 + 2(k+1)/2
• 1+2+…+k+(k+1) = (k2 + 3k + 2)/2
• 1+2+…+k+(k+1) = (k+1)(k+2)/2 factoring

✔P(1): 1(1+1)/2 = 1

Assume that P(k) holds for an arbitrary positive integer k

We will now show that P(k) → P(k+1) 

Since we have proved the base case and the inductive case, ∀𝑛 ∈
𝐙! 𝑃 𝑛 by mathematical induction  ❏
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Prove that 



Mathematical induction is not a tool for discovering new theorems, but rather a 
powerful way to prove them

Example: Make a conjecture about the sum of the first n odd positive numbers, 
then prove it.

• 1 = 1
• 1 + 3 = 4
• 1 + 3 + 5 = 9
• 1 + 3 + 5 + 7 = 16
• 1 + 3 + 5 + 7 + 9 = 25

Conjecture:  The sum of the first n odd positive integers is n2

The sequence 1, 4, 9, 16, 25, … appears to be 
the sequence {n2}

9

Induction cannot give us a formula to prove, but can 
allow us to verify conjectures



P(n) ≡

Base case:

I.H.:

Inductive step:

Conclusion:

• 1+3+…+(2k-1) = k2 by I.H.
• 1+3+…+(2k-1)+(2k+1) = k2+2k+1 2k+1 to both sides
• 1+3+…+(2k-1)+(2k+1) = (k+1)2 factoring

✔

Note: The kth odd integer is 2k-1, the (k+1)th odd integer is 2k+1

The sum of the first n positive odd numbers is n2

P(1): 1 = 1

Assume that P(k) holds for an arbitrary positive integer k

We will now show that P(k) → P(k+1) 

Since we have proved the base case and the 
inductive case, ∀𝑛 ∈ 𝐙! 𝑃 𝑛 by mathematical 
induction  ❏
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Prove that the sum of the first n positive odd integers is 
n2



P(n) ≡

Base case:

I.H.:

Inductive step:  We will now show that P(k) → P(k+1) 

Conclusion:

• 1+2+…+2k = 2k+1-1 by I.H.
• 1+2+…+2k+2k+1 = 2k+1-1+2k+1 2k+1 to both sides
• 1+2+…+2k+2k+1 = 2k+1+2k+1-1 associative law
• 1+2+…+2k+2k+1 = 2×2k+1-1 def’n of ×
• 1+2+…+2k+2k+1 = 2k+2-1 def’n of exp.

✔P(0): 20 = 1

Assume that P(k) holds for an arbitrary natural number k

Since we have proved the base case and the 
inductive case, ∀𝑛 ∈ 𝐍 𝑃 𝑛 by mathematical 
induction  ❏
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Prove that the sum 1 + 2 + 22 + … + 2n = 2n+1 - 1 for all 
nonnegative integers n



This follows from the well ordering axiom
• i.e., Every set of positive integers has a least element

We can prove that mathematical induction is valid using a proof by contradiction.
• Assume that P(1) holds and P(k) → P(k+1), but ¬∀x P(x)
• This means that the set S = {x | ¬P(x)} is nonempty
• By well ordering, S has a least element m with ¬P(m)
• Since m is the least element of S, P(m-1) is true
• By P(k) → P(k+1), P(m-1) → P(m)
• Since we have P(m) ∧ ¬P(m) this is a contradiction!

Result:  Mathematical induction is a valid proof method
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Why does mathematical induction work?



In-class exercises
Problem 1: Prove that

Problem 2: Prove that

Hint: Be sure to
1. Define P(x)
2. Prove the base case
3. Make an inductive hypothesis
4. Carry out the inductive step
5. Draw the final conclusion

!
!"#

$

𝑎𝑟! =
𝑎𝑟$%& − 𝑎
𝑟 − 1

if 𝑟 ≠ 1

!
!"&
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3𝑗 − 2 =
𝑛 3𝑛 − 1

2
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P(n) ≡

Base case:

I.H.:

Inductive step:

Conclusion:

• 1+4+9+…+k2 = k(k+1)(2k+1)/6 by I.H.
• 1+4+9+...+(k+1)2 = k(k+1)(2k+1)/6 + (k+1)2 (k+1)2 to both sides
• = k(k+1)(2k+1)/6 + 6(k+1)2/6 common denom.
• = (k+1)(2k2+k+6k+6)/6 = (k+1)(2k2+7k+6)/6 factor k+1, mult.
• = (k+1)(k+2)(2k+3)/6 factor
• = (k+1)((k+1)+1)(2(k+1)+1)/6, ∴P(k+1) proved for k+1

✔

*
"#$

%
𝑖& =

𝑛 𝑛 + 1 2𝑛 + 1
6

P(1): 1& = $($!$)(&!$)
)

Assume that P(k) holds for an arbitrary positive integer k

We will now show that P(k) → P(k+1) 

Since we have proved the base case and the inductive case, 
∀𝑛 ∈ 𝐙! 𝑃 𝑛 by mathematical induction  ❏
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Prove the formula for the sum of the first n positive 
squares
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Induction can also be used to prove properties other than 
summations!



Prelude:  The expression n! is called the factorial of n.

Definition: n! = n × (n-1) × … × 3 × 2 × 1

Examples:
• 4! = 4 × 3 × 2 × 1 = 24
• 5! = 5 × 4 × 3 × 2 × 1 = 120
• 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720
• 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5,040
• 8! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 40,320

Note how quickly the factorial of n 
“grows”
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Prove that 2n < n! for every positive integer n ≥ 4



P(n) ≡

Base case:

I.H.:

Inductive step:  We will now show that P(k) → P(k+1) 

Conclusion:

• 2k < k! by I.H.
• 2 × 2k < 2 × k! multiply by 2
• 2k+1 < 2 × k! def’n of exp.
• 2k+1 < (k+1) × k! since 2 < (k+1)
• 2k+1 < (k+1)! def’n of factorial

✔

2n < n!

P(4): 24 < 4!

Assume that P(k) holds for an arbitrary integer k ≥ 4

Since we have proved the base case and the inductive case, 
∀𝑛 ≥ 4 𝑃 𝑛 by mathematical induction  ❏
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Prove that 2n < n! for every positive integer n ≥ 4



P(n) ≡

Base case:

I.H.:

Inductive step:  We will now show that P(k) → P(k+1) 

Conclusion:

• (k+1)3 – (k+1) = k3 + 3k2 + 3k + 1 – (k+1)
• = k3 + 3k2 + 2k
• = (k3 – k) + (3k2 + 3k)
• = (k3 – k) + 3(k2 + k)
• Note that 3 | (k3 – k) by the I.H. and 3 | 3(k2 + k) by definition,

so 3 | [(k+1)3 – (k+1)]

✔

Assume that P(k) holds for an arbitrary positive integer k

Since we have proved the base case and the inductive case, 
∀𝑛 ∈ 𝐙! 𝑃 𝑛 by mathematical induction  ❏

3 | (n3 – n)

P(1): 3 | 0
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Prove that n3 – n is divisible by 3 whenever n is a 
positive integer



In-class exercises
Problem 3: Prove that 𝑛! + 2𝑛 is divisible by 3 for any positive integer 𝑛

Problem 4: Prove that 6" − 1 is divisible by 5 for any positive integer 𝑛

Hint: Be sure to
1. Define P(x)
2. Prove the base case
3. Make an inductive hypothesis
4. Carry out the inductive step
5. Draw the final conclusion
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P(n) ≡

Base case:

I.H.:

Inductive step:  We will now show that P(k) → P(k+1) 

Conclusion:

• Let S be a set of size k
• Assume without loss of generality that x ∉ S
• Let T = S ∪ {x}, so |T| = k+1
• ∀s⊆S (s ⊆ T) since T is a superset of S
• Furthermore, ∀s⊆S (s ∪ {x} ⊆ T) since x ∈ T
• Since S has 2k subsets by the I.H., T has 2×2k = 2k+1 subsets

✔

Assume that P(k) holds for an arbitrary natural number k

Since we have proved the base case and the inductive case, 
∀𝑛 ∈ 𝐍 𝑃 𝑛 by mathematical induction  ❏

Set S with cardinality n has 2n subsets

P(0): ∅ has 20 = 1 subsets (i.e., ∅ ⊆ ∅)
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Prove that if S is a finite set with n elements, then S has 
2n subsets.



Final Thoughts
• Mathematical induction lets us prove universally quantified statements using this 

inference rule:

• Induction is useful for proving:
• Summations
• Inequalities
• Claims about countable sets
• Theorems from number theory
• …

• Next time:  Strong induction and recursive definitions (Sections 5.2 & 5.3)

P(0)
For arb. k, P(k) → P(k+1)

∴∀x∈N P(x)
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