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T
We've learned a lot of proof methods...

Basic proof methods
- Direct proof, contradiction, contraposition, cases, ...

Proof of quantified statements
- Existential statements (i.e., 3x P(x))
° Finding a single example suffices

* Universal statements (i.e., ¥x P(x)) can be harder to prove
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Bottom line: We need new tools!



Mathematical induction lets us prove universally
quantified statements!

Goal: Prove VXeN P(X)- Intuition: If P(0) is true, then P(1) is
true. If P(1) is true, then P(2) is true...

Procedure:
1. Prove P(0)
2. Show that P(k) — P(k+1) for any arbitrary k
3. Conclude that P(x) is true ¥xeN
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Analogy: Climbing a ladder

Proving P(0):
You can get on the first rung of the
ladder

Proving P(k) — P(k+1):
If you are on the kth step, you can get
to the (k+1)th step

. Vx P(x)

You can get to any step on the ladder




Analogy: Playing with dominoes

Proving P(0):

The first domino falls

Proving P(k) — P(k+1):
If the kth domino falls, then
the (k+1)th domino will fall

. Vx P(x)

All dominoes will fall!




All of your proofs should have the same overall structure

P(x) = Define the property that you are trying to prove

Base case: Prove the “first step onto the ladder.” Typically,
but not always, this means proving P(0) or P(1).

Inductive Hypothesis: Assume that P(k) is true for an arbitrary k

Inductive step: Show that P(k) - P(k + 1). That is, prove that once you’re on
one step, you can get to the next step. This is where many
proofs will differ from one another.

Conclusion: Since you’ve proven the base case and
P(k) > P(k + 1), the claim is true! 4




Prove th at T2
LN n(n+1
P(n) = > =T
Base case: P(1): 1(1+1)/2 =1 v
I.H.:  Assume that P(k) holds for an arbitrary positive integer k
Inductive step: We will now show that P(k) — P(k+1)
o 142+, .4k = k(k+1)/2 by I.H.
o 142+, +k+(k+1) = k(k+1)/2 + (k+1) k+1 to both sides
o 142+, +k+(k+1) = k(k+1)/2 + 2(k+1)/2
o 142+, .4 +(k+1)=(k2+3k+2)/2
o 142+, +k+(k+1) = (k+1)(k+2)/2 factoring
Conclusion: Since we have proved the base case and the inductive case, Vn €

Z*(P(n)) by mathematical induction O




Induction cannot give us a formula to prove, but can
allow us to verify conjectures

Mathematical induction is not a tool for discovering new theorems, but rather a
powerful way to prove them

Example: Make a conjecture about the sum of the first n odd positive numbers,
then prove it.
- 1=1
1+3=4
The sequence 1, 4, 9, 16, 25, ... appears to be

1+3+5=9 the sequence {n?}
1+3+5+7=16

1+3+5+7+9=25

Conjecture: The sum of the first n odd positive integers is n?



Prove that the sum of the first n positive odd integers is

N2

P(n) = The sum of the first n positive odd numbers is n2

Base case: P(1):1=1 ¢

|.H.: Assume that P(k) holds for an arbitrary positive integer k

Inductive step: We will now show that P(k) — P(k+1)

e 1+43+...+(2k-1) = k? by |.H.
o 143+, +(2k-1)+(2k+1) = k?+2k+1 2k+1 to both sides
o 143+, +(2k-1)+(2k+1) = (k+1)? factoring

Note: The kth odd integer is 2k-1, the (k+1)th odd integer is 2k+1

Conclusion: Since we have proved the base case and the
inductive case, vn € Z*(P(n)) by mathematical
induction




Prove thatthe sum1+2+22+ .. +2n=2m1_1 for all
nonnegative integers n

P(n) = Zn:Qi —ontl _q
=0
Base case: P(0): 20 = 1 v

|.H.: Assume that P(k) holds for an arbitrary natural number k

Inductive step: We will now show that P(k) — P(k+1)

o 142+, 42k = 2k+11 by I.H.

o 142+, +2k42kH = QkH1_{ 4Dk 2k+*1 to both sides
o 142+, +2k42kH = k14 k+1_1 associative law

o 142+, +2k+2k+T = 2x2k+1.1 def'n of x

o 142+, +2Kk+2KHT = k421 def'n of exp.

Conclusion: Since we have proved the base case and the
inductive case, vn € N(P(n)) by mathematical
induction




Why does mathematical induction work?

This follows from the well ordering axiom
* i.e., Every set of positive integers has a least element

We can prove that mathematical induction is valid using a proof by contradiction.
* Assume that P(1) holds and P(k) — P(k+1), but 7v¥x P(x)
«  This means that the set S = {x | 7"P(x)} is nonempty
- By well ordering, S has a least element m with -P(m)
« Since mis the least element of S, P(m-1) is true
- By P(k) = P(k+1), P(m-1) — P(m)
- Since we have P(m) A 7P(m) this is a contradiction!

Result: Mathematical induction is a valid proof method



In-class exercises

Problem 1: Prove that

Problem 2: Prove that 2(3}._2)=n(3n—1)

Hint: Be sure to

Define P(x)

Prove the base case

Make an inductive hypothesis
Carry out the inductive step
Draw the final conclusion

abkwbN =



Prove the formula for the sum of the first n positive
squares

P(n) = Zn P n(n + 1)6(2n + 1)
i=1

Base case: P(1); 12 = % v

I.H.: Assume that P(k) holds for an arbitrary positive integer k

Inductive step: We will now show that P(k) — P(k+1)

o 1+4+9+...+k2 = k(k+1)(2k+1)/6 by |.H.

o 1+4+9+. +(k+1)2 = k(k+1)(2k+1)/6 + (k+1)? (k+1)2 to both sides
o =k(k+1)(2k+1)/6 + 6(k+1)2/6 common denom.

* = (k+1)(2k2+k+6k+6)/6 = (k+1)(2k2+7k+6)/6 factor k+1, mult.

o = (k+1)(k+2)(2k+3)/6 factor

o = (k+T)((k+1)+1)(2(k+1)+1)/6, ~P(k+1) proved for k+1

Conclusion: Since we have proved the base case and the inductive case,
vn € Z*(P(n)) by mathematical induction O




Induction can also be used to prove properties other than
summations!

>

< | %P(P)

Inequalities Divisibility and results from
number theory
Set theory

Algorithms and data structures



Prove that 2" < n! for every positive integer n =2 4
Prelude: The expression n! is called the factorial of n.

Definition: nl=nx (n-1) x ... x 3 x 2 x 1

Note how quickly the factorial of n
Examples: “grows”

41=4x3x2x1=24
Sl=5x4x3x2x1=120
6!1=6x5x4x3x2x1=720

71=7x6x5x4x3x2x1=5040
81=8x7x6x5x4x3x2x1=40,320




Prove that 2" < n! for every positive integer n =2 4

P(n) = 2" < n!

Base case: P(4):24<4! vV
I.H.: Assume that P(k) holds for an arbitrary integer k > 4

Inductive step: We will now show that P(k) — P(k+1)

. 2k<kl by I.H.

. 2x2k<2xKkl multiply by 2

o 2K <2 xKl def'n of exp.

o 2k < (k+1) x k! since 2 < (k+1)
o 2K < (k+1)! def'n of factorial

Conclusion: Since we have proved the base case and the inductive case,
vn = 4(P(n)) by mathematical induction O




Prove that n3 — n is divisible by 3 whenever n is a
positive integer
P(n)= 3| (n®-n)

Base case: P(1):310

|.H.: Assume that P(k) holds for an arbitrary positive integer k

Inductive step: We will now show that P(k) — P(k+1)
o (k+1)3 = (k+1) =k3 + 3k? + 3k + 1 — (k+1)

. = k3 + 3k2 + 2k
. = (k3 — k) + (3k2 + 3k)
: = (k3 —k) + 3(k? + k)

Note that 3 | (k3 — k) by the I.H. and 3 | 3(k? + k) by definition,
so 3 | [(k+1)3 = (k+1)]

Conclusion: Since we have proved the base case and the inductive case,
vn € Z*(P(n)) by mathematical induction




In-class exercises

Problem 3: Prove that n3 + 2n is divisible by 3 for any positive integer n
Problem 4: Prove that 6" — 1 is divisible by 5 for any positive integer n

Hint: Be sure to
1. Define P(x)
2. Prove the base case
3. Make an inductive hypothesis
4. Carry out the inductive step
5. Draw the final conclusion



Prove that if S is a finite set with n elements, then S has
2" subsets.

P(n) = Set S with cardinality n has 2" subsets

Base case: P(0): @ has 2° = 1 subsets (i.e., € @) v/

I.H.: Assume that P(k) holds for an arbitrary natural number k

Inductive step: We will now show that P(k) — P(k+1)

* Let S be a set of size k

* Assume without loss of generality that x ¢ S

* LetT=SuU{x} so|T|=k+1

* VsCS (s c T)since T is a superset of S

*  Furthermore, VvscS (suU {x} € T)sincexe T

* Since S has 2k subsets by the I.H., T has 2x2k = 2k+1 subsets

Conclusion: Since we have proved the base case and the inductive case,
vn € N(P(n)) by mathematical induction 4




I
Final Thoughts

- Mathematical induction lets us prove universally quantified statements using this

inference rule:
4 P(0) I
For arb. k, P(k) — P(k+1)

~VXEN P(x)

\_ )

* Induction is useful for proving:
«  Summations
* Inequalities
- Claims about countable sets
*  Theorems from number theory

* Next time: Strong induction and recursive definitions (Sections 5.2 & 5.3)



