CS 441: Proof by induction

PhD. Nils Murrugarra-Llerena [nem177@pitt.ed](mailto:nmurrugarrallerena@weber.edu)u

Today's topics

- Proof by Induction
- Examples
	- Equations
	- Inequalities
	- Sets

We've learned a lot of proof methods…

Basic proof methods

• Direct proof, contradiction, contraposition, cases, ...

Proof of quantified statements

- Existential statements (i.e., ∃x P(x))
	- Finding a single example suffices
- Universal statements (i.e., ∀x P(x)) can be harder to prove

•
$$
\sum_{j=0}^{n} ar^j = \begin{cases} \frac{ar^{n+1}-a}{r-1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1 \end{cases}
$$

•
$$
\sum_{j=1}^{n} j = \frac{n(n+1)}{2}
$$

Bottom line: We need new tools!

Mathematical induction lets us prove universally quantified statements!

Goal: Prove ∀x∈**N** P(x).

Intuition: If P(0) is true, then P(1) is true. If P(1) is true, then P(2) is true…

Procedure:

- 1. Prove P(0)
- 2. Show that $P(k) \rightarrow P(k+1)$ for any arbitrary k
- 3. Conclude that P(x) is true ∀x∈**N**

Analogy: Climbing a ladder

Proving P(0):

• You can get on the first rung of the ladder

Proving P(k) → P(k+1):

• If you are on the kth step, you can get to the $(k+1)$ th step

∴ [∀]*x P(x)*

• You can get to any step on the ladder

Analogy: Playing with dominoes

Proving P(0):

• The first domino falls

Proving P(k) → P(k+1):

• If the kth domino falls, then the (k+1)th domino will fall

∴ [∀]*x P(x)*

• All dominoes will fall!

All of your proofs should have the same overall structure

P(x) ≡ *Define the property that you are trying to prove*

Base case: *Prove the "first step onto the ladder." Typically, but not always, this means proving P(0) or P(1).*

Inductive Hypothesis: *Assume that P(k) is true for an arbitrary k*

Inductive step: *Show that P(k) → P(k + 1). That is, prove that once you're on one step, you can get to the next step. This is where many proofs will differ from one another.*

Conclusion: *Since you've proven the base case and* $P(k) \rightarrow P(k + 1)$, the claim is true! \Box

Prove that $\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$	
$P(n) = \sum_{j=1}^{n} j = \frac{n(n+1)}{2}$	
Base case:	$P(1): 1(1+1)/2 = 1$
II.H.: Assume that $P(k)$ holds for an arbitrary positive integer k	
Inductive step:	We will now show that $P(k) \rightarrow P(k+1)$
• $1+2+...+k = k(k+1)/2$	by I.H.
• $1+2+...+k+(k+1) = k(k+1)/2 + (k+1)$	k+1 to both sides
• $1+2+...+k+(k+1) = (k^2 + 3k + 2)/2$	
• $1+2+...+k+(k+1) = (k^2 + 3k + 2)/2$	
• $1+2+...+k+(k+1) = (k+1)(k+2)/2$	
Conclusion:	Since we have proved the base case and the inductive case, $\forall n \in \mathbb{Z}^+(P(n))$ by mathematical induction \Box

Induction cannot give us a formula to prove, but can allow us to verify conjectures

Mathematical induction is not a tool for discovering new theorems, but rather a powerful way to prove them

Example: Make a conjecture about the sum of the first n odd positive numbers, then prove it.

- $1 = 1$
- $1 + 3 = 4$
- $1 + 3 + 5 = 9$
- $1 + 3 + 5 + 7 = 16$
- \cdot 1 + 3 + 5 + 7 + 9 = 25

The sequence 1, 4, 9, 16, 25, … appears to be the sequence {n2}

Conjecture: The sum of the first n odd positive integers is n^2

Prove that the sum of the first n positive odd integers is n^2

 $P(n) \equiv$ The sum of the first n positive odd numbers is n^2

Base case: P(1): 1 = 1 ✔

I.H.: Assume that P(k) holds for an arbitrary positive integer k

Inductive step: We will now show that $P(k) \rightarrow P(k+1)$

- $1+3+...+(2k-1) = k^2$ by I.H.
- $1+3+...+(2k-1)+(2k+1) = k^2+2k+1$ 2k+1 to both sides • $1+3+...+(2k-1)+(2k+1) = (k+1)^2$ factoring

Note: The kth odd integer is 2k-1, the (k+1)th odd integer is 2k+1

Conclusion: Since we have proved the base case and the inductive case, $\forall n \in \mathbb{Z}^{+}(P(n))$ by mathematical induction ❏

Prove that the sum $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$ for all nonnegative integers n

Why does mathematical induction work?

This follows from the well ordering axiom

• i.e., Every set of positive integers has a least element

We can prove that mathematical induction is valid using a proof by contradiction.

- Assume that P(1) holds and P(k) \rightarrow P(k+1), but ¬∀x P(x)
- This means that the set $S = \{x \mid \neg P(x)\}$ is nonempty
- By well ordering, S has a least element m with $\neg P(m)$
- Since m is the least element of S, P(m-1) is true
- By $P(k) \rightarrow P(k+1)$, $P(m-1) \rightarrow P(m)$
- Since we have P(m) $\land \neg P(m)$ this is a contradiction!

Result: Mathematical induction is a valid proof method

In -class exercises

Problem 1 : Prove that

$$
\sum_{j=0}^{n} ar^j = \frac{ar^{n+1} - a}{r - 1}
$$
 if $r \neq 1$

Problem 2 : Prove that

$$
\sum_{j=1}^{n} (3j - 2) = \frac{n(3n - 1)}{2}
$$

Hint: Be sure to

- 1. Define P(x)
- 2. Prove the base case
- 3. Make an inductive hypothesis
- 4. Carry out the inductive step
- 5. Draw the final conclusion

Prove the formula for the sum of the first n positive squares

Induction can also be used to prove properties other than summations!

Inequalities

⊆ ∈ ∪

Set theory

≡ $\overline{\phi}(\rho)$

Divisibility and results from number theory

Algorithms and data structures

Prove that 2^n < n! for every positive integer $n \ge 4$

Prelude: The expression n! is called the factorial of n.

Definition: $n! = n \times (n-1) \times ... \times 3 \times 2 \times 1$

Examples:

- $4! = 4 \times 3 \times 2 \times 1 = 24$
- $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$
- 6! = $6 \times 5 \times 4 \times 3 \times 2 \times 1 = 720$
- $7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5.040$
- 8! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 40.320

Prove that 2^n < n! for every positive integer $n \ge 4$

 $P(n) \equiv 2^n \leq n!$ Base case: $P(4)$: 2^4 < 4! \bullet I.H.: Assume that $P(k)$ holds for an arbitrary integer $k \geq 4$ Inductive step: We will now show that $P(k) \rightarrow P(k+1)$ Conclusion: Since we have proved the base case and the inductive case, • $2^k < k!$ by I.H. • $2 \times 2^k < 2 \times k!$ multiply by 2 • $2^{k+1} < 2 \times k!$ def'n of exp. • $2^{k+1} < (k+1) \times k!$ since $2 < (k+1)$ • $2^{k+1} < (k+1)!$ def'n of factorial $\forall n \geq 4(P(n))$ by mathematical induction \Box

Prove that $n^3 - n$ is divisible by 3 whenever n is a positive integer

 $P(n) \equiv 3 | (n^3 - n)$ Base case: P(1): 3 | 0 I.H.: Assume that P(k) holds for an arbitrary positive integer k Inductive step: We will now show that $P(k) \rightarrow P(k+1)$ Conclusion: Since we have proved the base case and the inductive case, $(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $= (k^3 - k) + (3k^2 + 3k)$ $= (k^3 - k) + 3(k^2 + k)$ Note that $3 \mid (k^3 - k)$ by the I.H. and $3 \mid 3(k^2 + k)$ by definition, so $3 | [(k+1)³ - (k+1)]$ ✔ $\forall n \in \mathbf{Z}^{+}(P(n))$ by mathematical induction \Box

In-class exercises

Problem 3: Prove that $n^3 + 2n$ is divisible by 3 for any positive integer n

Problem 4: Prove that $6^n - 1$ is divisible by 5 for any positive integer n

Hint: Be sure to

- 1. Define P(x)
- 2. Prove the base case
- 3. Make an inductive hypothesis
- 4. Carry out the inductive step
- 5. Draw the final conclusion

Prove that if S is a finite set with n elements, then S has 2n subsets.

 $P(n) \equiv$ Set S with cardinality n has 2^n subsets

Base case: $P(0)$: Ø has $2^0 = 1$ subsets (i.e., $\emptyset \subseteq \emptyset$) \blacktriangleright

I.H.: Assume that P(k) holds for an arbitrary natural number k

Inductive step: We will now show that $P(k) \rightarrow P(k+1)$

- Let S be a set of size k
- Assume without loss of generality that $x \notin S$
- Let $T = S \cup \{x\}$, so $|T| = k+1$
- ∀s⊆S (s ⊆ T) since T is a superset of S
- Furthermore, ∀s⊆S (s ∪ {x} ⊆ T) since x ∈ T
- Since S has 2^k subsets by the I.H., T has $2 \times 2^k = 2^{k+1}$ subsets

Conclusion: Since we have proved the base case and the inductive case, $\forall n \in \mathbb{N}(P(n))$ by mathematical induction \Box

Final Thoughts

• Mathematical induction lets us prove universally quantified statements using this inference rule:

```
P(0)For arb. k, P(k) \rightarrow P(k+1)∴∀x∈N P(x)
```
- Induction is useful for proving:
	- Summations
	- Inequalities
	- Claims about countable sets
	- Theorems from number theory
	- …
- Next time: Strong induction and recursive definitions (Sections 5.2 & 5.3)