CS 441: Proof by induction

PhD. Nils Murrugarra-Llerena nem177@pitt.edu

Today's topics

- Proof by Induction
- Examples
 - Equations
 - Inequalities
 - Sets

We've learned a lot of proof methods...

Basic proof methods

• Direct proof, contradiction, contraposition, cases, ...

Proof of quantified statements

- Existential statements (i.e., $\exists x P(x)$)
 - Finding a single example suffices
- Universal statements (i.e., $\forall x P(x)$) can be harder to prove

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1}-a}{r-1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1 \end{cases}$$
$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$

Bottom line: We need new tools!

Mathematical induction lets us prove universally quantified statements!

Goal: Prove $\forall x \in \mathbf{N} P(x)$.

Intuition: If P(0) is true, then P(1) is true. If P(1) is true, then P(2) is true...

Procedure:

- 1. Prove P(0)
- 2. Show that $P(k) \rightarrow P(k+1)$ for any arbitrary k \leq
- 3. Conclude that P(x) is true $\forall x \in \mathbf{N}$

Analogy: Climbing a ladder

Proving P(0):

• You can get on the first rung of the ladder

Proving $P(k) \rightarrow P(k+1)$:

- If you are on the kth step, you can get to the (k+1)th step
- *∴* ∀x P(x)
 - You can get to any step on the ladder

Analogy: Playing with dominoes

Proving P(0):

The first domino falls

Proving $P(k) \rightarrow P(k+1)$:

 If the kth domino falls, then the (k+1)th domino will fall

∴ ∀*x P*(*x*)

• All dominoes will fall!

All of your proofs should have the same overall structure

 $P(x) \equiv$ Define the property that you are trying to prove

Base case: Prove the "first step onto the ladder." Typically, but not always, this means proving P(0) or P(1).

Inductive Hypothesis: Assume that P(k) is true for an arbitrary k

Inductive step: Show that $P(k) \rightarrow P(k + 1)$. That is, prove that once you're on one step, you can get to the next step. This is where many proofs will differ from one another.

Conclusion: Since you've proven the base case and

 $P(k) \rightarrow P(k+1)$, the claim is true!

8

- 1

Prove that
$$\sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$

$$P(n) \equiv \sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$
Base case: P(1): 1(1+1)/2 = 1
I.H.: Assume that P(k) holds for an arbitrary positive integer k
Inductive step: We will now show that P(k) \rightarrow P(k+1)
$$1+2+...+k = k(k+1)/2 \qquad by \ 1.H.$$

$$1+2+...+k+(k+1) = k(k+1)/2 + (k+1) \qquad k+1 \text{ to both sides}$$

$$1+2+...+k+(k+1) = k(k+1)/2 + 2(k+1)/2$$

$$1+2+...+k+(k+1) = (k^2 + 3k + 2)/2$$

$$1+2+...+k+(k+1) = (k+1)(k+2)/2 \qquad factoring$$
Conclusion: Since we have proved the base case and the inductive case, $\forall n \in \mathbb{Z}^+(P(n))$ by mathematical induction \square

n

Induction cannot give us a formula to prove, but can allow us to verify conjectures

Mathematical induction is not a tool for discovering new theorems, but rather a powerful way to prove them

Example: Make a conjecture about the sum of the first n odd positive numbers, then prove it.

- 1 = 1
- 1 + 3 = 4
- 1 + 3 + 5 = 9
- 1 + 3 + 5 + 7 = 16
- 1 + 3 + 5 + 7 + 9 = 25

The sequence 1, 4, 9, 16, 25, ... appears to be the sequence $\{n^2\}$

Conjecture: The sum of the first n odd positive integers is n²

Prove that the sum of the first n positive odd integers is n^2

 $P(n) \equiv$ The sum of the first n positive odd numbers is n^2

V Base case: P(1): 1 = 1

I.H.: Assume that P(k) holds for an arbitrary positive integer k

Inductive step: We will now show that $P(k) \rightarrow P(k+1)$

- $1+3+...+(2k-1) = k^2$ by I.H. $1+3+...+(2k-1)+(2k+1) = k^2+2k+1$ 2k+1 to both sides $1+3+...+(2k-1)+(2k+1) = (k+1)^2$ factoring

Note: The kth odd integer is 2k-1, the (k+1)th odd integer is 2k+1

Conclusion: Since we have proved the base case and the inductive case, $\forall n \in \mathbf{Z}^+(P(n))$ by mathematical induction \Box

Prove that the sum $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$ for all nonnegative integers n

Why does mathematical induction work?

This follows from the well ordering axiom

• i.e., Every set of positive integers has a least element

We can prove that mathematical induction is valid using a proof by contradiction.

- Assume that P(1) holds and P(k) \rightarrow P(k+1), but $\neg \forall x P(x)$
- This means that the set $S = \{x \mid \neg P(x)\}$ is nonempty
- By well ordering, S has a least element m with $\neg P(m)$
- Since m is the least element of S, P(m-1) is true
- By $P(k) \rightarrow P(k+1)$, $P(m-1) \rightarrow P(m)$
- Since we have $P(m) \land \neg P(m)$ this is a contradiction!

Result: Mathematical induction is a valid proof method

In-class exercises

Problem 1: Prove that

$$\sum_{j=0}^{n} ar^{j} = \frac{ar^{n+1} - a}{r-1} \text{ if } r \neq 1$$

Problem 2: Prove that

$$\sum_{j=1}^{n} (3j-2) = \frac{n(3n-1)}{2}$$

Hint: Be sure to

- 1. Define P(x)
- 2. Prove the base case
- 3. Make an inductive hypothesis
- 4. Carry out the inductive step
- 5. Draw the final conclusion

Prove the formula for the sum of the first n positive squares

Induction can also be used to prove properties other than summations!

Inequalities

Set theory

Φ(p)

Divisibility and results from number theory

Algorithms and data structures

Prove that $2^n < n!$ for every positive integer $n \ge 4$

Prelude: The expression n! is called the factorial of n.

Definition: $n! = n \times (n-1) \times ... \times 3 \times 2 \times 1$

Examples:

- $4! = 4 \times 3 \times 2 \times 1 = 24$
- 5! = 5 × 4 × 3 × 2 × 1 = 120
- 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720
- $7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5,040$
- 8! = 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 40,320

Prove that $2^n < n!$ for every positive integer $n \ge 4$

 $\mathsf{P}(\mathsf{n}) \equiv 2^{\mathsf{n}} < \mathsf{n}!$ Base case: P(4): 2⁴ < 4! ✓ I.H.: Assume that P(k) holds for an arbitrary integer $k \ge 4$ Inductive step: We will now show that $P(k) \rightarrow P(k+1)$ • $2^k < k!$ by I.H. • $2 \times 2^k < 2 \times k!$ multiply by 2 • $2^{k+1} < 2 \times k!$ def'n of exp. 2^{k+1} < (k+1) × k! since 2 < (k+1) • 2^{k+1} < (k+1)! def'n of factorial Conclusion: Since we have proved the base case and the inductive case, $\forall n \geq 4(P(n))$ by mathematical induction \Box

Prove that n³ – n is divisible by 3 whenever n is a positive integer

 $P(n) \equiv 3 | (n^3 - n)$ Base case: $P(1): 3 \mid 0$ 1 I.H.: Assume that P(k) holds for an arbitrary positive integer k Inductive step: We will now show that $P(k) \rightarrow P(k+1)$ $(k+1)^{3} - (k+1) = k^{3} + 3k^{2} + 3k + 1 - (k+1)$ $= k^3 + 3k^2 + 2k$ $= (k^3 - k) + (3k^2 + 3k)$ $= (k^3 - k) + 3(k^2 + k)$ Note that $3 \mid (k^3 - k)$ by the I.H. and $3 \mid 3(k^2 + k)$ by definition, so $3 | [(k+1)^3 - (k+1)]$ Conclusion: Since we have proved the base case and the inductive case, $\forall n \in \mathbf{Z}^+(P(n))$ by mathematical induction \Box

In-class exercises

Problem 3: Prove that $n^3 + 2n$ is divisible by 3 for any positive integer *n*

Problem 4: Prove that $6^n - 1$ is divisible by 5 for any positive integer *n*

Hint: Be sure to

- 1. Define P(x)
- 2. Prove the base case
- 3. Make an inductive hypothesis
- 4. Carry out the inductive step
- 5. Draw the final conclusion

Prove that if S is a finite set with n elements, then S has 2ⁿ subsets.

 $P(n) \equiv$ Set S with cardinality n has 2ⁿ subsets

Base case: P(0): \emptyset has $2^0 = 1$ subsets (i.e., $\emptyset \subseteq \emptyset$)

I.H.: Assume that P(k) holds for an arbitrary natural number k

Inductive step: We will now show that $P(k) \rightarrow P(k+1)$

- Let S be a set of size k
- Assume without loss of generality that x ∉ S
- Let T = S ∪ {x}, so |T| = k+1
- $\forall s \subseteq S \ (s \subseteq T) \text{ since } T \text{ is a superset of } S$
- Furthermore, $\forall s \subseteq S (s \cup \{x\} \subseteq T)$ since $x \in T$
- Since S has 2^k subsets by the I.H., T has $2 \times 2^k = 2^{k+1}$ subsets

Conclusion: Since we have proved the base case and the inductive case, $\forall n \in \mathbf{N}(P(n))$ by mathematical induction \Box

Final Thoughts

• Mathematical induction lets us prove universally quantified statements using this inference rule:

```
P(0)
For arb. k, P(k) → P(k+1)
\therefore \forall x \in \mathbb{N} P(x)
```

- Induction is useful for proving:
 - Summations
 - Inequalities
 - Claims about countable sets
 - Theorems from number theory
 - ...
- Next time: Strong induction and recursive definitions (Sections 5.2 & 5.3)