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Today’s topics

• Predicates

• Quantifiers

• Logical equivalences in predicate logic

• Translations using quantifiers
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Propositional logic cannot represent some classes of natural language 
statements…

Given: All of my dogs like peanut butter

Given: Kody is one

of my dogs

?
Propositional logic gives us no way to draw the 

(obvious) conclusion that Kody likes peanut butter!

Propositional logic is simple, therefore limited
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Consider the following:
• p1  2 has no divisors other than 1 and itself

• p2  3 has no divisors other than 1 and itself

• p3  5 has no divisors other than 1 and itself

• p4  7 has no divisors other than 1 and itself

• p5  11 has no divisors other than 1 and itself

• …

This is an inefficient way to reason about the properties of prime numbers!

General problem: Propositional logic has no way of reasoning about instances 
of general statements.

Propositional logic also limits the mathematical truths 
that we can express and reason about
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Historical Context
The previous examples are called syllogisms

Aristotle used syllogisms in his Prior 

Analytics to deductively infer new facts from 

existing knowledge

All men are mortal

Major premise

Socrates is a man Minor premise

Socrates is mortal

Conclusion
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Predicate logic allows us to use propositional functions
during our logical reasoning

P(x)  x3 > 0

variable predicate

Note: A propositional function P(x) has no truth value unless it is evaluated 

for a given x or set of xs.

Predicate logic allows us to reason about the properties 
of individual objects and classes of objects
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Examples

Assume P(x)  x3 > 0.  What are the truth values of the following expressions:

• P(0)

• P(23)

• P(-42)

We can express the prime number property using predicate logic:

• P(x)  “x is prime”

• D(x)  “x has no divisors other than 1 and itself”

• P(x)  D(x)

false

true

false
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Let P(x, y)  x + y = 42.  What are the truth values of the following expressions:

• P(45, -3)

• P(23, 23)

• P(1, 119)

Let S(x, y, z)  x + y = z.  What are the truth values of the following 

expressions:

• S(1, 1, 2)

• S(23, 24, 42)

• S(-9, 18, 9)

true

false

false

true

false

true

Predicates can also be defined on more than one 
variable

8



If/then statements:

• if x > 17 then y = 13

Loops:

• while y <= 14 do

…

end while

Debugging in C/C++:

• assert(strlen(passwd) > 0);

This is a predicate!

Predicates play a central role in program control flow and 
debugging
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In English, we use quantifiers on a regular basis:
• All students can ride the bus for free

• Many people like chocolate

• I enjoy some types of tea

• At least one person will sleep through their final exam

Quantifiers require us to define a universe of discourse (also called a domain) 
in order for the quantification to make sense

• “Many like chocolate” doesn’t make sense!

What are the universes of discourse for the above statements?

Quantifiers allow us to make general statements that turn 
propositional functions into propositions
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Examples:

• All of my dogs like peanut butter

• Every even integer is a multiple of two

• For each positive integer x, 2x > x

Given a propositional function P(x), we express the universal quantification of 

P(x) as x P(x)

What is the truth value of x P(x)?

• true if P(x) is true for every x in the universe of discourse

• false if P(x) is false for even one x in the universe of discourse

Universal quantification allows us to make statements 
about the entire universe of discourse
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Examples
All rational numbers are greater than 42

• Domain: rational numbers

• Propositional function: Let G(x)  “x is greater than 42”

• Statement: x G(x)

• Truth value: false (counterexample: ½)

If a natural number is prime, it has no divisors other than 1 
and itself

• Domain: natural numbers

• Propositional functions:

• Let P(x)  “x is prime”

• Let D(x)  “x has no divisors other than 1 and itself”

• Statement: x [P(x) → D(x)]

• Truth value: true (by definition)
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Examples:
• Some elephants are scared of mice

• There exist integers a, b, and c such that the equality 
a2 + b2 = c2 is true

• There is at least one person who did better than John on the midterm

Given a propositional function P(x), we express the existential quantification of 
P(x) as x P(x)

What is the truth value of x P(x)?
• true if P(x) is true for at least one x in the universe of discourse

• false if P(x) is false for each x in the universe of discourse

Existential quantifiers allow us to make statements about 
some objects
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Examples

The inequality x + 1 < x holds for at least one integer

• Domain: Integers

• Propositional function: P(x)  x + 1 < x

• Statement: x P(x)

• Truth value: false

For some integers, the equality a2 + b2 = c2 is true

• Domain: Integers

• Propositional function: P(a, b, c)  a2 + b2 = c2

• Statement: a,b,c P(a,b,c)

• Truth value: true
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The square of every natural number less than 4 is no more than 9

• Domain: natural numbers

• Statement: x<4 (x2 ≤ 9)

• Truth value: true

Some integers between 0 and 6 are prime

• Domain: Integers

• Propositional function: P(x)  “x is prime”

• Statement: 0≤x≤6 P(x)

• Truth value: true

This is equivalent to writing

x  [(x < 4) → (x2 ≤ 9)]

This is equivalent to writing

x [(0≤x≤6)  P(x)]

A common idiom in logic: Restricting the domain of 
quantification
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Precedence of quantifiers
The universal and existential quantifiers have the highest precedence of all 
logical operators

For example:

• x P(x) → Q(x) actually means (x P(x)) → Q(x) 

• x P(x)  Q(x) actually means (x P(x))  Q(x) 

When needed, use parentheses to disambiguate a quantifier’s scope

x is undefined outside!
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In-class exercises

See on Top Hat
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Definition: Two statements involving predicates and quantifiers are logically 
equivalent iff they take on the same truth value regardless of which predicates 

are substituted into these statements and which domains of discourse are 

used.
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We can extend the notion of logical equivalence to 
expressions containing predicates or quantifiers



We must prove each “direction” of the equivalence.  Assume 
that P and Q have the same domain.

First, prove x [P(x)  Q(x)] → x P(x)  x Q(x):

• If x [P(x)  Q(x)] is true, this means that there is some value 

v in the domain such that either P(v) is true or Q(v) is true

• If P(v) is true, then x P(x) is true and [x P(x)  x Q(x)] is 

true

• If Q(v) is true, then x Q(x) is true and [x P(x)  x Q(x)] is 

true

• Thus x [P(x)  Q(x)] → x P(x)  x Q(x)
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Prove: x [P(x)  Q(x)]  x P(x)  x Q(x)



Then, prove x P(x)  x Q(x) → x [P(x)  Q(x)]:

• If x P(x)  x Q(x) is true, this means that there is some value v in the domain such 

that either P(v) is true or Q(v) is true

• If P(v) is true, then x [P(x)  Q(x)] is true

• If Q(v) is true, then x [P(x)  Q(x)] is true

• Thus x P(x)  x Q(x) → x [P(x)  Q(x)]

Since x [P(x)  Q(x)] → x P(x)  x Q(x) and 

x P(x)  x Q(x) → x [P(x)  Q(x)] then

x [P(x)  Q(x)]  x P(x)  x Q(x).
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Prove: x [P(x)  Q(x)]  x P(x)  x Q(x)



Negation over universal quantifier: ¬(x P(x))  x (¬P(x))

Negation over existential quantifier: ¬(x P(x))  x (¬P(x))

These are very useful logical equivalences, so let’s prove one of them…

Intuition: If P(x) is not true for all x, then there is 
at least one x for which P(x) is false

Intuition: If P(x) is not true for at least one value 
x, then P(x) is false for all x
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Prove: ¬x P(x)  x ¬P(x)
• ¬x P(x) → x ¬P(x)

• ¬x P(x) is true if and only if x P(x) is false

• x P(x) is false if and only if there is some v such that 
¬P(v) is true

• If ¬P(v) is true, then x ¬P(x)

• x ¬P(x) → ¬x P(x) 
• x ¬P(x) is true if and only if there is some v such that 

¬P(v) is true

• If ¬P(v) is true, then clearly P(x) does not hold for all 
possible values in the domain and thus we have ¬x 
P(x)

Therefore ¬x P(x)  x ¬P(x).
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Translations from English

To translate English sentences into logical expressions:
1. Rewrite the sentence to make it easier to translate

2. Determine the appropriate quantifiers to use

3. Look for words that indicate logical operators

4. Formalize sentence fragments

5. Put it all together
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Rewrite: There exists at least one person who is in this 
classroom, is named bill, and has lived in Pittsburgh for 
14 years

Formalize:
• C(x)  “x is in this classroom”

• N(x)  “x is named bill”

• P(x)  “x has lived in Pittsburgh for 14 years”

Final expression: x [C(x)  N(x)  P(x)]

Existential quantifier

Conjunctions
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Example: At least one person in this classroom is 
named bill and has lived in Pittsburgh for 12 years



Rewrite: For all students, if a student is in CS 441, then 
they have taken high school algebra

Formalize:
• C(x)  “x is taking CS441”

• H(x)  “x has taken high school algebra”

Final expression: x [C(x) → H(x)]

Universal quantifier

Implication
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Example: If a student is taking CS441, then they have 
taken high school algebra



x [C(x) → H(x)]  x [C(x) → H(x)]
 x [C(x)  H(x)]
 x [C(x)  H(x)]
 x [C(x)  H(x)]

Translate back into English:
• There is a student taking CS441 that has not taken high 

school algebra!

a → b  a  b

Double negation law

DeMorgan’s law for 
negation over disjunction

DeMorgan’s law for negation 
over the universal quantifier
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Negate the previous example:
x [T(x)  D(x)]  x [T(x)  D(x)]

 x [T(x)  D(x)]
 x [T(x) → D(x)]

“For all types of drink, if x is a tea, Jane does not enjoy 
drinking it.”

Rewrite: There exist some types of tea that Jane enjoys 
drinking 

Formalize:
• T(x)  “x is a type of tea”

• D(x)  “Jane enjoys drinking x”

Final expression: x [T(x)  D(x)]
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Example: Jane enjoys drinking some types of tea



In-class exercises

Problem 3: Translate the following sentences into logical expressions. 
Remember to state all domains.

a) Some cows have black spots

b) At least one student likes to watch football or ice hockey

c) See Top Hat

Problem 4: Negate the translated expressions from problem 3.  Translate 

these back into English.
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Final Thoughts
• The simplicity of propositional logic makes it unsuitable for solving certain types of 

problems

• Predicate logic makes use of

• Propositional functions to describe properties of objects

• The universal quantifier to assert properties of all objects within a given domain

• The existential quantifier to assert properties of some objects within a given 
domain

• Predicate logic can be used to reason about relationships between objects and 
classes of objects

• Next lecture: 

• Applications of predicate logic and nested quantifiers

• Please read section 1.5
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