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What is Computer Vision?

Done?

"We see with our brains, not with our eyes* (Oliver Sacks and others)

Adapted from Kristen Grauman
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What is Computer Vision?

Automatic understanding of images and video

Algorithms and representations to allow a
machine to recognize objects, people,
scenes, and activities

Algorithms to mine, search, and interact
with visual data

Computing properties and navigating within
the 3D world using visual data

Generating realistic synthetic visual data

Adapted from Kristen Grauman



What is Computer Vision?
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Understanding: Visual search, organization

Query Image or video Relevant
archives content




Understanding: Measurement

Real-time stereo Structure from motion community photo collections

Relating images |-

l

Structure & Motion
recovery
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Dense Matching
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3D Model Building
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Slide credit: L. Lazebnik



Understanding: Generation

Karras et al., “Progressive Growing of GANSs for Improved Quality, Stability, and Variation”, ICLR 2018



Understanding: Related Disciplines




Understanding: Vision and graphics

Images Vision =~ Model
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Graphics

Inverse problems: analysis and synthesis.
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Why Vision”?

- Images and video are everywhere!

144k hours uploaded to YouTube daily
4.5 mil photos uploaded to Flickr daily
10 bil images indexed by Google

Movies, news, sports

shuttersto.ck: You

Personal photo albums

£ |88

Surveillance and security Medical and scientific images

Adapted from Lana Lazebnik
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Why Vision”?

- As image sources multiply, so do applications

« Relieve humans of boring, easy tasks

*  Perception for robotics / autonomous agents

* Organize and give access to visual content

* Description of content for the visually impaired

*  Human-computer interaction
*  Fun applications (e.g. art styles to my photos)

Adapted from Kristen Grauman



Current Computer Vision Topics: From CVPR,
ICCV, and ECCV

CVPR = |IEEE/CVF Conference on Computer Vision and Pattern Recognition
ICCV = IEEE/CVF International Conference on Computer Vision
ECCV = European Conference on Computer Vision



Image-text alignment

(1) Contrastive pre-training (2) Create dataset classifier from label text
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision." ICML 2021.



Open-vocabulary object detection
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Figure 2: An overview of using ViLLD for open-vocabulary object detection. ViLD distills the knowledge
from a pretrained open-vocabulary image classification model. First, the category text embeddings and the im-
age embeddings of cropped object proposals are computed, using the text and image encoders in the pretrained
classification model. Then, ViLD employs the text embeddings as the region classifier (ViLD-text) and mini-
mizes the distance between the region embedding and the image embedding for each proposal (ViLD-image).
During inference, text embeddings of novel categories are used to enable open-vocabulary detection.

Gu et al. "Open-vocabulary Object Detection via Vision and Language Knowledge Distillation." ICLR 2021.



How to recognize objects in new modalities

Figure 6: Qualitative Results. YOLO running on sample artwork and natural images from the internet. It is mostly accurate although it
does think one person is an airplane.

Redmon et al., CVPR 2016



How to use models across countries

USA

Design + Context
Shift Shift

Testing Domain

Asia

L s

(a) Geographic bias manifested in proposed GeoNet dataset

40| mmm pomainNet (Real->Clipart)
30| mmm GeolmNet (USA->Asia)

Rel. Accuracy Gain
(=1
=]

(b) Unsupervised domain adaptation does not suffice on GeoNet

Kalluri et al. "GeoNet: Benchmarking Unsupervised Adaptation across Geographies." CVPR 2023.



How to query vision-language models

Caltech101 Prompt Accuracy Flowers102 Prompt Accuracy
a [CLASS). 82.68 a photo of a [CLASS). 60.86
a photo of [CLASS]. 80.81 a flower photo of a [CLASS]. 65.81
a photo of a [CLASS]. 86.29 a photo of a [CLASS), a type of flower. 66.14
V1. [V]; ... [V]\ [CLASS]. 91.83 [V [V]; ... [V [CLASS]. 94.51

(a) (b)
Prompt Accuracy EuroSAT Prompt Accuracy
a photo of a [CLASS]. 39.83 a photo of a [CLASS). 24.17
a photo of a [CLASS] texture. 40.25 a satellite photo of [CLASS). 37.46
[CLASS] texture. 42.32 a centered satellite photo of [CLASS). 37.56
V1. [V]; ... [V]\ [CLASS). 63.58 [V]: [V]z ... [V]m [CLASS]. 83.53

(c) (d)

Fig. 1 Prompt engineering vs Context Optimization (CoOp). The former needs to use a held-out validation set for
words tuning, which is inefficient; the latter automates the process and requires only a few labeled images for learning.

Zhou et al. "Learning to Prompt for Vision-Language Models." [JCV 2022.
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How to query vision-language models

Standard Zero-shot Customized Prompts via Language models (CuPL)

“A platypus looks like a
beaver with a duck's bill”

—

t t t t t
Text Image / Toxt Image
encoder encoder encoder encoder
* * + * *

| “A photo of a goldfish” | “What does a / “Goldfish are small, orange
ike?” | fish with shiny scales”
| “A photo of a platypus” | platypus look like? \\
7 - ' 3| “A platypus looks like a beaver
: ‘ ' with a duck's bill"

[ |

Figure 1: Schematic of the method. (Left) The standard method of a zero-shot open vocabulary
image classification model (e.g., CLIP (Radford et al.|[2021)). (Right) Our method of CuPL. First,
an LLM generates descriptive captions for given class categories. Next, an open vocabulary model
uses these captions as prompts for performing classification.

Pratt et al. "What does a platypus look like? Generating customized prompts for zero-shot image classification." ICCV 2023.



How to integrate modalities (audio)

Category label:
“Guitar” ‘
{\qdlo waveform .
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Figure 1. We propose to separate and localize audio sources based
on a natural language query, by learning to align the modalities on
completely unlabeled videos. In comparison, prior audio-visual
sound separation approaches require object label supervision.

Tan et al. "Language-Guided Audio-Visual Source Separation via Trimodal Consistency." CVPR 2023.



How to represent everyday activities

Social interaction Video + 3D scans

Figure 1. Ego4D is a massive-scale egocentric video dataset of daily life activity spanning 74 locations worldwide. Here we see a snapshot of
the dataset (5% of the clips, randomly sampled) highlighting its diversity in geographic location, activities, and modalities. The data includes
social videos where participants consented to remain unblurred. See https://egoédd-data.org/figl.html for interactive figure.

Grauman et al. "Ego4D: Around the World in 3,000 Hours of Egocentric Video." CVPR 2022.



How to understand activities and intents
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Bagautdinov et al., CVPR 2017



How to grade how well an activity is performed

1 IERE

"Lower Feet“
"Stretch Hands"

Quality of Action: 86.5 / 100

Pirsiavash et al., ECCV 2014



How to imagine motion in static images

learn a motion prior from vudeos
novel static image inferred flow image

F_ o

|—|appearanoeA)

Gao et al., CVPR 2018
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How to decode physics from video

First person camera

v Alr drag

Park et al., CVPR 2016



How to perform high-level reasoning

Progran
Interpreter

{ High-level
i program

Progran
Generator

Input
Image(s)

Natural Language
Instruction

In-context
instruction-program
pairs

Statement: The left and right image contains a total of six people and two boats.
Progran

ANSNERD=Vqa (image=LEFT, question=‘How many people are in the image?’)
ANSNER1=Vga (imagesRIGHT, questions‘How many people are in the image?’)
ANSNER2+VQa (image=LEFT, question=‘How many boats are in the image?’)

ANSWER3=Vqa (image=RIGHT, question=‘How many boats are in the image?’)
ANSHER4=Eval(‘{ANSWERD) + {ANSWER1} == 6 and {ANSWER2) + {ANSWER3} == 2’}
RESULT=ANSWERA

Prediction: False

Factual Knowledge Object Tagging

Visual C it ® Natural Language Image Editing )
INAGE: . Prediction: IMAGEL
Question: Are there both ties and glasses in the picture?
Program:
visual - 2 BOX@=Loc(image=IMAGE, object=ties’)
Prediction Rationale ANSWER®=Count (box=BOXB)
80X1=Loc(inage=IMAGE, object=‘glasses’)
ANSWER1=Count (box=BOX1)
ANSWER2=Eval(“‘yes’ if {(ANSWERG) > @ and {ANSWER1} > 8 else ‘no’™)
RESULT=ANSWER2
prediction: no
Instruction: Hide Daniel Craig with 8) and Sean Connery with ;)
progran:
Natural Language Visual Reasoning 0B1@=FaceDet (inage=IMAGE)
LET 0B)1=Select(inage=INAGE, objects0B)@, query=‘Daniel Craig’, category=Nane)

IMAGE@-Emoji (image=IMAGE, object=0BJ1, emoji=‘smiling_face_with_sunglasses’)
0B)2-Select(inage~INAGE, object=08@, query=‘Sean Connery’, category: None)
IMAGE1=Emo]i(inage=IMAGE®, object=08]2, emoji=‘winking face’)

RESULT=IMAGE1

Prediction: IMAGES

Instruction: Replace desert with lush green grass

Progran:

0B)8=Seg(inage=TNAGE)

0BJ1-Select(inage-INAGE, object-0BJ8, query=‘desert’, category-None)

Prediction: IMAGEQ

Instruction: Tag the 7 main characters on the TV show Big Bang Theory
Program:

0BJ@=FaceDet ( image=IMAGE)

LISTesList(query="main characters on the TV show Big Bang Theory’, max=7)
08)1Classify(inagesINAGE, objects0818, categoriessLISTO)
IMAGEG=Tag(inage=INAGE, object=0871)

RESULT=IMAGE®

place(imag: » object=0811, prompt=‘lush green grass’)
RESULT=IMAGE®

TMAGE:

Prediction: IMAGE®

Instruction: Create a color pop of Barack Obama (person)

Progran:

0BP=Seg(inage=IMAGE)

0B)1=Select(image=IMAGE, object=0B18, query=‘Barack Obama’, categorys‘person’)
IMAGE@=ColorPop (image<IMAGE, object=0811)

RESULT~INAGE®

Figure 1. VISPROG is a modular and interpretable neuro-symbolic system for compositional visual reasoning. Given a few examples
of natural language instructions and the desired high-level programs, VISPROG generates a program for any new instruction using in-
context learning in GPT-3 and then executes the program on the input image(s) to obtain the prediction. VISPROG also summarizes the
intermediate outputs into an interpretable visual rationale (Fig. 4). We demonstrate VISPROG on tasks that require composing a diverse
set of modules for image understanding and manipulation, knowledge retrieval, and arithmetic and logical operations.

Gupta and Kembhavi. "Visual Programming: Compositional visual reasoning without training." CVPR 2023.




How to understand stories in film

... Trinity contacts N ... The Matrix is revealed to ... secretly betrayed ... Morpheus and Trinity exit ... He ends the
o him confirming that Morpheus be a shared simulation of the Morpheus to Agent the Matrix, but Smith ambushes call and flies into
S Morpheus can ... world as it was in 1999 ... Smith in exchange for and kills Neo before he can ... the sky.
= a comfortable ...
£
—- y L
:
-
E - cee cee cee ces
«w Video
=]
v
o
‘5 @ About to disconnect when an
(2 :ﬁzn‘;’zi::n”‘essage siices onto 00:40:42 --> 00:40:47 Neo is seen exiting the
Subtitle . It exists now only as part of a A0 == TU0EgL s phone booth and observing
.S b SCREEN neural-interactive simulation - you know what I realize? the surrounding people.
('l'lP[S
) o 01:04:17 --> 01:04:18
e Do you want to know what the 00:40:47 --> 00:40:48 - ; He 1 iee -
Vs Matrix is, Neo? that we call the Macrix. Ignozance is bliss. ;;;?ks up end fliss o the
T T 0 2 T
0:00 o35 - URPETTEL Ly CUNPPTL 0:45 1:00 1:45 2:00 .
ey Time

A: A shared simulation of the world

A: A group of robots
A: A human body

A: A set of numbers stored as a

table

A: Smith kills Neo

A: Trinity kills Neo
A: Morpheus kills Neo after he realizes
that Neo is not the one

A: In exchange for a comfortable life

A: In exchange for money
A: Because he is threatened by Agent Smith

A: With Neo flying into the sky
A: With the Machines chasing after Neo
A: We see Mr. Smith torture Morpheus

Figure 1: Our MovieQA dataset contains 14,944 questions about 408 movies. It contains multiple sources of information: plots, subtitles,
video clips, scripts, and DVS transcriptions. In this figure we show example QAs from The Matrix and localize them in the timeline.

Tapaswi et al., CVPR 2016
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How to understand roles in film

Video Clip

compassionate

worried Legend
female @ Character @ Summary Int.
L Culejz;n @ Attribute (O Topic
(Dtorun @ Relationship @ Reason
. Interaction @ Timestamp

Scene: Field Road
Situation: Bullying

Description:
o 0:34-1:02 As Jenny and Forrest are on the road, three
boys start throwing rocks at Forrest.
to get him Jenny urges him to run from them. While
0:19.5-1:02 Forrest runs, his leg braces fall apart.

) B b - “
Bus ride Playing Talk with stranger Bullying Escape Family altercation Bedtime Football game

Vicol et al., CVPR 2018
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How to understand media persuasion

o

True colors. fﬁ
- ( N

EXAMPLE ADS IN OUR DATASI

Fig. 1: Example advertisements from our dataset that require
challenging visual recognition and reasoning. Despite the
potential applications of understanding the messages of ads,
this problem has not been tackled in computer vision.

Ye et al. "Interpreting the Rhetoric of Visual Advertisements." TPAMI 20189.



B Automatic Understanding of Image and Video Advertisements

Zaeem Hussain, Mingda Zhang, Xiaozhong Zhang, Keren Ye, Christopher Thomas,
Zuha Agha, Nathan Ong, Adriana Kovashka

University of Pittsburgh

Understanding advertisements is more challenging than Here are some sample annotations in our dataset.
simply recognizing physical content from images, as ads

. . . What'’s being advertised
employ a variety of strategies to persuade viewers.

in this image?

Cars, automobiles

What sentiments are

symbolism Cdmre/Memes. ;.)ro'vo.k.ed i-n thf viewer?
We collect an advertisement dataset containing 64,832 o Gl Mo iy . Iﬂfrfsjed Youthful,
images and 3,477 videos, each annotated by 3-5 human

workers from Amazon Mechanical Turk What strategies are used to persuade viewer?

Topic 204,340 Strategy 20,000 Symbolism, Contrast, Straightforward, Transferred qualities

Sentiment 102,340 Symbol 64,131
; What should the viewer do, and why should they do this?
Q+A Pair 202,090 Slogan 11,130
. » - Ishould buy Volkswagen because it can hold a big bear.

Topic 17,345 Fun/Exciting 15,380 - I should buy VW SUV because it can fit anything and everything in it.
Sentiment 17,345 English? 17,374 - | should buy this car because it can hold everything | need.
Q+A Pair 17,345 Effective 16,721 More information available at http://cs.pitt.edu/~kovashka/ads

Hussein et al., CVPR 2017



How to generate arbitrary content

“a man standing next to a “a laughing purple “a chipmunk baking “a painting of a two-headed zebra riding a high wheel bike with
pizza wheels on a tiled road by broccoli fields at sunset”

woman in a room” porcupine™ cookies”

o—

“a grey and white cat sits “a y bear with a blue scarf

"

near a laptoy and eves tilted to its left”

Figure 1. Make-A-Scene: Samples of generated images from text inputs (a), and a text and scene input (b). Our method is able to both
generate the scene (a, bottom left) and image, or generate the image from text and a simple sketch input (b, center).

Gafni et al. "Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors.” ECCV 2022.




How to reason and act

‘ Q: What color is the car?

#(3)
#6:)2)

Das et al., CVPR 2018
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How to use language models for

robotics tasks

| spilled my drink, can you help? | spilled my drink, can you help?

GPT3 You could try using LLM Value Functions
“find a cleaner” s comer”
a vacuum cleaner. - “find a sponge”
g0 to the trash can “go to the trash can”

'piclf up the sponge” “pick up the sponge”
“try using the vacuum” Ty uting the vacwur”

Do you want me to | would:

LaMDA find a cleaner? 1. find a sponge
SayCan 2. pick up the sponge
"ﬁnd:;];;;nge' 38 comde to yor:J
i o1 didn't oo 1o the rash oucs® 4. put down the sponge
FLAN i sorry il 'plgcktuph;:e ss:onge' 5. done

P Em e em e = ==y,

mean to spill it.

“try using the vacuuen”

Figure 1: LLMs have not interacted with their environment and observed the outcome of their responses, and
thus are not grounded in the world. SayCan grounds LLMs via value functions of pretrained skills, allowing
them to execute real-world, abstract, long-horizon commands on robots.

Ahn et al. "Do As | Can, Not As | Say: Grounding Language in Robotic Affordances." CoRL 2023.



Computer vision is not solved

- Deep learning makes excellent use of
massive data (labeled for the task of

interest?)

« Butit's hard to understand how it does so, makes
it hard to fix when it doesn’t work well

It doesn’t work well when massive data is not
available and your task is different than tasks for
which data is available

- We can recognize objects with 97% accuracy but
reasoning about relationships and intent is harder
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Why is Vision difficult?

- lll-posed problem: real world much more
complex than what we can measure In
Images

- 3D>2D
*  Motion - static

- Impossible to literally ‘“invert” image
formation process with limited
information

- Need information outside of this particular
image to generalize what image portrays
(e.g. to resolve occlusion)

Adapted from Kristen Grauman



What the computer see”?
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Adapted from Kristen Grauman and Lana Lazebnik



Challenges: many nuisance parameters

{}wé
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Occlusions Intra-class Viewpoint
appearance

Kristen Grauman Think again about the pixels...
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Challenges: intra-class variation

slide credit: Fei-Fei, Fergus & Torralba



Challenges: Complexity

Thousands to millions of pixels in an image

3,000-30,000 human recognizable object
categories

30+ degrees of freedom in the pose of articulated
objects (humans)

Billions of images indexed by Google Image Search I'
1.424 billion smart camera phones sold in 2015

About half of the cerebral cortex in primates is
devoted to processing visual information [Felleman
and van Essen 1991]
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Challenges: Limited supervision
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Challenges: Evolution of datasets

Challenging problem - active research area

DL
S8y

PASCAL:
20 categories, 12k images

TaSI

ImageNet: Microsoft COCO:
22k categories, 14mil images 80 categories, 300k images



Computer Vision: Summary

VISION EXPLAINED

IN5 MINUTES S




Overview of topics



Features and Filters

ﬁﬁ//%:’f;qé

256 128 64 32

» Describing and transforming &
textures, colors, edges

Kristen Grauman
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Features and Filters

- Detecting distinctive and repeatable features
- Describing images with local statistics

0 2n

angle histogram

Image gradients
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Grouping

22

DAL NS
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( ( Parallelism
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) Symmetry
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o
k Continuity

DQ Closure

« Segmentation, fitting; what
parts belong together?

Kristen Grauman



Image Categorization

- Fine-grained recognition

< 9 ¢ 5 @

Generalist Insect catching Grain eating Coniferousseed eating Nectar feeding
Chiseling Dip netting Surface skimming Scything Probing
/ »\ '
Aerial fishing Pursuit fishing Scavenging Raptorial Filter feeding

Visipedia Project

Slide credit: D. Hoiem


http://www.vision.caltech.edu/visipedia/
http://www.vision.caltech.edu/visipedia/
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Image Categorization

brlck food [ palnted Pitile

carpet glass paper stone
ceramic | hair plastic . water
fabric leather pollshedstone. wood

foliage

metal skin

- Material
recognition

[Bell et al. CVPR 2015]

Slide credit: D. Hoiem


http://arxiv.org/pdf/1412.0623.pdf

Image Categorization

- Image style
recognition

Vintage

Long Exposure Romantic Abs. Expressionism  Color Field Painting

Flickr Style: 80K images covering 20 styles. Wikipaintings: 85K images for 25 art genres.
[Karayev et al. BMVC 2014] Slide credit: D. Hoiemn



http://arxiv.org/pdf/1311.3715.pdf
http://arxiv.org/pdf/1311.3715.pdf

T
Visual Recognltlon and SVMs

Recognizing objects and
categories, learning techniques

Adapted from Kristen Grauman



Convolutional Neural Networks (CNNs)

State-of-the-art on many recognition tasks

Image

Prediction

M

3| -l [

13 3 (e = . 13

B i

' 192 192 128 M
22 St d
T . . .
. . . Yosinski et al., ICML DL workshop 2015

aaaaaaaaa




Recurrent Neural Networks (RNNs)

- Sequence processing, e.g. question answering

e L L e -~
i B . ’ e e e . \
Multi-label CNN I The dog is a furry, carnivorous f m|n|m|z|ng cost funct|on 1
TonS ] = member of the canidae family, ' @ |
N op S > i mammal class. The cat is a small, 1 N 1'“W+1 1
=3 2l Vaee (1) Attributes 5 > DBpedia usually furry, domesticated, and 1 1 o) 2 1
d carnivorous mammal. Birds, Aves 1 C=—— logp:(a; Ag - ||18]la !
class, are 3 group of endothermic | | N : : gp 1( J )+ - ||8llaz 1
. vertebrates, characterised by ! i=1 j=1 !
o o feathers, a beak with no teeth. | ! :
"DD Q S Plants, also called green plants , : | There | | are | | two | I | END | .
Q -9" anow(l) 2 e ::: :nuki:ellular eukaryotes of i ¢ :
ol = ]
=9 o v [logpi(ay) logprs1(@+1) | )
o> ) Wek __|  External Knowledge S | l,'
=1 Regions | Proposals et et ettty Ml e
Pi+1
M/ea
B hi—y I
> e e “
<@ — | Average <
Pooling
Cap 1: 3 dog laying on the floor with a bird next o 7 ]\ x;
to it and a cat behind them, on the other side of L
a sliding glass door. < o Veap(I)
Cap 2: a brown and black dog laying on 2 floor . W,
> | next to 2 bird. : “
Cap 3: the dog, cat, and bird are 2l on the floor (':9 m
in the room. Ps
- =
Internal Representation -~ | 1255 ” are | I anak |

Wu et al., CVPR 2016



Motion and tracking
* Tracking objects, video analysis

Kristen Grauman
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Object Recognition

Adapted from Vicente Ordofiez



Image Segmntation

Adapted from Vicente Ordofiez

deer
cat

trees
grass




Generative Al

CLIP objective - img

encoder
“a corgi
playing a
flame [N W |
throwing
trumpet” d6000| ~ HS 3
~ 5°g-
"""""""""""""""""""""" 8-»8-» S O 0
2 Stable Diffusion: “Triceratops

prior decoder

programming on a MacBook in a startup
Dall.e 2: https://learnopencv.com/mastering-dall-e-2/ office”

Text-conditional
image-inpainting [ref]

“a man with red hair” “a vase of flowers”


https://learnopencv.com/mastering-dall-e-2/
https://learnopencv.com/mastering-dall-e-2/
https://learnopencv.com/mastering-dall-e-2/
https://learnopencv.com/mastering-dall-e-2/
https://learnopencv.com/mastering-dall-e-2/
https://learnopencv.com/mastering-dall-e-2/
https://learnopencv.com/mastering-dall-e-2/
https://www.edge-ai-vision.com/2023/01/from-dall%C2%B7e-to-stable-diffusion-how-do-text-to-image-generation-models-work/
https://www.edge-ai-vision.com/2023/01/from-dall%C2%B7e-to-stable-diffusion-how-do-text-to-image-generation-models-work/

Multimodal Generative Al

Exsiting MLLMs

Response:
chicken, potatoes
— - and cauliflower on a
Vision Bridge white plate with a X
Encoder Module LLM | ,| knife and fork in

Real- World Desnowmg

the middle of the
table next to a red
wine bottle that
sits on the table

N/ |nexttoit.

Real Denalsmg . LION

Spatial-aware Visual Knowledge:
" Roasted baby yellow potato [z1,Y1,Z2,Y2 ] | [Response:
1 A piece of steamed cauliflower [z1,y1,22,Y2]
1 Grilled chicken breast [z1,y1,22,Y2]

i | Chicken, potatoes,

Defocts Debl“rring Mtion Deblurn’ng Mixd Degmdatio“s Removal ""»-»»----------...@ _______ iyl Lssmspndl
Vision Bridge Mixture white plate with a Ve
| | . . wooden table in
Multimodal Prompt Perceiver: Empower Adaptiveness, Encoder ]‘[ Module ptrs |||t foregrouna.

The plate is sitting
on a wooden table.

Generalizability and Fidelity for All-in-One Image Restoration [CVPR]

Semantic Visual Evidence:
caulifiower, chicken, table, |:>
plate, food, meat, potato, white |

Instruction:
What is in the photo?

Spider-Man: Into the Spider-Verse (2018) | Start: 00:01:28 | End: 00:01:29
AR R R R RRRRERRRRRRRERRRRRRRRRRRR

LION : Empowering Multimodal Large Language
Model with Dual-Level Visual Knowledge [CVPR]

Subtitles Context AD

> All right, let's do this one last time. A close-up reveals a Spider-Man comic book cover. MM-NaI’I"atOr Narratl ng Long'
> My name is Peter Parker. Peter Parker's name tag is shown with a red border . . .
> I was bitten by a radioactive spider. and white text. fOfm VIdGOS Wlth MU|tI mOda| In'
> And for 10 years... Peter in his Spider-Man costume, jumps onto a .

metal platform. Context Learning [CVPR]

AD Prediction (via MM-Narrator)
Spider-Man jumps off a yellow taxi and continues running on the street.



https://openaccess.thecvf.com/content/CVPR2024/papers/Ai_Multimodal_Prompt_Perceiver_Empower_Adaptiveness_Generalizability_and_Fidelity_for_All-in-One_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Chen_LION_Empowering_Multimodal_Large_Language_Model_with_Dual-Level_Visual_Knowledge_CVPR_2024_paper.pdf
https://openaccess.thecvf.com/content/CVPR2024/papers/Zhang_MM-Narrator_Narrating_Long-form_Videos_with_Multimodal_In-Context_Learning_CVPR_2024_paper.pdf

Input Prompt

Completion

Large Language Models

Question: Why did the Question: What is the
little boy cry? Answer: hairstyle of the blond
called? Answer:

Question: Explain why
this photo is funny?

Answer:
The cat is wearing a Because his scooter E
mask that gives the bk pony tail
cat a smile.

(1 ) A3)

Question: When will the
movie be released?
Answer:

On June 27

“4)

57

&<

N &
What's in this picture?
sausage roll.
How to cook it?
Soak sausage roll in

ketchup. Bake in oven for
15 min. Cut and enjoy.

Can | put cheese in the
dish?

Sure. But make sure it is
melted.

9)

Gpt-4: https://medium.com/@amol-wagh/whats-new-in-gpt-4-an-overview-of-the-gpt-4-architecture-and-capabilities-of-next-generation-ai-900c445d5ffe
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