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What will be the output of an Object Detector?

Adapted from Vicente Ordofiez



Object Detection as Classification

deer?
cat?
background?

Adapted from Vicente Ordofiez



Object Detection as Classification

deer?
cat?
background?

Adapted from Vicente Ordofiez



Object Detection as Classification

deer?
cat?
background?

Adapted from Vicente Ordofiez



Object Detection as Classification with Sliding Window

deer?
cat?
background?

Adapted from Vicente Ordofiez



Different Flavors of Object Recognition

Semantic Classification Obiject Instance
Segmentation + Localization Detection Segmentation

GTR:‘ESES’SKY : CAT DOG, DOG, CAT
N\ ’ VAN J
v Y - Y .
No objects, just pixels Single Object Multiple Object

Adapted from Justin Johnson



9
Plan for Today

- Detection approaches
Pre-CNNs

Detection with whole windows: Pedestrian detection
Part-based detection: Deformable Part Models

Post-CNNs

Detection with region proposals: R-CNN, Fast R-CNN,
Faster-R-CNN

Detection without region proposals: YOLO, SSD

- Segmentation approaches
Semantic segmentation: FCN
Instance segmentation: Mask R-CNN



Object Detection

GTRé‘ES:’ : CAT DOG, DOG,CAT  DOG, DOG, CAT
“ \’KSKY ) SN - Y,
No objects, just pixels Single Object Multiple Object

Slide by: Justin Johnson




Object detection: basic framework

Build/train object model
Generate candidate regions in new image

Score the candidates

Adapted from Kristen Grauman



Window-template-based models Building an object model

Given the representation, train a binary classifier

Car/non-car
Classifier

¢

Noymeef'carcar.

Kristen Grauman



Window-template-based models Generating and scoring
candidates

Car/non-car
Classifier

Kristen Grauman



Window-template-based object detection: recap

Training:

1. Obtain training data
2. Define features

3. Define classifier

Given new image:
1. Slide window
2. Score by classifier

Feature

kextraction y

-

Car/non-car
Classifier

Kristen Grauman




Evaluating detection methods

B 1 #TP(c)
mAl = classes]| Z #TP(c)+ #FP(c)

cEclasses

» True Positive - TP(c): a predicted bounding box (pred_bb) was made for class c, there is a ground
truth bounding box (gt_bb) of class ¢, and loU(pred_bb, gt bb) >=0.5.

» False Positive - FP(c): a pred_bb was made for class c, and there is no gt_bb of class c. Or there is
a gt_bb of class c, but loU(pred_bb, gt bb) < 0.5.

r: Rredictéd person

Area of overlap

Score =

Area of union




Dalal-Triggs pedestrian detector

L nh -

Extract fixed-sized (64x128 pixel) window at multiple positions and scales
Compute HOG (histogram of gradient) features within each window
Score the window with a linear SVM classifier

Perform non-maxima suppression to remove overlapping detections with
lower scores

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05
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Histograms of oriented gradients (HOG)

Divide image into 8x8 regions

Orientation: 9 bins Histograms in
(for unsigned 8x8 pixel cells
angles) 90
135 45
180 0
225 315
270

Votes weighted by magnitude

Adapted from Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Train SVM for pedestrian detection using HoG

016 =wlz+ b
sign(0.16) =1

=> pedestrian

O /Margin

Adapted from Pete Barnum Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR05



Remove overlapping detections

Non-max suppression

Score = 0.8 Score = 0.8

of overlap ‘
Ion ‘

Score =0.1

Adapted from Derek Hoiem



Are window templates enough?

- Many objects are articulated, or have parts that can vary in
configuration

Images from Caltech-256, D. Ramanan

- Many object categories look very different from different
viewpoints, or from instance to instance

AN (i L -

Adapted from N. Snavely, D. Tran




e
Parts-based Models

Define object by collection of parts modeled by
1. Appearance
2. Spatial configuration

Slide credit: Rob Fergus



Plan for the next three lectures

- Detection approaches
Pre-CNNs

Detection with whole windows: Pedestrian detection
Part-based detection: Deformable Part Models

Post-CNNs

Detection with region proposals: R-CNN, Fast R-CNN,
Faster-R-CNN

Detection without region proposals: YOLO, SSD

- Segmentation approaches
Semantic segmentation: FCN
Instance segmentation: Mask R-CNN



Complexity and the plateau

[Source: http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc20{07,08,09,10,11,12}/results/index.html]

70

60

plateau &increasing complexity

41% 41%

O DPM++, Selective
28% DPPM++  MKL,  Search,
& Selective DPM++, ©Top
17% % DPM, Search MKL competition
o DPM, — MKL results (2007 -
pPM HOG+BOW 2012)

VOC'07 VOC'08 VOC'09 VOC'10 VOC’'1l VOC'12
PASCAL VOC challenge dataset

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014
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Impact of Deep Learning

80% PASCAL VOC
70%

60% Before deep convnets
50% A 1
( \ \ J

40% A A !
A Using deep convnets

30%

20%

mean Average Precision (mAP)

10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

year

Slide by: Justin Johnson



Classification + Localization

TREE. SKY DOG, DOG, CAT OG, DOG, CAT
N\ ’ VAN J J
Y Y Y
No objects, just pixels Single Object Multiple Object

Slide by: Justin Johnson



What will be the output of a neural network for object
detection?

Adapted from Vicente Ordofiez



What guides the Iearnlng of a neural network?

Andrej Karpathy



Classification + Localization

Class Scores
Fully Cat: 0.9

Connected: Dog: 0.05
4096 to 1000 Car: 0.01
. FM
Vector: Connected:

4006t04  Box
Coordinates

(X, y, w, h)

Treat localization as a
regression problem!

Slide by: Justin Johnson



Classification + Localization

Correct label:
Cat

Class Scores 1
Fully Cat: 0.9 — Softmax

Connected: Dog: 0.05 Loss
4096 to 1000 Car: 0.01
. FM
Vector: Connected:

4096t04  BoOX
Coordinates —» |2 Loss

(X’ y, W, h) T

Treat localization as a

regression problem! Correct box:
g p (X” y” W” h’)

Slide by: Justin Johnson



Classification + Localization

Correct label:
Cat

Class Scores 1
Fully Cat: 0.9 — Softmax

Connected: Dog: 0.05 Loss
4096 to 1000 Car: 0.01

- v .
Tt I Multitask LoSS 4 —»Loss

* pouing T 203 A
V : FM‘
Zg;%r Connected:

4096t04  BoOX
Coordinates —» |2 Loss

(X’ y, W, h) T

Treat localization as a

regression problem! Correct box:
g p (X” y” W” h’)

Slide by: Justin Johnson



Classification + Localization

Correct label:

Cat
Class Scores 1
Fully Cat: 0.9 — Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01

ST = A
Vector: Fully
Connected:

Often pretrained on ImageNet 4096
(Transfer learning) 4096 to 4 Box
Coordinates —» |2 Loss
o (X, y,w, h)
Treat localization as a T
regression problem! Correct box:
g p (X” y” W!’ h!)

Slide by: Justin Johnson



Object Detection as Regression?

CAT: (x,y, w, h)

DOG: (x,y, w, h)
DOG: (x,y, w, h)
CAT: (x,y,w, h)

Slide by: Justin Johnson



Object Detection as Regression?

CAT: (x,y, w, h)

4 numbers
DOG: (x, y, w, h)
DOG: (x, y, w, h)
CAT: (x, y, , h) 16 numbers
DUCK: (x, y, w, h) Many
DUCK: (x, y, w, h) numbers!

Each image needs a
different number of outputs!

Slide by: Justin Johnson



Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? NO
Background? YES

Slide by: Justin Johnson



Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO

Background? NO

Slide by: Justin Johnson



Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? YES
Cat? NO

Background? NO

Slide by: Justin Johnson



Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO

Slide by: Justin Johnson



Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO

Problem: Need to apply CNN to huge
number of locations and scales, very
computationally expensive!

What can we do?

Slide by: Justin Johnson



Region Proposals

e Find “blobby” image regions that are likely to contain objects
e Relatively fast to run; e.g. Selective Search gives 1000 region
proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012
Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”,
CVPR 2014

Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

Slide by: Justin Johnson



Box Proposal Method — SS: Selective Search

Adapted from Vicente Ordofiez

Segmentation As
Selective Search for
Object Recognition.
van de Sande et al.
ICCV 2011




R-CNN

Input image

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”,
CVPR 2014



R-CNN

Regions of Interest
(Rol) from a proposal
method (~2k)

Input image

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”,
CVPR 2014



R-CNN

v Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Input image

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”,
CVPR 2014



R-CNN

Conv Forward each
Conv Net region through
ConvNet
Conv Net !
Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Input image

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”,
CVPR 2014



T
R-CNN

SVMs Classify regions with

SVMs —f— SVMs

SVMs Conv Forward each
Conv Net region through
ConvNet
Conv Net
5 Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Input image

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”,
CVPR 2014



R-C N N Linear Regression for bounding box offsets

Bbox reg || SVMs Classify regions with

Bbox reg || SVMs SVMs
o )
Bbox reg | | SVMs Conv Forward each
Conv Net region through
ConvNet
Conv Net f
Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Input image

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”,
CVPR 2014
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R-CNN: Regions with CNN features

4| aeroplane? no.

person? yes.

C
tvmonitor? no.
Input Extract region Compute CNN Classify regions
image  proposals (~2k/ image) features (linear SVM)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”,
CVPR 2014



R-CNN at test time: Step 1

4| aeroplane? no.

person? yes.

tvmonitor? no.

Input . Extract region
image  proposals (~2k/ image)

Proposal-method agnostic, many choices
- Selective Search [van de Sande, Uijlings etal.] (Used in this work)
- Objectness [Alexe etal.]
- Category independent object proposals [Endres &
Hoiem]
- CPMC [Carreira & Sminchisescul]

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”,
CVPR 2014



4| aeroplane? no.

person? yes.

C

tvmonitor? no.

Input Extract region Compute CNN
image  proposals (~2k/ image) features




R-CNN at test time: Step 2

4| aeroplane? no.

person? yes.

C

tvmonitor? no.

Input Extract region Compute CNN
image  proposals (~2k/ image) features

Dilate proposal

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



4| aeroplane? no.

person? yes.

C

tvmonitor? no.

Input Extract region Compute CNN
image  proposals (~2k/ image) features




4| aeroplane? no.

person? yes.

C

tvmonitor? no.

Input Extract region Compute CNN
image  proposals (~2k/ image) features

227 x227

. rop b Scleanisotrobic)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



R-CNN at test time: Step 2

4| aeroplane? no.

person? yes.

C

tvmonitor? no.

Input Extract region Compute CNN
image  proposals (~2k/ image) features

c. Forward propagate
.Crop b. Scale(an|sotrop|c) Output: “fcs”fepatgres

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014



N at test time: Step 3

4| aeroplane? no.

person? yes.

C
tvmonitor? no.
Input Extract region Compute CNN Classify
image  proposals (~2k/ image) features regions

o 4096-dimensional linear classifiers
PTOPOSAL  £0, feature vector (SVM or softmax)

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014
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Step 4: Object proposal refinement

Linear regression

\v4

—
vl e
%

,. ‘ ‘ on CNN features
Original
proposal object boundingbox

Bounding-box regression

Girshick et al., “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”, CVPR 2014
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What's wrong with slow R-CNN?

- Ad-hoc training objectives
- Train post-hoc linear SVMs (hingeloss)
- Train post-hoc bounding-box regressions (L2 loss)

- Training is slow (84h), takes a lot of disk space
- Need to store all region crops

- Inference (detection) is slow
- 47s / image with VGG16 [Simonyan & Zisserman, ICLR15]

Adapted from Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

* One network, applied one time, not 2000
times

* Trained end-to-end (in one stage)

 Fast test time

» Higher mean average precision

Adapted from Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN

Adapted from Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN

/ /”conv5" feature map of image

Forward whole image through ConvNet

Adapted from Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN

Regions of ﬁ@:i/ conv5” feature map of image

Interest (Rols) /

from a proposal
method

Forward whole image through ConvNet

ConvNet

Adapted from Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN

“Rol Pooling” layer

Regions of ﬁ@iﬁ/ ‘conv5” feature map of image

Interest (Rols) /

from a proposal
method

Forward whole image through ConvNet

ConvNet

Adapted from Girshick, “Fast R-CNN”, ICCV 2015



Fast R-CNN

Softmax Linear + |
o softmax
classifier
| FCs

15

LT LT
Regions of ﬁ@$M

Interest (Rols) /

from a proposal
method

ConvNet

Adapted from Girshick, “Fast R-CNN”, ICCV 2015

Fully-connected layers

“Rol Pooling” layer

“conv5” feature map of image

Forward whole image through ConvNet




63 ]
Fast R-CNN

Soft Linear + _
ortmax softmax Linear | Bounding-box
classifier regressors

FCs Fully-connected layers

L7 7 (7 “RolPooling” layer

Regions of %&M"COWS” feature map of image
Interest (Rols) / )

from a proposal
method

Forward whole image through ConvNet

ConvNet

Adapted from Girshick, “Fast R-CNN”, ICCV 2015
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Fast R-CNN (Training)

Log loss + Smooth L1 loss Multi-task loss
Linear + ’ t
softmax Linear
FCs %
5

Adapted from Girshick, “Fast R-CNN”, ICCV 2015



s
Fast R-CNN (Training)

Log loss + Smooth L1 loss Multi-task loss
Linear + /
softmax Linear

Adapted from Girshick, “Fast R-CNN”, ICCV 2015



66 ]
Fast R-CNN vs R-CNN

FastR-CNN | R-CNN
Train time (h) 9.5 84
Speedup 8.8x 1X
Testtime / 0.32s 47.0s
image
Test speedup 146x 1X
mAP 66.9% 66.0%

Timings exclude object proposal time, which is equal for
all methods. All methods use VGG16 from Simonyan
and Zisserman.

Adapted from Girshick, “Fast R-CNN”, ICCV 2015



Faster R-CNN
Classification | \ Bounding-box
Make CNN do proposals! loss 1§ PLregressionloss |

o e o e o o = = e = =
H Classification | Bounding-box )
Insert Reglon Proposal loss regression loss ”poohng

[

I

I
NetV\_lork (RPN) to | X ﬁ FE
predict proposals from I propom/ D/ I
features | A !

N e e e e e, e /
Region Proposal Network

Jointly train with 4 losses:

feature map

1. RPN classify object / not =
object

2. RPN regress box coordinates o

3. Final classification score
(object classes) o

4. Final box coordinates

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015



Accurate object detection is slow!

Pascal 2007 mAP |Speed
DPM v5 33.7 .07 FPS | 14 s/img

R-CNN 66.0 .05 FPS | 20 s/img

\ /s Mile, 1760 feet )

| 4

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Accurate object detection is slow!

Pascal 2007 mAP |Speed

DPM v5 33.7 .07 FPS | 14 s/img
R-CNN 66.0 .05 FPS | 20 s/img
Fast R-CNN 70.0 .5FPS |2s/img
Faster R-CNN | 73.2 7 FPS 140
ms/img
69.0 45 FPS | 22 ms/img

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Detection without Proposals: YOLO

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Each cell predicts boxes and confidences:
- Ob'ct)

i m 7 LY

Lk Tl PR P

: ol By 3
’

" r‘. 4 “‘”

?\

T

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016
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Each cell also predicts a probability
P(Class | Object)

Bicycle

Dog

Dining
ﬁlll. Table

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016
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Combine the box and class predictions

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



Finally do NMS and threshold detections

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



YOLO- You Only Look Once

ldea: No bounding
box proposals. PSS | |

Predict a class and a box

for every location in a grid. e
Sx Sgrid on input

Final detections

Class probability map

https://arxiv.org/abs/1506.02640 Redmon et al. CVPR 2016.



https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640

Detection without Proposals: YOLO

Within each grid cell:

- Regress from each of the B
base boxes to a final box
with 5 numbers:

(X, ¥, w, h, confidence)

- Predict scores for each of
C classes (including
background as a class)

Divide image into grid Output:
3xHxW 7x7 7x7x(5*B+C)

Image a set of base boxes
centered at each grid cell
Here B=3

Redmon et al, “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016
Liu et al, “SSD: Single-Shot MultiBox Detector’, ECCV 2016

Slide by: Justin Johnson



YOLO- You Only Look Once

12

g — .

448 —] 28 36
3 1415 7N 7 7
n2 >< ><:
56 28 “3 3
7 7 7
3 192 256 512 1024 1024 1024 4096 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer Conn. Layer
7x7x64-5-2 3x3x192 1x1x128 1x1x256 1 4 1x1x512 3x3x1024
Maxpool Layer Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024
2x2-5-2 2x2-5-2 1x1x256 1x1x512 3x3x1024
3x3x512 3x3x1024 3x3x1024-5-2
Maxpool Layer  Maxpool Layer
2x2-s-2 2x2-5-2

Divide the image into 7x7 cells.
Each cell trains a detector.
The detector needs to predict the object’s class distributions.

The detector has 2 bounding-box predictors to predict
bounding-boxes and confidence scores.

https://arxiv.org/abs/1506.02640 Redmon et al. CVPR 2016.



https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640

This parameterization fixes the output size

=

Each cell predicts:

- For each bounding box:
- 4 coordinates (x,y, w, h) -
- 1 confidence value

- Some number of class
probabilities

For Pascal VOC: A AN %
6/& % 4 6/& % % ¥ Va ’ﬁ‘y/ L/
y v K4 % % %
- X7 gri 6, %, o
. 1st - 5th éth - 10th 11th - 30th
- 2 bounding boxes / cell Box #]1 Box #2  Class Probabilities
- 20 classes

7Xx7x(5x2+20)=7x7x30tensor =1470 outputs

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



YOLO - Loss Function

(coodz_;;)n”[ —&:)% + (v — 9:)° A
oo S35 [ (v - V) (Vi VR
/+i§1‘;?(c ~a)? )

+ A bjijz:mbl(c - i)

+Z]1*’J > (p(c) pi(c))”
\_ "/

c Eclasse




YOLO works across many natural images

e

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



It also generalizes well to new domains

diningtable & <t

Redmon et al., “You Only Look Once: Unified, Real-Time Object Detection”, CVPR 2016



A DEMO NEAR YOU

g YR o THE ALEY NSTITE IR TR WRLEENE
W SIRCE AR IETVRES
@DARKNETFOREVER #Y0L09000

pjreddie.com/yolo

wEnB D @& O

Redmon and Farhadi, “YOLO9000: Better, Faster, Stronger”, CVPR 2017
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SSD: Single Shot Detector

. CiE oo Lab 11a
A il o am®
Lo g _
-I-L_-_-T':'I H= ! ! ————i
ILE:E:“I": */___/_:______ Jupyter
e loc : A(cz,cy,w, h) v
0 conf { (c1,¢2,°*}Cp) O

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

|ldea: Similar to YOLO, but denser grid map, multiscale grid m
aps. + Data augmentation + Hard negative mining + Other de

sign choices in the network. Liu et al. ECCV 2016.



[SOTA] OWL-VIT: open-vocabulary object detector

'giraffe’
'tree' —>
'car'

)

)
Text

[ ] Object image embeddings

Transformer
encoder
L A

Vision
Transformer
encoder

—

=

| Linear projection |

7
/3

/7.

Query [ ] Object box embeddings
embeddings
=D D D Predicted
classes/queries

1 —>'giraffe’

9 1

8 4 .0—>'giraffe'

2 8 .0—>'tree' \
1 .0

.1 —><no object> Set prediction
loss over objects
Predicted boxes Inan image.

:(xl' Yyr Wy hx)

> (%, Yo Wy hz)/
>(x,, y,, w,, h)

[ MLP head |

oo oo

’ y‘l w‘I h‘)

https://arxiv.org/pdf/2205.06230



https://arxiv.org/pdf/2205.06230
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[SOTA] OWL-VIT: open-vocabulary object detector

text queries = ["human face", "rocket",
"nasa badge", "star-spangled banner"]
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Lab 11b: Open Vocabulary Object Recognition

Duration: 5 min

o o ® P
jupyter
;V



[SOTA] OWL-VIT: open-vocabulary object detector

How Bounding Boxes are encoded?




Plan for the next lectures

- Detection approaches
Pre-CNNs

Detection with whole windows: Pedestrian detection
Part-based detection: Deformable Part Models

Post-CNNs

Detection with region proposals: R-CNN, Fast R-CNN,
Faster-R-CNN

Detection without region proposals: YOLO, SSD

- Segmentation approaches
Semantic segmentation: FCN
Instance segmentation: Mask R-CNN



Semantic Segmentation

GTR:ESES’SKY : CAT DOG, DOG, CAT DOG, DOG, CAT
N\ ’ VAN J J
Y Y - Y .
No objects, just pixels Single Object Multiple Object

Slide by: Justin Johnson



Semantic Segmentation

deer
cat

trees
grass

Adapted from Vicente Ordofiez



Semantic Segmentation

Label each pixel in the
image with a category
label

Don’t differentiate
instances, only care about
pixels

Slide by: Justin Johnson



%
ldea 1: Convolutionalization

“tabby cat”

0,000 . |-
o T o SN R | A

1

l‘-|\1

Adapted from Vicente Ordofiez


https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf
https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

9%
ldea 1: Convolutionalization

https://www.saagie.com/fr/blog/object-detection-part1



e
ldea 1: Convolutionalization

nn.Linear(4096, 1000) == nn.Conv2D(4096, 1000, kernel_size = 1, stride = 1)
input tensor:
4096
(T output tensor:
1000 input tensor: output tensor:
4096x1x1 - 1000x1x1
Linear-layer — SpatialCony
e ( ) —_— C——)
W: 1000x4096x1x1
—  |w:4096x1000] — b 1000
b: 1000

Adapted from Vicente Ordofiez



ldea 2: Fully Convolutional Networks (CVPR 2015)

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long* Evan Shelhamer* Trevor Darrell

UC Berkeley Lab 11a
{jonlong, shelhamer, trevor}@cs .berkeley.edu Py — o
forward /inference & P s J u pyte r

backward/learning | " )
<

(




ldea 2: Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv Conv argmax
—_—

Input: J -
3x IF—)I xW Y Scores: Predictions:

CxHxW HxW

Convolutions:
DxHxW

Slide by: Justin Johnson



ldea 2: Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv Conv argmax
—_—

Input: J -
3x IF—)I xW Y Scores: Predictions:

CxHxW HxW

. Convolutions:
Problem: convolutions at Dx HxW

original image resolution will
be very expensive ...

Slide by: Justin Johnson



ldea 2: Fully Convolutional

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
D, x H/4 xW/4 D, x H/4 xW/4

Low-res:
D, x H/4 xW/4

Input: High-res: High-res:

Predictions:
3xHxW D, x H/2 xW/2 D, x H/2 xW/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide by: Justin Johnson



ldea 2: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 272
convolution

Med-res: Med-res:

D, x H/4 xW/4 D, x H/4 xW/4

Low-res:
D, x H/4 xW/4

Input: High-res: High-res:

Predictions:
3xHxW D, x H/2 xW/2 D, x H/2 xW/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide by: Justin Johnson



In-Network upsampling: “Unpooling”

Nearest Neighbor 11l 2] 2 “Bed of Nails” 1100 20
119 1 21 2 112 00y 00
34 3 3|4 4 314 3/014)0

3 3)4 4 0jojojo
Input: 2 x 2 Output: 4 x4 Input: 2 x 2 Output: 4 x4

Slide by: Justin Johnson



103

In-Network upsampling: “Max Unpooling”

Max Pooling

. Max Unpoolin
Remember which element was max! P 9

Use positions from

1 2 6 3 pooling layer ol 0 20
3 52 1|— |5 |6 — .t 2 . 01 00
172 2|1 7 | 8 3 | 4 00 0|0
Rest of the network
7 3| 4 8 30| 0 4
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x4
Corresponding pairs of
downsampling and '

upsampling layers

Slide by: Justin Johnson



In-Network Up-sampling Convolutions or "Deconvolutions”

https://github.com/vdumoulin/conv arithmetic



https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic
https://github.com/vdumoulin/conv_arithmetic

ldea 2: Fully Convolutional Networks

224x224 224x224

Unpooling

\Enpooling
Unpoolin
\ p g AL/
~npooling
\

Learning Deconvolution Network for Semantic Segmentation

Hyeonwoo Noh Seunghoon Hong Bohyung Han
Department of Computer Science and Engineering, POSTECH, Korea

{hyeonwoonoh_-, maga33,bhhan}@postech.ac.kr

http://cvlab.postech.ac.kr/research/deconvnet/



http://cvlab.postech.ac.kr/research/deconvnet/
http://cvlab.postech.ac.kr/research/deconvnet/
http://cvlab.postech.ac.kr/research/deconvnet/
http://cvlab.postech.ac.kr/research/deconvnet/
http://cvlab.postech.ac.kr/research/deconvnet/

U-Net: Convolutional Networks for Biomedical
Image Segmentation

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

6T »gical Signalling Studies,
128 64 64 2
input
- output
image |»{» » > > '
tile 17| segmentation _ )
gl gl &8 map https://arxiv.org/abs/1505.04597
5518 4 https://github.com/milesial/Pytorch-UNet
' 128 128
256 128 https://github.com/usuyama/pytorch-unet

512 256 t

> I'tl =»conv 3x3, ReLU
= copy and crop
¥ max pool 2x2

4 up-conv 2x2
=» conv 1x1
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UNet in Pytorch

class UNet(nn.Module):

https://qithub.com/milesial/Pytorch-UNet/blob/master/unet/unet model.py

def

def

__init__(self, n_channels, n_classes, bilinear=False):
super(UNet, self).__init_ ()

self.n_channels = n_channels

self.n_classes = n_classes

self.bilinear = bilinear

self.inc = (DoubleConv(n_channels, 64))
self.downl = (Down(64, 128))

self.down2 = (Down(128, 256))

self.down3 = (Down(256, 512))

factor = 2 if bilinear else 1
self.downd4 = (Down(512, 1024 // factor))

self.upl = (Up(1@24, 512 // factor, bilinear))
self.up2 = (Up(512, 256 // factor, bilinear))
self.up3 = (Up(256, 128 // factor, bilinear))
self.up4 = (Up(128, 64, bilinear))

self.outc = (OutConv(64, n_classes))

forward(self, x):

x1 = self.inc(x)

x2 = self.downl(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
= self.upl(x5, x4)
self.up2(x, x3)
self.up3(x, x2)
self.upda(x, x1)
logits = self.outc(x)
return logits

X
X
X
X


https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py
https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py
https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py
https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py
https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py
https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py
https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py
https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py
https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py
https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py
https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py
https://github.com/milesial/Pytorch-UNet/blob/master/unet/unet_model.py

Image Segmentation Learning

What loss can we use?



Additional Resources

Image Segmentation with Synthetic Masks [link]

ol
4

Segmentation Models [/in]

Oxford Pets Image Segmentation [link]

Cars Image Segmentation [link]

Road Analysis Image Segmentation [link]


https://github.com/usuyama/pytorch-unet
https://github.com/qubvel-org/segmentation_models.pytorch
https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/binary_segmentation_intro.ipynb
https://colab.research.google.com/github/qubvel/segmentation_models.pytorch/blob/main/examples/cars%20segmentation%20(camvid).ipynb
https://colab.research.google.com/github/qubvel-org/segmentation_models.pytorch/blob/main/examples/camvid_segmentation_multiclass.ipynb

Instance Segmentation

GRASS, AT, CAT DOG, DOG, CAT
TREE, SKY
N\ VAN J
Y Y - Y .
No objects, just pixels Single Object Multiple Object

Slide by: Justin Johnson



[SOTA] Segment Anything

valid mask
P Ll

model
Yl N
o © cat with
o black ears
segmentation prompt
D , score
D C) mask decoder
image
encoder s D t T T ¢ SCOTE
E / conv\ prompt encoder
image irnage T t T T , score

embedding mask  points box text

valid masks

https://arxiv.org/abs/2304.02643



https://arxiv.org/abs/2304.02643

Lab 11c: Segment Anything

Duration: 10 min

o ) ® P
jupyter
.V
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Mask R-CNN

He et al, “Mask R-CNN”, ICCV 2017

What is Mask R-CNN: Parallel Heads

* Easy, fast to implement and use
cls
cls
- St;_fl

bbox
Feat. step2 Feat. Feat. reg

» bbox bbox

reg reg
mask
(slow) R-CNN Fast/er R-CNN Mask R-CNN

Slide by: Kaiming He



Mask R-CNN

He et al, “Mask R-CNN”, ICCV 2017

Classification Scores: C
Box coordinates (per class): 4 *C

Conv Conv

Rol Align

Predict a mask for
each of C classes

Adapted from Justin Johnson



Lab 11d: Fine-Tuning Mask R-CNN for Object
Recognition and Image Segmentation

Duration: 10 min

s
jupyter P
.\/



Tojoin,go to: ahaslides.com/GVBé6P 9% AhaSlides

Please, fromLab 11d and Activity 11, submit your generated
image result.

<
©
®
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o
@
o
w
8
<

v Slide 1 selected for PowerPoint v

= &": {53 Group $0 2.0100 &




117

[SOTA] Object Recognition and Segmentation with LLMs

https://github.com/roboflow/notebooks



https://github.com/roboflow/notebooks

Lab 11e: Zero-Shot Object Detection and
Segmentation with Google Gemini 2.5

Duration: 10 min

s
jupyter P
o



Plan for the next few lectures

«  Detection approaches
- Pre-CNNs
. Detection with whole windows: Pedestrian detection

. Part-based detection: Deformable Part Models
«  Post-CNNs

*  Detection with region proposals: R-CNN, Fast R-CNN, Faster-R-CNN
*  Detection without region proposals: YOLO, SSD
- Segmentation approaches
- Semantic segmentation
*  Fully-Convolutional Networks (FCN)

+ Instance segmentation
*+ Mask R-CNN

*  Segment Anything
- Learning from noisy web image-text data
- Contrastive Language-Image Pretraining (CLIP)
*  Prompting
- Open-vocabulary object detection
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Learning from noisy web data

Massive datasets of image-text pairs from the web
E.g. alt text, Flickr, Reddit, Wikipedia, etc

Images and their co-occurring text assumed related (text
provides a reasonable description of image?)

Train text and image feature extractors using the objective that
matched (co-occurring) image-text should be more similar than
mismatched ones

Great performance at a low annotation cost (data already
existed)



Contrastive Language-Image Pretraining (CLIP)

(1) Contrastive pre-training (2) Create dataset classifier from label text

plane

ii}:l:i: ;2; > Text A photo of Text
Encoder l l l l a {object}. Encoder
mllm | m | 2| 5
> L | |nT | 4T LT | L (LT .
SO bl el B PN (8) Use for zero-shot prediction v v v v
> L LT | LT LT3 LTy T T, T3 Ty

D . . L X
ﬁ > I LT | LT |LT| .. |y Elmagil L LT LT [T | . |41y
_— l

Ly Iy | |IvT |IvT | IvTs | . |IvIn a paho_::_ci of

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision." ICML 2021.




Contrastive Language-Image Pretraining (CLIP)

Pepper the
aqu)Is)ie pup > Text
Encoder
Y

S

T, | Ts Ty

—» L I;'Ty | 11T | 11Ty I;'Tn

—>» I I,y Ty | Iy Ty | Ty I, Tn

ingds > I LTy | IyT, | IsT I T

W E > 13 3°01 | 13712 eS8 37N
o IN IN'TI IN'T2 IN'T3 IN.TN

L= Z f(Ika)
k

e(lkrk)=—1og( exp(sim Uy, Ty)) )

?2’1 1[k # ilexp(sim(ly, T;))

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision." ICML 2021.

Adapted from Vicente Ordofiez



Contrastive Language-Image Pretraining (CLIP)

Pepper the
au?s)ie pup > Text
Encoder

S

Image
Encoder

]

Ty, | T, | Ts Ty
—» L I;'Ty | 11T | 11Ty I;'Tn
——» I I,y Ty | IpTy | Ty I, Tn
> L LT | 3T, | I3T; ERAN
e IN IN'TI IN'T2 IN'T3 IN.TN

L= Z €1 (I Tye) + €21k T)
k

exp(sim (I, Ty)) )

€1(IxTy) = —log <Z§2’1 1[k # ilexp(sim(I, T¢))

~ exp(sim(I, Ty))
,(I,Ty) = —108( 2N 1[k # ilexp(sim(I,, Tk)))

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision." ICML 2021.

Adapted from Vicente Ordofiez



Zero-shot Image Classification with CLIP

(1) Contrastive pre-training

Pepper the
aussie pup

Text

Y

”,fjiiiiizj
\\\;;;;;\\W

plane

A photo of

a

{object}.

//fjiifiizj

mo | m || m Y
.—) Il Il'Tl Il'TZ Il‘T3 Il-TN
—) Iz IZ.Tl 12'T2 12'T3 IZ'TN
> I I3Ty | 13Ty | 13Ty I3 Ty
o IN INT) | INTR IN'T3 IN'TN

(8) Use for zero-shot prediction

Image
Encoder

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision." ICML 2021.

Y

(2) Create dataset classifier from label text

Text
Encoder

) 4 ) 4 2 \ 4
T, T, T; Ty
I LTy | Ty | T3 I}' Ty
4
A photo of
a dog.

Adapted from Vicente Ordofiez




Zero-shot Image Classification with CLIP

* Image classification: given an image, predict its class name
* Image captioning: given an image, predict its caption

e Contrastive learning: align image and text embeddings that describe the same thing

[Radford*, Kim* et al., ICML 2021]

i. Foundations of Computer Vision ﬁ.ﬁ.—i.._. L] . . Torralba, Isola, Freeman . 2024 ..i



Zero-shot Image Classification with CLIP

B R

zﬁ,l)- zgz)

zﬁl)- z,§3)

05

z§z)_ Zgz)

z,(f)- zga)

o ]| jfDafd

;.,/
N
o~ A~
»
[ ]

zz(z3)' z§2)

2. 2

.. Foundations of Computer Vision

® Positive pairs: image and its caption.

® Negative pairs: image and a different
image’s caption.

® | earn a representation in which positives
are pulled together, negatives are

pushed apart.

We learn this representation using Contrastive

Learning
[Radford*, Kim* et al., ICML 2021]

Lll—..—i . . Torralba, Isola, Freeman . 2024 .._



Zero-shot Image Classifi

Image encoder

Joint embedding space

Y
pyrple
/

/
blue circle

ViT block x3 B i

ViT block x3
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ViT block x3 z

W \
\\
AN

triangle
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v
\
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cation with CLIP

blue triangle

transformer block x3

Text encoder

Foundations of Computer Vision

NEN EENEENEEEN

Torralba, Isola, Freeman . 2024 ..i




Zero-shot Image Classification with CLIP

Classifier &
X

Query image

L1
. afe zg || 2f-2 |-z
< W

~ Classification
arg max > a

.. Foundations of Computer Vision | | BN | | . . Torralba, Isola, Freeman . 2024 ..i
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Variants of CLIP

® CLIP: https://github.com/openai/CLIP

® OpenCLIP: https://github.com/mlifoundations/open_clip

® MetaCLIP: https://github.com/facebookresearch/MetaCLIP

® CLIPA: https://github.com/UCSC-VLAA/CLIPA

® SigLIP: https://github.com/merveenoyan/siglip

® DFN-5b: https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378



https://github.com/openai/CLIP
https://github.com/mlfoundations/open_clip
https://github.com/facebookresearch/MetaCLIP
https://github.com/UCSC-VLAA/CLIPA
https://github.com/UCSC-VLAA/CLIPA
https://github.com/UCSC-VLAA/CLIPA
https://github.com/merveenoyan/siglip
https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378
https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378
https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378
https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378
https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378
https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378
https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378
https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378
https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378
https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378
https://huggingface.co/apple/DFN5B-CLIP-ViT-H-14-378

Using CLIP for Object Recognition

Compute dot product of image and prompt for each class, e.g. “A photo of
dog”

Return class with highest dot product for each image

Prompt can be optimized manually or through training

Can extend idea for object detection
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Using CLIP for Object Recognition

Caltech101 Prompt Accuracy Flowers102 Prompt Accuracy
a [CLASS). 82.68 a photo of a [CLASS). 60.86
a photo of [CLASS]. 80.81 a flower photo of a [CLASS). 65.81
a photo of a [CLASS]. 86.29 a photo of a [CLASS), a type of flower. 66.14
V1. [V]; ... [V] [CLASS]. 91.83 V], [V]; ... [V]n [CLASS]. 94.51

(a) (b)
Prompt Accuracy EuroSAT Prompt Accuracy
a photo of a [CLASS]. 39.83 a photo of a [CLASS). 24.17
a photo of a [CLASS] texture. 40.25 a satellite photo of [CLASS). 37.46
[CLASS] texture. 42.32 a centered satellite photo of [CLASS]. 37.56
V1. [V]; ... [V] [CLASS). 63.58 [ [V]: [V]2 ... [VIm [CLASS]. 83.53

(c) (d)

Fig. 1 Prompt engineering vs Context Optimization (CoOp). The former needs to use a held-out validation set for
words tuning, which is inefficient; the latter automates the process and requires only a few labeled images for learning.

Zhou et al. "Learning to Prompt for Vision-Language Models." [JCV 2022.



Using CLIP for Object Recognition

e )
[ learnable context |
[
1
1
VI | VD Vu |, |] [cass) > text encoder
1
!
N o e e e e e e — - — [ Y
J
airplane butterfly |--- pizza
A v A
text
features
T similarity
image encoder e scores
image k
features maximize the score for the

ground-truth class
Fig. 2 Overview of Context Optimization (CoOp). The main idea is to model a prompt’s context using a set of learnable
vectors, which can be optimized through minimizing the classification loss. Two designs are proposed: one is unified context,

which shares the same context vectors with all classes; and the other is class-specific context, which learns for each class a
specific set of context vectors.

Zhou et al. "Learning to Prompt for Vision-Language Models." [JCV 2022.
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Using CLIP for Object Recognition [Open
Vocab]

Standard Zero-shot Customized Prompts via Language models (CuPL)

“A platypus looks like a
beaver with a duck's bill*

t W * | % 1

Text Image / Text
encoder encoder encoder

—

Image
encoder

1t * * [ 2 3 1t

| “A photo of a goldfish” |

| “A photo of a platypus® |
[ : e |

“What does a f “Goldfish are small, orangs
platypus look like?” | fish with shiny scales”
;| “A platypus looks like a beaver
with a duck's bill”

[ |

i

Figure 1: Schematic of the method. (Left) The standard method of a zero-shot open vocabulary
image classification model (e.g., CLIP (Radford et al.; 2021)). (Right) Our method of CuPL. First,
an LLM generates descriptive captions for given class categories. Next, an open vocabulary model
uses these captions as prompts for performing classification.

Pratt et al. "What does a platypus look like? Generating customized prompts for zero-shot image classification." ICCV 2023.
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Using CLIP for Object Recognition

( Hand-crafted Prompt
I “A photo of a [class]” l_. 7 Tex; a
ncoder

degradation. Therefore, we can minimize the distance be-
tween w; and w'*? for boosting the generability of the un-

L seen classes,
Text kg
|v1|172|...|'71wl [(‘lass] I . @ 1 N, ]
Learnable Prompt i Lkg — F Z ||Wz _ wgtzl’”%, 3)
¢i=1

Class

Enbeddings [Wa W oo Wel—— )

g where || - || is the euclidean distance, N, is the number of
Elzlll:ai:r a8 E} D:l:D,_.m seen classes. Meanwhile, the standard contrastive loss is:
0
Image exp(d(x,w,)/T
Features Lee = — E log p( ( y)/ ) 4)

i Liexp(d(x, wi)/7)’

Figure 2. The framework of the Knowledge-guided Context Op-  pore y is the corresponding label of the image embedding.
timization for prompt tuning. L. is the standard cross-entropy By combining the standard cross-entropy loss L., the
loss, and L, is the proposed Knowledge-guided Context Opti-  final objective is:

mization contraint to minimize the discrepancy between the spe-

cial knowledge (learnable textual embeddings) and the general L= Lee+ ALrg, )
knowledge(the textual embeddings generated by the hand-crafted

where A is used balance the effect of Ly,.
prompt).

Yao et al. "Visual-Language Prompt Tuning with Knowledge-guided Context Optimization." CVPR 2023.



Usmg CLIP for Object Recognition [Open

stop sign
Bace
Categozles = o
a [eategoryh
dice in the scene
Novel { .
Categozles i
. Inference

[
\
' \

\
conv \
S RI
‘\

Cropped I Pre-trained /7
— T I
R
eglons 5““3 Image Encoder . : K ledge Distillati
.

L, loss

RolAlign
ﬁ conv ey 4 R,
Pre-trained
Text Encoder

conv
R,

I a—

RolAlign
R

Figure 2: An overview of using VIiLD for open-vocabulary object detection. ViLD distills the knowledge
from a pretrained open-vocabulary image classification model. First, the category text embeddings and the im-
age embeddings of cropped object proposals are computed, using the text and image encoders in the pretrained
classification model. Then, ViLD employs the text embeddings as the region classifier (ViLD-text) and mini-
mizes the distance between the region embedding and the image embedding for each proposal (ViLD-image).
During inference, text embeddings of novel categories are used to enable open-vocabulary detection.

Gu et al. "Open-vocabulary Object Detection via Vision and Language Knowledge Distillation." ICLR 2021.



