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Many inventions were inspired by Nature ...
Birds inspired us to fly 
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Slide Credit: Prof. Sandra Avila - UNICAMP
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Many inventions were inspired by Nature ...
Dolphins inspired sonar development
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https://sites.google.com/site/echolocationkawproject/_/rsrc/1459209762464/sonars/image.jpeg
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Many inventions were inspired by Nature ...
Humpback whales inspired wind turbines
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It seems logical to look at the 
brain’s architecture for inspiration on 
how to build an intelligent machine.
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Rank Name Error Rate (%) Description

1 University of Toronto Deep Learning

2 University of Tokyo 26.2
Hand‐crafted features 
and learning models3 University of Oxford 26.9

4 Xerox/INRIA 27.0

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

ILSVRC 2012 — Image Classification task

7

“ImageNet classification with deep convolutional neural networks”. NIPS, 2012.
7
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Rank Name Error Rate (%) Description

1 University of Toronto 15.3 Deep Learning

2 University of Tokyo 26.2
Hand‐crafted features 
and learning models3 University of Oxford 26.9

4 Xerox/INRIA 27.0

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

ILSVRC 2012 — Image Classification task

“ImageNet classification with deep convolutional neural networks”. NIPS, 2012.
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2011      2012      2013       2014       2015      2016 2017 

ILSVRC year

15.3%

11.2%

6.7%

26.1%
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2.3%

Human: 5.0%

“ImageNet classification with deep convolutional neural networks”. NIPS, 2012.

3.6% 3.0%
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• AlexNet: Similar framework to LeCun’98 but:
• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week
• Better regularization for training (DropOut)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Adapted from Lana Lazebnik

ImageNet Challenge 2012
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http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


Will this wave die out like the previous 
ones did?

11
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From Biological to Artificial Neurons

1. There is now a huge quantity of data available to train neural 
networks.

2. Computing power now makes it possible to train large neural 
networks in a reasonable amount of time.

3. The training algorithms have been improved. 

4. ANNs seem to have entered a virtuous circle of funding and 
progress.

12
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From Biological to Artificial Neurons

1. There is now a huge quantity of data available to train neural 
networks.

2. Computing power now makes it possible to train large neural 
networks in a reasonable amount of time.

3. The training algorithms have been improved. 

4. ANNs seem to have entered a virtuous circle of funding and 
progress.

14
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http://www.tomshardware.com/news/google-automl-aritifical-intelligence-ai,34533.html
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Lab 2: Pytorch
Duration: 20 min

16
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Assignment 1: Pytorch
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From Biological to Artificial Neurons

1. There is now a huge quantity of data available to train neural 
networks.

2. Computing power now makes it possible to train large neural 
networks in a reasonable amount of time.

3. The training algorithms have been improved. 

4. ANNs seem to have entered a virtuous circle of funding and 
progress.

19
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21

“Interpretable Machine Learning”, 2022 
https://christophm.github.io/interpretable-ml-book
Chap. 10 Neural Network Interpretation
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From Biological to Artificial Neurons

1. There is now a huge quantity of data available to train neural 
networks.

2. Computing power now makes it possible to train large neural 
networks in a reasonable amount of time.

3. The training algorithms have been improved. 

4. ANNs seem to have entered a virtuous circle of funding and 
progress.

22
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Biological Neurons

Signal
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x1

xn

𝜃1

𝜃n
⠇

Biological Neurons - Analogy

Slide Credit: Prof. Sandra Avila - UNICAMP
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The Perceptron

Invented in 1957 by Frank Rosenblatt. 
● It is based on a Linear Threshold Unit (LTU): 

○ The inputs and output are now numbers and each input 
connection is associated with a weight. 

● The LTU computes a weighted sum of its inputs then it applies 
a step function to that sum and outputs the result.

25
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The Perceptron

Linear Threshold Unit 26
Slide Credit: Prof. Sandra Avila - UNICAMP
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The Perceptron

Linear Threshold Unit
27
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Neuron Model: Logistic Unit

x1

x2

x3

Inputs

28

𝜃1

𝜃2

𝜃3

Logistic
function

+

Output

=

Slide Credit: Prof. Sandra Avila - UNICAMP
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Neuron Model: Logistic Unit

x1

x2

x3

𝜃1

𝜃2

𝜃3

Inputs

Output

Sigmoid (Logistic) 
activation function

=
+

weights

29

x0

𝜃0
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TensorFlow PlayGround

30

https://playground.tensorflow.org/


[Example] Simple Example: AND

+1

x1

x2

x1, x2 ∈ {0,1} y = x1 AND x2

31

-30

+20

+20

= g(-30 + 20x1 + 20x2)

x1 x2

0   0       g(-30) ≈ 0
0      1       g(-10) ≈ 0
1      0       g(-10) ≈ 0
1      1       g(10) ≈ 1

1

0.5

0

g(z)

z

g(-30) ≈ 0
g(-10) ≈ 0
g(-10) ≈ 0
g(10) ≈ 1

Slide Credit: Prof. Sandra Avila - UNICAMP
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[Example] Simple Example: OR

+1

x1

x2

-10

+20

+20

x1, x2 ∈ {0,1} y = x1 OR x2

x1 x2

0    0       g(-30) ≈ 0
0      1       g(-10) ≈ 0
1      0       g(-10) ≈ 0
1      1       g(10) ≈ 1

1

0.5

0

g(z)

z

= g(-10 + 20x1 + 20x2)

g(-10) ≈ 0
g(10) ≈ 1
g(10) ≈ 1
g(30) ≈ 1

Slide Credit: Prof. Sandra Avila - UNICAMP
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Multi-class Classification?

33



cat?
dog?
frog?
car?

Cat Dog Frog Car

34
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when cat when dog when frog when car

cat?
dog?
frog?
car?

Cat Dog Frog Car

Want                         ,                             ,                             ,
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Softmax Classification

cat?
dog?
frog
?
car?

The output layer is typically modified by replacing the 
individual activation functions by a shared softmax function.
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Softmax Classification

cat?
dog?
frog
?
car?

The output layer is typically modified by replacing the 
individual activation functions by a shared softmax function.

So
ft

m
ax
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Softmax Classification

The output layer is typically modified by replacing the 
individual activation functions by a shared softmax function.

So
ft

m
ax
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Softmax Classification

Cat
Dog
Frog
Car

5.1
3.2
-1.7
-2.0

164.0
24.5
0.18
0.13

0.87
0.13
0.00
0.00

So
ft

m
ax
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How do we decide whether the 
neuron should fire or not?
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We decided to add “activation functions” 
for this purpose.
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Step Function

Its output is 1 (activated) when value > 0 (threshold) and 
outputs a 0 (not activated) otherwise.

1

0.5

0 z
Slide Credit: Prof. Sandra Avila - UNICAMP
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Step Function: Problem?

● Binary classifier (“yes” or “no”, activate or not activate). A 
Step function could do that for you! 

● Multi classifier (class1, class2, class3, etc). What will 
happen if more than 1 neuron is “activated”?

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/


Sigmoid Function

● The output of the activation function 
is always going to be in range (0,1).

● It is nonlinear in nature. 

1

0.5

0 x
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Sigmoid Function

● The output of the activation function 
is always going to be in range (0,1).

● It is nonlinear in nature. 

1

0.5

0 x
● Combinations of this function are 

also nonlinear! Great!!

Slide Credit: Prof. Sandra Avila - UNICAMP
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Sigmoid Function: Problem?

● Towards either end of the sigmoid 
function, the 𝜎(x) values tend to respond 
very less to changes in x. 

● The problem of “vanishing gradients”. 
○ Cannot make significant change 

because of the extremely small value.

Slide Credit: Prof. Sandra Avila - UNICAMP
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Tanh Function

● The output of the activation function 
is always going to be in range (-1,1).

● It is nonlinear in nature. 

● Combinations of this function are 
also nonlinear! Great!!

1

0

-1 x
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Tanh Function: Problem?

● Like sigmoid, tanh also has the 
vanishing gradient problem.

Slide Credit: Prof. Sandra Avila - UNICAMP
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ReLU (Rectified Linear Unit) Function

● It gives an output x if x is positive and 
0 otherwise. The range is [0, inf).

● It is nonlinear in nature. 
Combinations of this function are also 
nonlinear! 

● Sparsity of the activation!

20

10

0 x
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ReLU Function: Problem?

● Because of the horizontal line in ReLU (for negative x), 
the gradient can go towards 0.

● “Dying ReLU problem”: several neurons can just die and 
not respond making a substantial part of the network 
passive.

Slide Credit: Prof. Sandra Avila - UNICAMP
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Leaky ReLU Function
20

10

0 x

● It gives an output x if x is positive 
and 0 otherwise. The range is (-inf, inf).

● (Leaky) ReLU is less computationally 
expensive than tanh and sigmoid
because it involves simpler 
mathematical operations.

Slide Credit: Prof. Sandra Avila - UNICAMP
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Ok! Which One Do We Use?

● If you don’t know the nature of the function you are 
trying to learn, start with ReLU.

● You can use your own custom functions too!

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/


x3

x2

x1

Neural Network

Layer 1

a1
(2)

a2
(2)

a3
(2)

Layer 2 Layer 3

Layer 1 = Input layer

Layer 2 = Hidden layer

Layer 3 = Output layer
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x3

x2

x1

Neural Network

Layer 1

a1
(2)

a2
(2)

a3
(2)

Layer 2 Layer 3

Layer 1 = Input layer

Layer 2 = Hidden layer

Layer 3 = Output layer

x0 a0
(2) bias unit
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x3

x2

x1

Neural Network

Layer 1

a1
(2)

a2
(2)

a3
(2)

Layer 2 Layer 3

x0 a0
(2)

“activation” of unit i in layer jai
(j)

matrix of weights controlling  
function mapping from layer j 
to layer j + 1

𝚯
(j)

a1
(3)
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x1 a1
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“activation” of unit i in layer jai
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matrix of weights controlling  
function mapping from layer j 
to layer j + 1

𝚯
(j)

a1
(3)
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“activation” of unit i in layer jai
(j)

matrix of weights controlling  
function mapping from layer j 
to layer j + 1

𝚯
(j)
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“activation” of unit i in layer jai
(j)

matrix of weights controlling  
function mapping from layer j 
to layer j + 1

𝚯
(j)

x3

x2

x1 a1
(2)

(2)

a3
(2)

a1
(3)
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“activation” of unit i in layer jai
(j)

matrix of weights controlling  
function mapping from layer j 
to layer j + 1

𝚯
(j)

x3

x2

x1 a1
(2)

a2
(2)

(2)

a1
(3)
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“activation” of unit i in layer jai
(j)

matrix of weights controlling  
function mapping from layer j 
to layer j + 1

𝚯
(j)

x3

x2

x1 a1
(2)

a2
(2)

a3
(2)

(3)
a1
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x3

x2

x1 a1
(2)

a2
(2)

a3
(2)

“activation” of unit i in layer jai
(j)

matrix of weights controlling  
function mapping from layer j 
to layer j + 1

𝚯
(j)

Feedforward Neural Network
(forward propagating)

a1
(3)

61
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Neural Network Intuition

Layer 1 Layer 2 Layer 3 Layer 4

Complexity
62
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Neural Network Intuition

3 hidden neurons 6 hidden neurons 20 hidden neurons
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Toy 2d classification with 2-layer neural network
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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https://adamharley.com/nn_vis/mlp/2d.html
64

https://adamharley.com/nn_vis/mlp/2d.html
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Training a Neural Network



Training a Neural Network

● The first thing we need to do is to “select” an architecture.

66

● Hidden units (per layer)

● Output units: Number of classes

● Input units: dimensionality of the problem (features x)

Slide Credit: Prof. Sandra Avila - UNICAMP
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Training a Neural Network

● Hidden units (per layer): 

○ Usually, the more, the better 

○ Good start: a number close to the number of input 

○ Default: 1 hidden layer. If you have >1 hidden layer, 
then it is interesting that you have the same number 
of units in every hidden layer.

67
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Training a Neural Network

68



Training a Neural Network

69
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Zero Initialization

x2

x1

1 1

a1
(2)

a2
(2)

a1
(3)

After each update, parameters corresponding to inputs 
going into each of two hidden units are identical.

Symmetric Weights

70
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Symmetric Breaking

● We must initialize 𝚯 to a random value in [-𝜀, 𝜀]              
(i.e. [-𝜀 ≤ 𝚯 ≤ 𝜀])

71
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/


Today’s Initialization

● Xavier initialization [Glorot & Bengio, 2010]: 
“Understanding the difficulty of training deep feedforward 
neural networks”, http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

𝚯 = np.random.randn(n)*sqrt(2.0/n)

72

● He initialization [He et al., 2015]: “Delving Deep into 
Rectifiers: Surpassing Human-Level Performance on ImageNet 
Classification” https://arxiv.org/pdf/1502.01852

Slide Credit: Prof. Sandra Avila - UNICAMP
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Today’s Initialization

● Xavier initialization [Glorot & Bengio, 2010]: 
n = input + output

● He initialization [He et al., 2015]:
n = input

𝚯 = np.random.randn(n)*sqrt(2.0/n)

73
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Training a Neural Network

74
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Given one training example (x, y):

Forward Propagation
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Training a Neural Network
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Training a Neural Network
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[Loss Function ] How do we train deep neural networks? 

• The goal is to find such a set of weights that allow the activations/outputs to 
match the desired output: f(𝚯, xi) ~ yi

• Unfortunately, no closed-form solution for weights 𝚯, but we can express 
our objective.

• We want to minimize a loss function (a function of the weights in the 
network), we’ll do so iteratively.

• For now, let’s simplify and assume there’s a single layer of weights in the 
network.
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Classification goal
Example dataset: CIFAR-10  

10 labels

50,000 training images  
each image is 32x32x3

10,000 test images

Andrej Karpathy

79



Classification scores

[32x32x3]
array of numbers 0...1  
(3072 numbers total)

f(x,𝚯)
image parameters

10 numbers,  
indicating class  
scores

Andrej Karpathy

80

𝚯𝚯



Linear classifier 

[32x32x3]
array of numbers 0...1

10 numbers,  
indicating class  
scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

Andrej Karpathy

81
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Linear classifier 
Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Andrej Karpathy

82
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Linear classifier Going forward: Loss function/Optimization

1. Define a loss function  that 
quantifies our  unhappiness 
with the  scores across the 
training  data.

2. Come up with a way of  
efficiently finding the  
parameters that minimize  the 
loss function  (optimization)

TODO:

Andrej Karpathy

cat  

car  

frog

3.2
5.1
-1.7

1.3
4.9
2.0

2.2
2.5

-3.1
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Linear classifier 
Suppose: 3 training examples, 3 
classes.  With some 𝚯. The scores

are:

cat  

car  

frog

3.2
5.1
-1.7

1.3
4.9
2.0

2.2
2.5

-3.1

Adapted from Andrej Karpathy

84

f(x,𝚯)= 𝚯x



Linear classifier: Hinge loss 
Suppose: 3 training examples, 3 
classes.  With some W the scores are:

cat  

car  

frog

3.2
5.1
-1.7

1.3
4.9
2.0

2.2
2.5

-3.1

Hinge loss:

Given an example
where  
where

is the image and
is the (integer) label,

and using the shorthand for the  
scores vector:

the loss has the form:

Adapted from Andrej Karpathy

Want: syi >= sj + 1, for j != yi
i.e. sj – syi + 1 <= 0

If true, loss is 0
If false, loss is magnitude of violation

85

f(x,𝚯)= 𝚯x

f(x,𝚯)



Linear classifier: Hinge loss 
Suppose: 3 training examples, 3 
classes.  With some W the scores are:

Hinge loss:

Given an example
where  
where

is the image and
is the (integer) label,

and using the shorthand for the  
scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)
+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9

cat
car  

frog

3.2
5.1
-1.7

1.3 2.2
4.9 2.5
2.0 -3.1

Losses: 2.9

Adapted from Andrej Karpathy
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Linear classifier: Hinge loss 
Suppose: 3 training examples, 3 
classes.  With some W the scores are:

Hinge loss:

Given an example
where  
where

is the image and
is the (integer) label,

and using the shorthand for the  
scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

cat 3.2
car 5.1
frog -1.7

1.3
4.9
2.0

2.2
2.5

-3.1
Losses: 2.9 0

Adapted from Andrej Karpathy
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Linear classifier: Hinge loss 
Suppose: 3 training examples, 3 
classes.  With some W the scores are:

Hinge loss:

Given an example
where  
where

is the image and
is the (integer) label,

and using the shorthand for the  
scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1) 
+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1) + max(0, 5.6 + 1)
= 6.3 + 6.6
= 12.9

cat
car  

frog

3.2
5.1
-1.7

1.3
4.9
2.0

2.2
2.5

-3.1
Losses: 2.9 0 12.9

Adapted from Andrej 
Karpathy
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Linear classifier: Hinge loss 

cat  

car  

frog

3.2
5.1
-1.7

1.3
4.9
2.0

2.2
2.5

-3.1

Suppose: 3 training examples, 3 
classes.  With some W the scores are:

Hinge loss:

Given an example
where  
where

is the image and
is the (integer) label,

and using the shorthand for the  
scores vector:

the loss has the form:

and the full training loss is the mean  
over all examples in the training 
data:

L = (2.9 + 0 + 12.9)/3

2.9 0 12.9Losses:
= 15.8 / 3 = 5.3

Lecture 3 - 12

Adapted from Andrej Karpathy
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Linear classifier: Hinge loss 

Adapted from Andrej Karpathy
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Linear classifier: Regularization 

91

Slide Credit: https://cs231n.stanford.edu/

𝚯𝚯 𝚯

https://cs231n.stanford.edu/


Linear classifier: Regularization Intuition 

92

Slide Credit: https://cs231n.stanford.edu/

https://cs231n.stanford.edu/


Linear classifier: Regularization – Prefer simpler 
models 

93

Slide Credit: https://cs231n.stanford.edu/

https://cs231n.stanford.edu/


94

Slide Credit: Prof. Sandra Avila - UNICAMP

Linear classifier: Regularization – Overfitting



Linear classifier: Regularization

95

Slide Credit: https://cs231n.stanford.edu/

𝚯 𝚯 𝚯

https://cs231n.stanford.edu/


Linear classifier: Regularization 

96

Slide Credit: https://cs231n.stanford.edu/

Why Regularization?
• Express preferences over weights 
• Make the model simple so it works on test data 
• Improve optimization by adding curvature

𝚯 𝚯 𝚯

https://cs231n.stanford.edu/


Linear classifier: Regularization – Express 
Preferences 

97

Slide Credit: https://cs231n.stanford.edu/

https://cs231n.stanford.edu/


Linear classifier: Hinge loss 

Weight Regularization
λ = regularization strength  
(hyperparameter)

In common use:  
L2 regularization  
L1 regularization
Dropout (will see later)

Adapted from Andrej Karpathy
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[Extra] Lab 3: Regularization
Section 1

99



scores = unnormalized log probabilities of the classes

where

Want to maximize the log likelihood, or (for a loss function)  to 
minimize the negative log likelihood of the correct class:

cat  

car  

frog

3.2
5.1
-1.7

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy

maximize

minimize

100



cat  

car  

frog

unnormalized log probabilities

24.5
164.0
0.18

3.2
5.1
-1.7

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13)
= 0.89

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy
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Training a Neural Network

102
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/


Intuition:               “error” of node j in layer l.

For each output unit (layer L = 4)

Gradient Computation: Backpropagation Algorithm

103
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/


Intuition:               “error” of node j in layer l.

For each output unit (layer L = 4)

Gradient Computation: Backpropagation Algorithm

Vectorizing it, we have:

104
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/
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How to minimize the loss function? 

Andrej Karpathy

106



How to minimize the loss function? 
In 1-dimension, the derivative of a function is:

In multiple dimensions, the gradient is the vector of (partial derivatives):

Adapted from Andrej Karpathy, definition/equation from https://en.wikipedia.org/wiki/Gradient

107

f: loss function
x: weights 𝚯

h: small value

https://en.wikipedia.org/wiki/Gradient


current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient d𝚯:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Andrej Karpathy

108

Computing the gradient numerically
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current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

𝚯 + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

gradient d𝚯:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Andrej Karpathy
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Computing the gradient numerically
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gradient d𝚯:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

𝚯 + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

Andrej Karpathy

Computing the gradient numerically
110



gradient d𝚯:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

𝚯 + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

Andrej Karpathy
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Computing the gradient numerically
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gradient d𝚯:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

𝚯 + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Andrej Karpathy

Computing the gradient numerically
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gradient d𝚯:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

𝚯 + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Andrej Karpathy

Computing the gradient numerically
113



The loss is just a function of 𝚯:

want

Andrej Karpathy

Computing the gradient analytically
114



The loss is just a function of 𝚯:

want

Calculus

= ...
Andrej Karpathy

Computing the gradient analytically
115



gradient d𝚯:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

d𝚯 = ...
(some function of 
data and 𝚯)

Andrej Karpathy

116

Computing the gradient analytically
116



• f(x, 𝚯) = dot(𝚯, x) = 𝚯1*x1 + 𝚯2*x2 + … + 𝚯D*xD
• d f(x, 𝚯) / d 𝚯i = ?
• d f(x, 𝚯) / d 𝚯1 = x1
• d f(x, 𝚯) / d 𝚯2 = x2

• …

• Gradient of f(x, 𝚯) wrt 𝚯 is [x1 x2 … xD] i.e. x

Computing the gradient analytically
117



Loss gradients
• Different notations:

• i.e. how does the loss change as a function of the weights
• We want to change weights in a way that makes the loss decrease as fast 

as possible  

118



Gradient descent
• We’ll update weights
• Move in direction opposite to gradient:

L
Learning rate

Time

Figure from Andrej Karpathy

original 𝚯
negative gradient direction

𝚯1

𝚯2

119

High Loss

Small Loss



Gradient descent
• Iteratively subtract the gradient with respect to 

the model parameters (𝚯)

• I.e. we’re moving in a direction opposite to the 
gradient of  the loss

• I.e. we’re moving towards smaller loss

120



Lab 4: Gradient Descent
Duration: 10 min

121
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How to compute the loss/gradient?
• In classic gradient descent, we compute the gradient from the loss

for all training examples

• Mini-batch gradient descent: Only use some of the data for each
gradient update, cycle through training examples multiple times
• Each time we’ve cycled through all of them once is called an

‘epoch’
• Allows faster training (e.g. on GPUs), parallelization
• Some benefits for learning due to randomness

123



Andrej Karpathy

Learning rate selection
The effects of step size (or “learning rate”)

https://www.deeplearning.ai/ai-notes/optimization/

124

https://www.deeplearning.ai/ai-notes/optimization/
https://www.deeplearning.ai/ai-notes/optimization/
https://www.deeplearning.ai/ai-notes/optimization/


Training a Neural Network

125
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/


Gradient descent in multi-layer nets
• We’ll update weights
• Move in direction opposite to gradient:

• How to update the weights at all layers?
• Answer: backpropagation of error from higher layers to lower layers

126



Backpropagation: Graphic example
• First calculate error of output units and use this to change the 

top layer of weights.

output

hidden

input

Calculate how to 
update weights into j 
(update at end of iter)

Adapted from Ray Mooney, equations from Chris Bishop

k

j

i

w(2)

w(1)
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Backpropagation: Graphic example
• Next calculate error for hidden units based on errors on the 

output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop
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Backpropagation: Graphic example
• Finally update bottom layer of weights based on errors 

calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop
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Backpropagation
A Simple Example

130



Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

131
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/


Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4 +

*

x -2

y 

z

5

-4

q 3
f -12
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Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4 +

*

x -2

y 

z

5

-4

q 3
f -12

Want:
133

Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/


Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y 

z

5

-4

q 3
f -12

134
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/


Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y 

z

5

-4

q 3
f -12
1
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https://www.ic.unicamp.br/~sandra/


Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y 

z

5

-4

q 3
f -12
1
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Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y 

z

5

-4

q 3
f -12
1

3
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Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y 

z

5

-4

q 3
f -12
1

3
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Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y 

z

5

-4

q 3
f -12
1

3

-4
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Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y 

z

5

-4

q 3
f -12
1

3

-4
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Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y 

z

5

-4

q 3
f -12
1

3

-4

Chain rule
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Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y 

z

5

-4

q 3
f -12
1

3

-4

Chain rule

-4
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Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y 

z

5

-4

q 3
f -12
1

3

-4

Chain rule

-4
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-4 x 1 = -4
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/


Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y 

z

5

-4

q 3
f -12
1

3

-4-4
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Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y 

z

5

-4

q 3
f -12
1

3

-4-4

-4
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Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/


x

z

y

f
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https://www.ic.unicamp.br/~sandra/


x

z

y

f

“local gradient”
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x

z

y

f

“local gradient”

gradients
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x

z

y

f

“local gradient”

gradients
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x

z

y

f

“local gradient”

gradients
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x

z

y

f

“local gradient”

gradients
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https://www.ic.unicamp.br/~sandra/


Training a Neural Network
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Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/


Gradient Descent

Want                 :

repeat {

} 153
Slide Credit: Prof. Sandra Avila - UNICAMP

Li

https://www.ic.unicamp.br/~sandra/


Training a Neural Network
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Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/


Assignment 1: Data Loaders
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Additional Resources



Neural Networks (3Blue1Brown)

157

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi


Neural Networks Demystified (in Python)

158

158

https://www.youtube.com/playlist?list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU


“A friendly introduction to Neural Networks”
https://youtu.be/BR9h47Jtqyw
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https://youtu.be/BR9h47Jtqyw


Neural Networks Demystified (in Python)

160

https://youtu.be/Vfzm1-cfLuc

https://www.youtube.com/playlist?list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
https://youtu.be/Vfzm1-cfLuc
https://youtu.be/Vfzm1-cfLuc
https://youtu.be/Vfzm1-cfLuc


Summary
• We use deep neural networks because of their strong performance in 

practice

• Training deep neural nets
• We need an objective function that measures and guides us towards good performance
• We need a way to minimize the loss function: stochastic gradient descent
• We need backpropagation to propagate error from end of net towards all layers and 

change weights at those layers

• Practices for preventing overfitting
• Regularization
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