
CS 2770: Neural Networks

PhD. Nils Murrugarra-Llerena
nem177@pitt.edu

mailto:nmurrugarrallerena@weber.edu

Outline
• Motivation Neural Networks
• Perceptron
• Activation Functions
• Training a Neural Network

• Weight Initialization
• Forward Propagation
• Loss Function
• Regularization
• Gradient Descent
• Backpropagation

2

Many inventions were inspired by Nature ...
Birds inspired us to fly

ht
tp
s:
//i
.p
in
im

g.
co

m
/7
36

x/
18

/4
a/
cc
/1
84

ac
cf
6b

4d
79

80
d2

c2
e8

09
0f
f2
95

cd
7-

-a
ni
m
al
-t
ra
ck

s-
fr
ie
nd

s.
jp
g

3
Slide Credit: Prof. Sandra Avila - UNICAMP

3

https://www.ic.unicamp.br/~sandra/

Many inventions were inspired by Nature ...
Dolphins inspired sonar development

ht
tp
://
w
w
w
.d
ol
ph

in
ki
nd

.c
om

/im
ag

es
/d
ol
ph

in
_e

ch
ol
oc

at
io
n.
jp
g

https://sites.google.com/site/echolocationkawproject/_/rsrc/1459209762464/sonars/image.jpeg

4
Slide Credit: Prof. Sandra Avila - UNICAMP

4

https://www.ic.unicamp.br/~sandra/

Many inventions were inspired by Nature ...
Humpback whales inspired wind turbines

ht
tp
s:
//i
m
ag

es
.a
pp

.g
oo

.g
l/7

m
uF

j7
R
TQ

LL
R
D
Yd

h9

5
Slide Credit: Prof. Sandra Avila - UNICAMP

5

https://www.ic.unicamp.br/~sandra/

It seems logical to look at the
brain’s architecture for inspiration on
how to build an intelligent machine.

6
Slide Credit: Prof. Sandra Avila - UNICAMP

6

https://www.ic.unicamp.br/~sandra/

Rank Name Error Rate (%) Description

1 University of Toronto Deep Learning

2 University of Tokyo 26.2
Hand‐crafted features
and learning models3 University of Oxford 26.9

4 Xerox/INRIA 27.0

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

ILSVRC 2012 — Image Classification task

7

“ImageNet classification with deep convolutional neural networks”. NIPS, 2012.
7

7

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Rank Name Error Rate (%) Description

1 University of Toronto 15.3 Deep Learning

2 University of Tokyo 26.2
Hand‐crafted features
and learning models3 University of Oxford 26.9

4 Xerox/INRIA 27.0

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

ILSVRC 2012 — Image Classification task

“ImageNet classification with deep convolutional neural networks”. NIPS, 2012.

8

8

8

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

9

2011 2012 2013 2014 2015 2016 2017

ILSVRC year

15.3%

11.2%

6.7%

26.1%

C
la

ss
ifi

ca
tio

n
er

ro
r

2.3%

Human: 5.0%

“ImageNet classification with deep convolutional neural networks”. NIPS, 2012.

3.6% 3.0%

9

9

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

• AlexNet: Similar framework to LeCun’98 but:
• Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
• More data (106 vs. 103 images)
• GPU implementation (50x speedup over CPU)

• Trained on two GPUs for a week
• Better regularization for training (DropOut)

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Adapted from Lana Lazebnik

ImageNet Challenge 2012

10

http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Will this wave die out like the previous
ones did?

11

11

From Biological to Artificial Neurons

1. There is now a huge quantity of data available to train neural
networks.

2. Computing power now makes it possible to train large neural
networks in a reasonable amount of time.

3. The training algorithms have been improved.

4. ANNs seem to have entered a virtuous circle of funding and
progress.

12

12

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

13

13

From Biological to Artificial Neurons

1. There is now a huge quantity of data available to train neural
networks.

2. Computing power now makes it possible to train large neural
networks in a reasonable amount of time.

3. The training algorithms have been improved.

4. ANNs seem to have entered a virtuous circle of funding and
progress.

14

14

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

http://www.tomshardware.com/news/google-automl-aritifical-intelligence-ai,34533.html

15

Lab 2: Pytorch
Duration: 20 min

16

17

Assignment 1: Pytorch

18

From Biological to Artificial Neurons

1. There is now a huge quantity of data available to train neural
networks.

2. Computing power now makes it possible to train large neural
networks in a reasonable amount of time.

3. The training algorithms have been improved.

4. ANNs seem to have entered a virtuous circle of funding and
progress.

19

19

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

ht
tp
://
w
w
w
.s
ci
en

ce
m
ag

.o
rg
/n
ew

s/
20

17
/0
3/
br
ai
nl
ik
e-

co
m
pu

te
rs
-a
re
-b

la
ck

-b
ox

-s
ci
en

tis
ts
-a
re
-f
in
al
ly
-p

ee
rin

g-
in
si
de

20

20

21

“Interpretable Machine Learning”, 2022
https://christophm.github.io/interpretable-ml-book
Chap. 10 Neural Network Interpretation

21

Slide Credit: Prof. Sandra Avila - UNICAMP

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://www.ic.unicamp.br/~sandra/

From Biological to Artificial Neurons

1. There is now a huge quantity of data available to train neural
networks.

2. Computing power now makes it possible to train large neural
networks in a reasonable amount of time.

3. The training algorithms have been improved.

4. ANNs seem to have entered a virtuous circle of funding and
progress.

22

22

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Biological Neurons

Signal

ht
tp
://
w
w
w
.je

re
m
yj
or
da

n.
m
e/
co

nt
en

t/
im

ag
es

/2
01

7/
06

/N
eu

ro
n_

H
an

d-
tu
ne

d.
pn

g

Slide Credit: Prof. Sandra Avila - UNICAMP

23

https://www.ic.unicamp.br/~sandra/

x1

xn

𝜃1

𝜃n
⠇

Biological Neurons - Analogy

Slide Credit: Prof. Sandra Avila - UNICAMP

24

https://www.ic.unicamp.br/~sandra/

The Perceptron

Invented in 1957 by Frank Rosenblatt.
● It is based on a Linear Threshold Unit (LTU):

○ The inputs and output are now numbers and each input
connection is associated with a weight.

● The LTU computes a weighted sum of its inputs then it applies
a step function to that sum and outputs the result.

25
Slide Credit: Prof. Sandra Avila - UNICAMP

25

https://www.ic.unicamp.br/~sandra/

The Perceptron

Linear Threshold Unit 26
Slide Credit: Prof. Sandra Avila - UNICAMP

26

https://www.ic.unicamp.br/~sandra/

The Perceptron

Linear Threshold Unit
27

Slide Credit: Prof. Sandra Avila - UNICAMP

27

https://www.ic.unicamp.br/~sandra/

Neuron Model: Logistic Unit

x1

x2

x3

Inputs

28

𝜃1

𝜃2

𝜃3

Logistic
function

+

Output

=

Slide Credit: Prof. Sandra Avila - UNICAMP

28

https://www.ic.unicamp.br/~sandra/

Neuron Model: Logistic Unit

x1

x2

x3

𝜃1

𝜃2

𝜃3

Inputs

Output

Sigmoid (Logistic)
activation function

=
+

weights

29

x0

𝜃0

Slide Credit: Prof. Sandra Avila - UNICAMP

29

https://www.ic.unicamp.br/~sandra/

TensorFlow PlayGround

30

https://playground.tensorflow.org/

[Example] Simple Example: AND

+1

x1

x2

x1, x2 ∈ {0,1} y = x1 AND x2

31

-30

+20

+20

= g(-30 + 20x1 + 20x2)

x1 x2

0 0 g(-30) ≈ 0
0 1 g(-10) ≈ 0
1 0 g(-10) ≈ 0
1 1 g(10) ≈ 1

1

0.5

0

g(z)

z

g(-30) ≈ 0
g(-10) ≈ 0
g(-10) ≈ 0
g(10) ≈ 1

Slide Credit: Prof. Sandra Avila - UNICAMP

31

https://www.ic.unicamp.br/~sandra/

[Example] Simple Example: OR

+1

x1

x2

-10

+20

+20

x1, x2 ∈ {0,1} y = x1 OR x2

x1 x2

0 0 g(-30) ≈ 0
0 1 g(-10) ≈ 0
1 0 g(-10) ≈ 0
1 1 g(10) ≈ 1

1

0.5

0

g(z)

z

= g(-10 + 20x1 + 20x2)

g(-10) ≈ 0
g(10) ≈ 1
g(10) ≈ 1
g(30) ≈ 1

Slide Credit: Prof. Sandra Avila - UNICAMP

32

https://www.ic.unicamp.br/~sandra/

Multi-class Classification?

33

cat?
dog?
frog?
car?

Cat Dog Frog Car

34
Slide Credit: Prof. Sandra Avila - UNICAMP

Multi-class Classification

https://www.ic.unicamp.br/~sandra/

when cat when dog when frog when car

cat?
dog?
frog?
car?

Cat Dog Frog Car

Want , , ,

35

Softmax Classification

cat?
dog?
frog
?
car?

The output layer is typically modified by replacing the
individual activation functions by a shared softmax function.

36
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Softmax Classification

cat?
dog?
frog
?
car?

The output layer is typically modified by replacing the
individual activation functions by a shared softmax function.

So
ft

m
ax

37
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Softmax Classification

The output layer is typically modified by replacing the
individual activation functions by a shared softmax function.

So
ft

m
ax

38
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Softmax Classification

Cat
Dog
Frog
Car

5.1
3.2
-1.7
-2.0

164.0
24.5
0.18
0.13

0.87
0.13
0.00
0.00

So
ft

m
ax

39
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

How do we decide whether the
neuron should fire or not?

40
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

We decided to add “activation functions”
for this purpose.

41
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Step Function

Its output is 1 (activated) when value > 0 (threshold) and
outputs a 0 (not activated) otherwise.

1

0.5

0 z
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Step Function: Problem?

● Binary classifier (“yes” or “no”, activate or not activate). A
Step function could do that for you!

● Multi classifier (class1, class2, class3, etc). What will
happen if more than 1 neuron is “activated”?

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Sigmoid Function

● The output of the activation function
is always going to be in range (0,1).

● It is nonlinear in nature.

1

0.5

0 x

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Sigmoid Function

● The output of the activation function
is always going to be in range (0,1).

● It is nonlinear in nature.

1

0.5

0 x
● Combinations of this function are

also nonlinear! Great!!

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Sigmoid Function: Problem?

● Towards either end of the sigmoid
function, the 𝜎(x) values tend to respond
very less to changes in x.

● The problem of “vanishing gradients”.
○ Cannot make significant change

because of the extremely small value.

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Tanh Function

● The output of the activation function
is always going to be in range (-1,1).

● It is nonlinear in nature.

● Combinations of this function are
also nonlinear! Great!!

1

0

-1 x

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Tanh Function: Problem?

● Like sigmoid, tanh also has the
vanishing gradient problem.

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

ReLU (Rectified Linear Unit) Function

● It gives an output x if x is positive and
0 otherwise. The range is [0, inf).

● It is nonlinear in nature.
Combinations of this function are also
nonlinear!

● Sparsity of the activation!

20

10

0 x

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

ReLU Function: Problem?

● Because of the horizontal line in ReLU (for negative x),
the gradient can go towards 0.

● “Dying ReLU problem”: several neurons can just die and
not respond making a substantial part of the network
passive.

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Leaky ReLU Function
20

10

0 x

● It gives an output x if x is positive
and 0 otherwise. The range is (-inf, inf).

● (Leaky) ReLU is less computationally
expensive than tanh and sigmoid
because it involves simpler
mathematical operations.

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Ok! Which One Do We Use?

● If you don’t know the nature of the function you are
trying to learn, start with ReLU.

● You can use your own custom functions too!

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

x3

x2

x1

Neural Network

Layer 1

a1
(2)

a2
(2)

a3
(2)

Layer 2 Layer 3

Layer 1 = Input layer

Layer 2 = Hidden layer

Layer 3 = Output layer

53
Slide Credit: Prof. Sandra Avila - UNICAMP

53

https://www.ic.unicamp.br/~sandra/

x3

x2

x1

Neural Network

Layer 1

a1
(2)

a2
(2)

a3
(2)

Layer 2 Layer 3

Layer 1 = Input layer

Layer 2 = Hidden layer

Layer 3 = Output layer

x0 a0
(2) bias unit

54
Slide Credit: Prof. Sandra Avila - UNICAMP

54

https://www.ic.unicamp.br/~sandra/

x3

x2

x1

Neural Network

Layer 1

a1
(2)

a2
(2)

a3
(2)

Layer 2 Layer 3

x0 a0
(2)

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯
(j)

a1
(3)

55
Slide Credit: Prof. Sandra Avila - UNICAMP

55

https://www.ic.unicamp.br/~sandra/

x3

x2

x1 a1
(2)

a2
(2)

a3
(2)

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯
(j)

a1
(3)

56
Slide Credit: Prof. Sandra Avila - UNICAMP

56

https://www.ic.unicamp.br/~sandra/

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯
(j)

x3

x2

x1
(2)

a2
(2)

a3
(2)

a1
(3)

57
Slide Credit: Prof. Sandra Avila - UNICAMP

a1

57

https://www.ic.unicamp.br/~sandra/

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯
(j)

x3

x2

x1 a1
(2)

(2)

a3
(2)

a1
(3)

58
Slide Credit: Prof. Sandra Avila - UNICAMP

a2

58

https://www.ic.unicamp.br/~sandra/

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯
(j)

x3

x2

x1 a1
(2)

a2
(2)

(2)

a1
(3)

59
Slide Credit: Prof. Sandra Avila - UNICAMP

a3

59

https://www.ic.unicamp.br/~sandra/

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯
(j)

x3

x2

x1 a1
(2)

a2
(2)

a3
(2)

(3)
a1

60

x3

x2

x1 a1
(2)

a2
(2)

a3
(2)

“activation” of unit i in layer jai
(j)

matrix of weights controlling
function mapping from layer j
to layer j + 1

𝚯
(j)

Feedforward Neural Network
(forward propagating)

a1
(3)

61

61

Neural Network Intuition

Layer 1 Layer 2 Layer 3 Layer 4

Complexity
62

Slide Credit: Prof. Sandra Avila - UNICAMP

62

https://www.ic.unicamp.br/~sandra/

Neural Network Intuition

3 hidden neurons 6 hidden neurons 20 hidden neurons

ht
tp
://
cs
23

1n
.g
ith

ub
.io

/a
ss

et
s/
nn

1/
la
ye

r_
si
ze

s.
jp
eg

Toy 2d classification with 2-layer neural network
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

63
Slide Credit: Prof. Sandra Avila - UNICAMP

63

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
https://www.ic.unicamp.br/~sandra/

https://adamharley.com/nn_vis/mlp/2d.html
64

https://adamharley.com/nn_vis/mlp/2d.html

65

Training a Neural Network

Training a Neural Network

● The first thing we need to do is to “select” an architecture.

66

● Hidden units (per layer)

● Output units: Number of classes

● Input units: dimensionality of the problem (features x)

Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Training a Neural Network

● Hidden units (per layer):

○ Usually, the more, the better

○ Good start: a number close to the number of input

○ Default: 1 hidden layer. If you have >1 hidden layer,
then it is interesting that you have the same number
of units in every hidden layer.

67
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Training a Neural Network

68

Training a Neural Network

69
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Zero Initialization

x2

x1

1 1

a1
(2)

a2
(2)

a1
(3)

After each update, parameters corresponding to inputs
going into each of two hidden units are identical.

Symmetric Weights

70
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Symmetric Breaking

● We must initialize 𝚯 to a random value in [-𝜀, 𝜀]
(i.e. [-𝜀 ≤ 𝚯 ≤ 𝜀])

71
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Today’s Initialization

● Xavier initialization [Glorot & Bengio, 2010]:
“Understanding the difficulty of training deep feedforward
neural networks”, http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

𝚯 = np.random.randn(n)*sqrt(2.0/n)

72

● He initialization [He et al., 2015]: “Delving Deep into
Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification” https://arxiv.org/pdf/1502.01852

Slide Credit: Prof. Sandra Avila - UNICAMP

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852
https://www.ic.unicamp.br/~sandra/

Today’s Initialization

● Xavier initialization [Glorot & Bengio, 2010]:
n = input + output

● He initialization [He et al., 2015]:
n = input

𝚯 = np.random.randn(n)*sqrt(2.0/n)

73
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Training a Neural Network

74
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Given one training example (x, y):

Forward Propagation

75
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Training a Neural Network

76
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Training a Neural Network

77
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

[Loss Function] How do we train deep neural networks?

• The goal is to find such a set of weights that allow the activations/outputs to
match the desired output: f(𝚯, xi) ~ yi

• Unfortunately, no closed-form solution for weights 𝚯, but we can express
our objective.

• We want to minimize a loss function (a function of the weights in the
network), we’ll do so iteratively.

• For now, let’s simplify and assume there’s a single layer of weights in the
network.

78

Classification goal
Example dataset: CIFAR-10

10 labels

50,000 training images
each image is 32x32x3

10,000 test images

Andrej Karpathy

79

Classification scores

[32x32x3]
array of numbers 0...1
(3072 numbers total)

f(x,𝚯)
image parameters

10 numbers,
indicating class
scores

Andrej Karpathy

80

𝚯𝚯

Linear classifier

[32x32x3]
array of numbers 0...1

10 numbers,
indicating class
scores

3072x1

10x1 10x3072

parameters, or “weights”

(+b) 10x1

Andrej Karpathy

81

𝚯 𝚯

Linear classifier
Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Andrej Karpathy

82

𝚯 ;𝚯,b)

Linear classifier Going forward: Loss function/Optimization

1. Define a loss function that
quantifies our unhappiness
with the scores across the
training data.

2. Come up with a way of
efficiently finding the
parameters that minimize the
loss function (optimization)

TODO:

Andrej Karpathy

cat

car

frog

3.2
5.1
-1.7

1.3
4.9
2.0

2.2
2.5

-3.1

83

Linear classifier
Suppose: 3 training examples, 3
classes. With some 𝚯. The scores

are:

cat

car

frog

3.2
5.1
-1.7

1.3
4.9
2.0

2.2
2.5

-3.1

Adapted from Andrej Karpathy

84

f(x,𝚯)= 𝚯x

Linear classifier: Hinge loss
Suppose: 3 training examples, 3
classes. With some W the scores are:

cat

car

frog

3.2
5.1
-1.7

1.3
4.9
2.0

2.2
2.5

-3.1

Hinge loss:

Given an example
where
where

is the image and
is the (integer) label,

and using the shorthand for the
scores vector:

the loss has the form:

Adapted from Andrej Karpathy

Want: syi >= sj + 1, for j != yi
i.e. sj – syi + 1 <= 0

If true, loss is 0
If false, loss is magnitude of violation

85

f(x,𝚯)= 𝚯x

f(x,𝚯)

Linear classifier: Hinge loss
Suppose: 3 training examples, 3
classes. With some W the scores are:

Hinge loss:

Given an example
where
where

is the image and
is the (integer) label,

and using the shorthand for the
scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)
+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9

cat
car

frog

3.2
5.1
-1.7

1.3 2.2
4.9 2.5
2.0 -3.1

Losses: 2.9

Adapted from Andrej Karpathy

86

f(x,𝚯)= 𝚯x

f(x,𝚯)

Linear classifier: Hinge loss
Suppose: 3 training examples, 3
classes. With some W the scores are:

Hinge loss:

Given an example
where
where

is the image and
is the (integer) label,

and using the shorthand for the
scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

cat 3.2
car 5.1
frog -1.7

1.3
4.9
2.0

2.2
2.5

-3.1
Losses: 2.9 0

Adapted from Andrej Karpathy

87

f(x,𝚯)= 𝚯x

f(x,𝚯)

Linear classifier: Hinge loss
Suppose: 3 training examples, 3
classes. With some W the scores are:

Hinge loss:

Given an example
where
where

is the image and
is the (integer) label,

and using the shorthand for the
scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1) + max(0, 5.6 + 1)
= 6.3 + 6.6
= 12.9

cat
car

frog

3.2
5.1
-1.7

1.3
4.9
2.0

2.2
2.5

-3.1
Losses: 2.9 0 12.9

Adapted from Andrej
Karpathy

88

f(x,𝚯)= 𝚯x

f(x,𝚯)

Linear classifier: Hinge loss

cat

car

frog

3.2
5.1
-1.7

1.3
4.9
2.0

2.2
2.5

-3.1

Suppose: 3 training examples, 3
classes. With some W the scores are:

Hinge loss:

Given an example
where
where

is the image and
is the (integer) label,

and using the shorthand for the
scores vector:

the loss has the form:

and the full training loss is the mean
over all examples in the training
data:

L = (2.9 + 0 + 12.9)/3

2.9 0 12.9Losses:
= 15.8 / 3 = 5.3

Lecture 3 - 12

Adapted from Andrej Karpathy

89

f(x,𝚯)= 𝚯x

f(x,𝚯)

Linear classifier: Hinge loss

Adapted from Andrej Karpathy

90

𝚯x𝚯)

𝚯

;𝚯 ;𝚯

𝚯

Linear classifier: Regularization

91

Slide Credit: https://cs231n.stanford.edu/

𝚯𝚯 𝚯

https://cs231n.stanford.edu/

Linear classifier: Regularization Intuition

92

Slide Credit: https://cs231n.stanford.edu/

https://cs231n.stanford.edu/

Linear classifier: Regularization – Prefer simpler
models

93

Slide Credit: https://cs231n.stanford.edu/

https://cs231n.stanford.edu/

94

Slide Credit: Prof. Sandra Avila - UNICAMP

Linear classifier: Regularization – Overfitting

Linear classifier: Regularization

95

Slide Credit: https://cs231n.stanford.edu/

𝚯 𝚯 𝚯

https://cs231n.stanford.edu/

Linear classifier: Regularization

96

Slide Credit: https://cs231n.stanford.edu/

Why Regularization?
• Express preferences over weights
• Make the model simple so it works on test data
• Improve optimization by adding curvature

𝚯 𝚯 𝚯

https://cs231n.stanford.edu/

Linear classifier: Regularization – Express
Preferences

97

Slide Credit: https://cs231n.stanford.edu/

https://cs231n.stanford.edu/

Linear classifier: Hinge loss

Weight Regularization
λ = regularization strength
(hyperparameter)

In common use:
L2 regularization
L1 regularization
Dropout (will see later)

Adapted from Andrej Karpathy

98

[Extra] Lab 3: Regularization
Section 1

99

scores = unnormalized log probabilities of the classes

where

Want to maximize the log likelihood, or (for a loss function) to
minimize the negative log likelihood of the correct class:

cat

car

frog

3.2
5.1
-1.7

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy

maximize

minimize

100

cat

car

frog

unnormalized log probabilities

24.5
164.0
0.18

3.2
5.1
-1.7

exp normalize

unnormalized probabilities

0.13
0.87
0.00

probabilities

L_i = -log(0.13)
= 0.89

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy

101

Training a Neural Network

102
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

Gradient Computation: Backpropagation Algorithm

103
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Intuition: “error” of node j in layer l.

For each output unit (layer L = 4)

Gradient Computation: Backpropagation Algorithm

Vectorizing it, we have:

104
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

105

How to minimize the loss function?

Andrej Karpathy

106

How to minimize the loss function?
In 1-dimension, the derivative of a function is:

In multiple dimensions, the gradient is the vector of (partial derivatives):

Adapted from Andrej Karpathy, definition/equation from https://en.wikipedia.org/wiki/Gradient

107

f: loss function
x: weights 𝚯

h: small value

https://en.wikipedia.org/wiki/Gradient

current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient d𝚯:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Andrej Karpathy

108

Computing the gradient numerically
108

current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

𝚯 + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

gradient d𝚯:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Andrej Karpathy

109

Computing the gradient numerically
109

gradient d𝚯:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

𝚯 + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

Andrej Karpathy

Computing the gradient numerically
110

gradient d𝚯:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

𝚯 + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

Andrej Karpathy

111

Computing the gradient numerically
111

gradient d𝚯:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

𝚯 + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Andrej Karpathy

Computing the gradient numerically
112

gradient d𝚯:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

𝚯 + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Andrej Karpathy

Computing the gradient numerically
113

The loss is just a function of 𝚯:

want

Andrej Karpathy

Computing the gradient analytically
114

The loss is just a function of 𝚯:

want

Calculus

= ...
Andrej Karpathy

Computing the gradient analytically
115

gradient d𝚯:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current 𝚯:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

d𝚯 = ...
(some function of
data and 𝚯)

Andrej Karpathy

116

Computing the gradient analytically
116

• f(x, 𝚯) = dot(𝚯, x) = 𝚯1*x1 + 𝚯2*x2 + … + 𝚯D*xD
• d f(x, 𝚯) / d 𝚯i = ?
• d f(x, 𝚯) / d 𝚯1 = x1
• d f(x, 𝚯) / d 𝚯2 = x2

• …

• Gradient of f(x, 𝚯) wrt 𝚯 is [x1 x2 … xD] i.e. x

Computing the gradient analytically
117

Loss gradients
• Different notations:

• i.e. how does the loss change as a function of the weights
• We want to change weights in a way that makes the loss decrease as fast

as possible

118

Gradient descent
• We’ll update weights
• Move in direction opposite to gradient:

L
Learning rate

Time

Figure from Andrej Karpathy

original 𝚯
negative gradient direction

𝚯1

𝚯2

119

High Loss

Small Loss

Gradient descent
• Iteratively subtract the gradient with respect to

the model parameters (𝚯)

• I.e. we’re moving in a direction opposite to the
gradient of the loss

• I.e. we’re moving towards smaller loss

120

Lab 4: Gradient Descent
Duration: 10 min

121

122

How to compute the loss/gradient?
• In classic gradient descent, we compute the gradient from the loss

for all training examples

• Mini-batch gradient descent: Only use some of the data for each
gradient update, cycle through training examples multiple times
• Each time we’ve cycled through all of them once is called an

‘epoch’
• Allows faster training (e.g. on GPUs), parallelization
• Some benefits for learning due to randomness

123

Andrej Karpathy

Learning rate selection
The effects of step size (or “learning rate”)

https://www.deeplearning.ai/ai-notes/optimization/

124

https://www.deeplearning.ai/ai-notes/optimization/
https://www.deeplearning.ai/ai-notes/optimization/
https://www.deeplearning.ai/ai-notes/optimization/

Training a Neural Network

125
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Gradient descent in multi-layer nets
• We’ll update weights
• Move in direction opposite to gradient:

• How to update the weights at all layers?
• Answer: backpropagation of error from higher layers to lower layers

126

Backpropagation: Graphic example
• First calculate error of output units and use this to change the

top layer of weights.

output

hidden

input

Calculate how to
update weights into j
(update at end of iter)

Adapted from Ray Mooney, equations from Chris Bishop

k

j

i

w(2)

w(1)

127

Backpropagation: Graphic example
• Next calculate error for hidden units based on errors on the

output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop

128

Backpropagation: Graphic example
• Finally update bottom layer of weights based on errors

calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney, equations from Chris Bishop

129

Backpropagation
A Simple Example

130

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

131
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4 +

*

x -2

y

z

5

-4

q 3
f -12

132
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4 +

*

x -2

y

z

5

-4

q 3
f -12

Want:
133

Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y

z

5

-4

q 3
f -12

134
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y

z

5

-4

q 3
f -12
1

135
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y

z

5

-4

q 3
f -12
1

136
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y

z

5

-4

q 3
f -12
1

3

137
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y

z

5

-4

q 3
f -12
1

3

138
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y

z

5

-4

q 3
f -12
1

3

-4

139
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y

z

5

-4

q 3
f -12
1

3

-4

140
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y

z

5

-4

q 3
f -12
1

3

-4

Chain rule

141
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y

z

5

-4

q 3
f -12
1

3

-4

Chain rule

-4

142
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y

z

5

-4

q 3
f -12
1

3

-4

Chain rule

-4

143

-4 x 1 = -4
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y

z

5

-4

q 3
f -12
1

3

-4-4

144
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Backpropagation: A Simple Example

f(x, y, z) = (x + y)z
e.g., x = -2, y = 5, z = -4

Want:

+
*

x -2

y

z

5

-4

q 3
f -12
1

3

-4-4

-4

145
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

x

z

y

f

146
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

x

z

y

f

“local gradient”

147
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

x

z

y

f

“local gradient”

gradients

148
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

x

z

y

f

“local gradient”

gradients

149
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

x

z

y

f

“local gradient”

gradients

150
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

x

z

y

f

“local gradient”

gradients

151
Slide Credit: Prof. Sandra Avila - UNICAMPAndrej Karpathy

https://www.ic.unicamp.br/~sandra/

Training a Neural Network

152
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Gradient Descent

Want :

repeat {

} 153
Slide Credit: Prof. Sandra Avila - UNICAMP

Li

https://www.ic.unicamp.br/~sandra/

Training a Neural Network

154
Slide Credit: Prof. Sandra Avila - UNICAMP

https://www.ic.unicamp.br/~sandra/

Assignment 1: Data Loaders

155

156

Additional Resources

Neural Networks (3Blue1Brown)

157

https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

Neural Networks Demystified (in Python)

158

158

https://www.youtube.com/playlist?list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU

“A friendly introduction to Neural Networks”
https://youtu.be/BR9h47Jtqyw

159

https://youtu.be/BR9h47Jtqyw

Neural Networks Demystified (in Python)

160

https://youtu.be/Vfzm1-cfLuc

https://www.youtube.com/playlist?list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
https://youtu.be/Vfzm1-cfLuc
https://youtu.be/Vfzm1-cfLuc
https://youtu.be/Vfzm1-cfLuc

Summary
• We use deep neural networks because of their strong performance in

practice

• Training deep neural nets
• We need an objective function that measures and guides us towards good performance
• We need a way to minimize the loss function: stochastic gradient descent
• We need backpropagation to propagate error from end of net towards all layers and

change weights at those layers

• Practices for preventing overfitting
• Regularization

161

