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Many inventions were inspired by Nature ...

Birds inspired us to fly

Slide Credit: Prof. Sandra Avila - UNICAMP
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Many inventions were inspired by Nature ...

Dolphins inspired sonar development
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https://sites.google.com/site/echolocationkawproject/_/rsrc/1459209762464/sonars/image.jpeg
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Many inventions were inspired by Nature ...

Humpback whales inspired wind turbines

https://images.app.goo.gl/7muFj7RTQLLRDYdh9

Slide Credit: Prof. Sandra Avila - UNICAMP
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It seems logical to look at the
brain’s architecture for inspiration on
how to build an intelligent machine.

Slide Credit: Prof. Sandra Avila - UNICAMP
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IMAGENET

ILSVRC 2012 — Image Classification task

Rank Name Error Rate (%) Description
1 University of Toronto Deep Learning
2 University of Tokyo 26.2
3 University of Oxford 26.9 Hand-crafted features
and learning models
4 Xerox/INRIA 27.0

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

“ImageNet classification with deep convolutional neural networks”. NIPS, 2012.

Slide Credit: Prof. Sandra Avila - UNICAMP
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IMAGENET

ILSVRC 2012 — Image Classification task

Rank Name Error Rate (%) Description
1 University of Toronto 15.3 Deep Learning
2 University of Tokyo 26.2
3 University of Oxford 26.9 Hand-crafted features
and learning models
4 Xerox/INRIA 27.0

Object recognition over 1,000,000 images and 1,000 categories (2 GPU)

“ImageNet classification with deep convolutional neural networks”. NIPS, 2012.

Slide Credit: Prof. Sandra Avila - UNICAMP
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26.1% IMAGENET

Classification error

2011 2012 2013 2014 2015 201e 2017
ILSVRC year

“ImageNet classification with deep convolutional neural networks”. NIPS, 2012.

Slide Credit: Prof. Sandra Avila - UNICAMP
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ImageNet Challenge 2012

AlexNet: Similar framework to LeCun’98 but:
Bigger model (7 hidden layers, 650,000 units, 60,000,000 params)
More data (108 vs. 103 images)

A

GPU implementation (50x speedup over CPU)

* Trained on two GPUs for a week

Better regularization for training (DropOut)

. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012

Adapted from Lana Lazebnik
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http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf

Will this wave die out like the previous
ones did?



From Biological to Artificial Neurons

1. There is now a huge quantity of data available to train neural
networks.

Slide Credit: Prof. Sandra Avila - UNICAMP
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I M .’h G E N E T www.image-net.org

22K categories and 14M images

* Animals * Plants » Structures * Person
» Bird e Tree * Artifact * Scenes
* Fish *  Flower * Tools * Indoor
* Mammal * Food » Appliances * Geological
* Invertebrate ¢ Materials * Structures Formations

Sport Activities




From Biological to Artificial Neurons

1. There is now a huge quantity of data available to train neural
networks.

2. Computing power now makes it possible to train large neural
networks in a reasonable amount of time.

Slide Credit: Prof. Sandra Avila - UNICAMP
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http://www.tomshardware.com/news/google-automl-aritifical-intelligence-ai,34533.html



Lab 2: Pytorch

Duration: 20 min

s
jupyter P
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Tojoin,goto: ahaslides.com/P1W3Y &8 9% AhaSlides

Please, fromLab 2: Pytorch [Coding Exercise 1.2], submit the top
left number of the output A matrix.
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From Biological to Artificial Neurons

1. There is now a huge quantity of data available to train neural
networks.

2. Computing power now makes it possible to train large neural
networks in a reasonable amount of time.

3. The training algorithms have been improved.

Slide Credit: Prof. Sandra Avila - UNICAMP
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A representation of a neural network

Brainlike computers are a black box. Scientists are
finally peering inside

By Jackie Snow | Mar. 7 2017 , 3:15 PM

Last month, Facebook announced software that could simply look at a photo and tell, for
example, whether it was a picture of a cat or a dog. A related program identifies cancerous

http://www.sciencemag.org/news/2017/03/brainlike-computers-are-black-box-scientists-are-finally-peering-inside
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Interpretable .
Machine Learning

A Guide for Making
Black Box Models Explainable

“Interpretable Machine Learning”, 2022
Christoph Molnar https://christophm.github.io/interpretable-ml-book

Chap. 10 Neural Network Interpretation

Slide Credit: Prof. Sandra Avila - UNICAMP
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From Biological to Artificial Neurons

1. There is now a huge quantity of data available to train neural
networks.

2. Computing power now makes it possible to train large neural
networks in a reasonable amount of time.

3. The training algorithms have been improved.

4. ANNs seem to have entered a virtuous circle of funding and
progress.

Slide Credit: Prof. Sandra Avila - UNICAMP
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Biological Neurons

Dendrites

Axon terminals

_Hand-tuned.png

http://www.jeremyjordan.me/content/images/2017/06/Neuron

QQO&'

Signal
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Biological Neurons - Analogy

- Ny(x)

Slide Credit: Prof. Sandra Avila - UNICAMP
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The Perceptron

Invented in 1957 by Frank Rosenblatt.

e |tis based on a Linear Threshold Unit (LTU):
o The inputs and output are now numbers and each input

connection is associated with a weight.

e The LTU computes a weighted sum of its inputs then it applies
a step function to that sum and outputs the result.

Slide Credit: Prof. Sandra Avila - UNICAMP
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The Perceptron

Output: h_(x) = step(w'. x)

g Step function: step(z)
Weighted sum: z = w!. x

X, X, X3 Inputs

Linear Threshold Unit

Slide Credit: Prof. Sandra Avila - UNICAMP
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The Perceptron

Output: h_(x) = step(w'. x)

01f z <0

heaviside(z) = ll ifz>0

Step function: step(z)

(-1 if <0
@ @ @ Weights sign(z) =10 1f z=0
X1 X2 X3 |nputs k_I‘l lf < > O

Linear Threshold Unit

Slide Credit: Prof. Sandra Avila - UNICAMP
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Neuron Model: Logistic Unit h,(x) =

1
l Logistic

function Output

$ 3

hg(x)

Output: h_(x) = step(w'. x)

Step function: step(z)

Slide Credit: Prof. Sandra Avila - UNICAMP
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welg!ts

Neuron Model: Logistic Unit

_XO_
X
x=|""l 0=
A2
X
hy(x) LT - T
Output
() = ——
Sigmoid (Logistic) 0 1_|_e-93€

Inputs activation function
Slide Credit: Prof. Sandra Avila - UNICAMP
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ensorkFlow PlayGround

Tinker With a Neural Network Right Here in Your Browser.

Don't Worry, You Can't Break It. We Promise.

- Q-

DATA

Which dataset do
you want to use?

Ratio of training to
test data: 50%

— e

Noise: 0
L 2

Batch size: 10

—e

REGENERATE

Epoch

000,000

FEATURES

Which properties do
you want to feed in?

X2

di |
=

sin(X

Learning rate

0.03

+

Activation

Sigmoid

Regularization

v None

1 HIDDEN LAYER

+ -

1 neuron

Regularization rate

Problem type

v Classification v

OUTPUT

Test loss 0.504
Training loss 0.502

Colors shows -

data, neuron and ' u Y
; 1

weight values

[ Show testdata [] Discretize output


https://playground.tensorflow.org/

[Example] Simple Example: AND 1 82)

0.5
€01 y=x AND;

R h(x)
(%) 0 0 | g(-30)=0

0 1 g(-10)= 0
1 0 2(-10)=0

10) = 1
hg(X) =g(-30 + 208, + 20x,) 1 [ U0

Slide Credit: Prof. Sandra Avila - UNICAMP
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[Example] Simple Example: OR 1 82)
X1, X € {0,1} y=x; OR X, 0.5
° :
R h(x)
(%) 0 0 | g(-10)~0

0 1 2(10) = 1
1 O g(10)= 1

ho(X) = g(-10 + 20x, +20xy) | | GO

Slide Credit: Prof. Sandra Avila - UNICAMP
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Multi-class Classification?



Multi-class Classification
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Softmax Classification

The output layer is typically modified by replacing the
individual activation functions function.
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Slide Credit: Prof. Sandra Avila - UNICAMP
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Softmax Classification

The output layer is typically modified by replacing the

individual activation functions
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Slide Credit: Prof. Sandra Avila - UNICAMP
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e
Softmax Classification

The output layer is typically modified by replacing the
individual activation functions function.

A’A’A’b ‘ , ‘
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e
Softmax Classification

(s—
XX > —
3 4\vv1. =\ '//
R I ISKEX
IO —
NN —
Cat 5.1 164.0 0.87 g
Dog 32 @) 245 g, 013 @) =—x
Z.
Frog -1.7 0.18 0.00 Z €
Car 2.0 0.13 0.00 =1

Slide Credit: Prof. Sandra Avila - UNICAMP
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How do we decide whether the
neuron should fire or not?

Slide Credit: Prof. Sandra Avila - UNICAMP
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We decided to add “activation functions”
for this purpose.

Slide Credit: Prof. Sandra Avila - UNICAMP
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Step Function

lts output is 1 (activated) when value > O (threshold) and
outputs a 0 (not activated) otherwise.

Output: h_(x) = step(w'. x)

Step function: step(z)

. it
0.5 + v Weighted sum: z=w'. x

Slide Credit: Prof. Sandra Avila - UNICAMP
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Step Function: Problem?

e Binary classifier (“yes” or “no”, activate or not activate). A
Step function could do that for you!

e Multi classifier (classl, class?, class3, etc). What will
happen if more than 1 neuron is “activated™

Slide Credit: Prof. Sandra Avila - UNICAMP
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Sigmoid Function

e The output of the activation function

Is always going to be in range (0,1). .

e |tis nonlinear in nature.

Slide Credit: Prof. Sandra Avila - UNICAMP
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Sigmoid Function

e The output of the activation function
Is always going to be in range (0,1).

e |tis nonlinear in nature.

e Combinations of this function are
also nonlinear! Great!!

0.5

Slide Credit: Prof. Sandra Avila - UNICAMP
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Sigmoid Function: Problem?

MORETHAN THREE

TN ST\ [4mll ® Towards either end of the sigmoid
- F

— = function, the o(x) values tend to respond

very less to changes in x.

...af Lot e The problem of “vanishing gradients”.

L ..,___ \_ o Cannot make significant change
W VANISHING\. *

DI Nl because of the extremely small value.
THEGRADIENTIS ™

Slide Credit: Prof. Sandra Avila - UNICAMP
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Tanh Function

e The output of the activation function
Is always going to be in range (-1,1).

e |tis nonlinear in nature.

>

-1
e Combinations of this function are r

also nonlinear! Great!! tanh(x) = 2
l+e

-2x _1

Slide Credit: Prof. Sandra Avila - UNICAMP
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Tanh Function: Problem?

| ' e Like sigmoid, tanh also has the
vanishing gradient problem.

Slide Credit: Prof. Sandra Avila - UNICAMP
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RelLU (Rectified Linear Unit) Function

20 +

e [t gives an output x if x is positive and

O otherwise. The range is [0, Inf). 10T
e Itis nonlinear in nature. - .
Combinations of this function are also .
nonlinear!
ReLU(x) = max(0,x)

e Sparsity of the activation!

Slide Credit: Prof. Sandra Avila - UNICAMP
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RelLU Function: Problem?

e Because of the horizontal line in ReLU (for negative x),
the gradient can go towards O.

e “Dying RelLU problem”: several neurons can just die and
not respond making a substantial part of the network
passive.

Slide Credit: Prof. Sandra Avila - UNICAMP
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Leaky ReLU Function 1

e [t gives an outputx if x is positive
and O otherwise. The range is (-inf, inf).

e (Leaky) RelLU is less computationally

expensive than tanh and sigmoid Leaky ReLU(x) =
becz;use |t.|n\iolves su.mpler (xif x>0
mathematical operations. =1 0.01x otherwise

Slide Credit: Prof. Sandra Avila - UNICAMP
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.
Ok! Which One Do We Use?

e If you don't know the nature of the function you are
trying to learn, start with RelLU.

e You can use your own custom functions too!

Slide Credit: Prof. Sandra Avila - UNICAMP
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Neural Network

Layer 1 = Input layer
Layer 2 = Hidden layer
Layer 3 = Output layer

hg(x)

Layer 1 Layer 2 Layer 3

Slide Credit: Prof. Sandra Avila - UNICAMP
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Neural Network

bias unit Layer 1 = Input layer
Layer 2 = Hidden layer
Layer 3 = Output layer

hg(x)

Layer 1 Layer 2 Layer 3

Slide Credit: Prof. Sandra Avila - UNICAMP
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)

d; _ “activation” of unitiin layer;

Neural Network

®  matrix of weights controlling
function mapping from layer;
to layerj+1

Layer 1 Layer 2 Layer 3

Slide Credit: Prof. Sandra Avila - UNICAMP
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a)'{ ai(i) “activation” of unit i in layer
QV‘V@W @ ho(x) ®  matrix of weights controlling

function mapping from layer;
to layerj+1

Slide Credit: Prof. Sandra Avila - UNICAMP
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)
d; _ “activation” of unitiin layer;

hQ(X) ® matrix of weights controlling
function mapping from layer;
to layerj+1

2) _ 1) 1) 1) 1)
a;” = 8((”)(10350 + ®(11x1 + ®(12x2 + @(13353)

Slide Credit: Prof. Sandra Avila - UNICAMP
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)
d; _ “activation” of unitiin layer;

hg(x) ® matrix of weights controlling
function mapping from layer;
to layerj+1

2) _ 1) 1) 1) 1)
a;” = 8((”)(10350 + ®(11x1 + ®(12x2 + (”)(13353)

2) _ (1) (1) (1) (1)
a, = g(Oyx, + Oyx; + Oyx, + O3x;)

Slide Credit: Prof. Sandra Avila - UNICAMP
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@' )

W& d; _ “activation” of unitiin layer;
QA'A @ @ h,(x) )

®  matrix of weights controlling

N\
@A@W function mapping from layer;

to layerj+1
2) _ (1) (1) (1) (1)
a;” = g(Ojgx, + Oi7x,; + Ojrx, + Oj3x;)
2) _ (1) (1) (1) (1)
a, = g(Oyx, + Oyx; + Oyx, + O3x;)

2) _ 1) 1) (1) 1)
as’ = 8((”)%0350 + ®g1x1 + O3, + ®§3x3)

Slide Credit: Prof. Sandra Avila - UNICAMP
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= 8@l

) = g%

) = 8@
ho(x) = a” = g(®

/)

di" “activation” of unitiin layer j

()
hy(x) ® matrix of weights controlling
function mapping from layer;
to layerj+1

1) (1) 1)
®(11x1 + Oyx, + ®(13x3)
1) (1) 1)
®(21x1 + Oyx, + ®(23x3)

1) (1) 1)
®g1x1 + O3, + @§3x3)

2) ,2) 2),,2) 2),2) (2) ,(2)
i0dy +0OTa;” + OJa;” + O Jas”)



@' )

WA d; _ “activation” of unitiin layer;
eA'A @ @ h,(x) )

®  matrix of weights controlling

N\
@A@w function mapping from layer;

to layerj+1

Feedforward Neural Network

(forward propagating)

_ ) _ 2) _(2) 2) (2) 2) () 2) ,(2)
ho(x) = at = g(O\Jay’ + (H)(Hal + (")(12612 + ®(13a§ )



Neural Network Intuition

hg(x)

Layer 1 Layer 2 Layer 3 Layer 4

EEEEEEEessss) Complexity

Slide Credit: Prof. Sandra Avila - UNICAMP
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Neural Network Intuition

Toy 2d classification with 2-layer neural network
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

s.jpeg

http://cs231n.github.io/assets/nn1/layer_size

3 hidden neurons 6 hidden neurons 20 hidden neurons
Slide Credit: Prof. Sandra Avila - UNICAMP
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https://adamharley.com/nn vis/mlp/2d.html

0123456789

By
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Training a Neural Network



Training a Neural Network

e The first thing we need to do is to an architecture.

e Input units: dimensionality of the problem (features x)
e Output units: Number of classes

e Hidden units (per layer)

Slide Credit: Prof. Sandra Avila - UNICAMP
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Training a Neural Network

e Hidden units (per layer):
o Usually, the more, the better

o Good start: a number close to the number of input

o Default: 1 hidden layer. If you have >1 hidden layer,
then it is interesting that you have the same number
of units in every hidden layer.

Slide Credit: Prof. Sandra Avila - UNICAMP
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Training a Neural Network

Step 1- _
Random initialization Desired loss
l Inputs outputs function
Step 7 actual oss (error)
ep 7~ outputs
lterate until Step 2- - > Step3- | etric
convergence Feed Forward Calculate loss function this step
gradients gra}cczl)lrent
for all the tast Y
Ste;o 6- aver Step 5 layer Step 4-
Update the weights < Backp?f))pa-gate < Calculate the
derivative of error

Update Optimizer function (delta
frequency rule / adadelta...)



Training a Neural Network

Step 1-
Random initialization

l

Slide Credit: Prof. Sandra Avila - UNICAMP
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Zero Initialization Symmetric Weights

o) iy a = a

After each update, parameters corresponding to inputs
going into each of two hidden units are identical.

Slide Credit: Prof. Sandra Avila - UNICAMP
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Symmetric Breaking

e We mustinitialize © to a random value in [-¢, €]
(1e.[-€e<O < g])

Slide Credit: Prof. Sandra Avila - UNICAMP



https://www.ic.unicamp.br/~sandra/

Today’s Initialization

e Xavier initialization [Glorot & Bengio, 2010]:
“Understanding the difficulty of training deep feedforward
neural networks”, http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf

® = np.random.randn (n)*sqgrt (2.0/n)

e He initialization [He et al.,, 2015]: “Delving Deep into

Rectifiers: Surpassing Human-Level Performance on ImageNet
Classification” https://arxiv.org/pdf/1502.01852

Slide Credit: Prof. Sandra Avila - UNICAMP



http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852
https://www.ic.unicamp.br/~sandra/

Today’s Initialization

e Xavier initialization [Glorot & Bengio, 2010]:
n = input + output

e He initialization [He et al., 2015]:
n = input

® = np.random.randn (n)*sqgrt (2.0/n)

Slide Credit: Prof. Sandra Avila - UNICAMP
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Training a Neural Network

Step 1-
Random initialization
l Inputs
Step 2-
> Feed Forward

Slide Credit: Prof. Sandra Avila - UNICAMP
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Forward Propagation

Given one training example (x, y):

|
a’ = x
<7
2 _ ) (1) O
27 =0"a =R

BRSNS S
A

IS 3
RSOV

a® = g(z®) (add af’)
G — @,

<
a” = g(z") (add a})

7@ = @I®

4) _ — (4)
a = h@(X) — g(z ) Slide Credit: Prof. Sandra Avila - UNICAMP
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Training a Neural Network

Step 1-
Random initialization

l

Inputs

Step 2-
Feed Forward

actual
outputs

Desired loss
outputs function

Step 3-

Calculate loss function

Slide Credit: Prof. Sandra Avila - UNICAMP
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Training a Neural Network

Step 1- .
Random initialization Desired loss
l Inputs outputs function
actual Loss ( )
oss (error
> Step 2- QU o Step 3- p metric
Feed Forward Calculate loss function at this step

Slide Credit: Prof. Sandra Avila - UNICAMP
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[Loss Function ] How do we train deep neural networks?

The goal is to find such a set of weights that allow the activations/outputs to
match the desired output: f(0, x;) ~ v,

Unfortunately, no closed-form solution for weights ©, but we can express
our objective.

We want to minimize a loss function (a function of the weights in the
network), we’ll do so iteratively.

For now, let’s simplify and assume there’s a single layer of weights in the
network.



Classification goal
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Classification scores

f(wa 0 ) = 0
f(x,0) 10 numbers,
indicating class
scores

[32x32x3]
array of numbers 0...1
(3072 numbers total)

Andrej Karpathy



Linear classifier

f(z,0)

10x1

[32x32x3]

array of numbers 0...1

Andrej Karpathy

—[ofg 27" [(+0)]10x1
10x3072
\ 10 numbers,
indicating class
scores

parameters, or “weights”




Linear classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

stretch pixels into single column

02 | -05| 01 2.0 56 15
15 | ‘1.3 | 21 0.0 231 3.2
0 0.25| 0.2 | -0.3 -1.2
input image 24
0 ol
Li

Andrej Karpathy

-96.8

437.9

61.95

f(zi ;0,b)

cat score

dog score

ship score




LI near CI dSS Ifl er Going forward: Loss function/Optimization
TODO:

1. Define a loss function that
quantifies our unhappiness
with the scores across the
training data.

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog 17 20 3.1 2. Come up with a way of

efficiently finding the
parameters that minimize the
loss function (optimization)

Andrej Karpathy



Linear classifier

Suppose: 3 training examples, 3
classes. With some 0. The scores

f(x,0)= Ox ' are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 20 3.1

Adapted from Andrej Karpathy



Linear classifier: Hinge loss

Suppose: 3 training examples, 3
classes. With some W the scores f(X,0)= O@x are:

cat 3.2 1.3 2.2
car 5.1 4.9 2.5
frog -1.7 20 3.1

Adapted from Andrej Karpathy

Hinge loss:

Given an example (wi, yi)

where g is the image and
where Yi is the (integer) label,

and using the shorthand for the
scores vector: s = f(x @)

the loss has the form:

Li = 3z, max(0,s; — sy, + 1)

Want: s, >=s; + 1, forj 1=y,
i.e.sj—s,+1<=0

If true, loss is 0
If false, loss is magnitude of violation




Linear classifier: Hinge 10SS | e ces

Suppose: 3 training examples, 3 Given an example (z;, ;)

: - . where 7. is the image and
classes. With some W the scores f(x,G))— @x are: where y; s the (intoger tabel,

and using the shorthand for the
scores vector: s = f(x @)

the loss has the form:

Li = 3z, max(0,s; — sy, + 1)

cat 3.2 1.3 2.2

car =max(0,5.1-3.2+1)
5.1 4.9 2.5 +max(0, -1.7-3.2+1)

frog 17 20 -3.1 : rznngEOO, 2.9) + max(0, -3.9)
Losses: 29 =29

Adapted from Andrej Karpathy



Linear classifier: Hinge loss

Suppose: 3 training examples, 3
classes. With some W the scores f(x,0)= @x are:

cat 3.2 13

car 51| 4.9
frog -1.7 2.0

87

Hinge loss:

Given an example (wi, yi)
where g is the image and
where Yi is the (integer) label,
and using the shorthand for the
scores vector: s = f(x @)

the loss has the form:

Li = 3z, max(0,s; — sy, + 1)

Losses: 2.9 0

Adapted from Andrej Karpathy

=max(0,1.3-49+1)
+max(0, 2.0-49 +1)

= max(0, -2.6) + max(0, -1.9)

=0+0

=0




Linear classifier: Hinge loss

Suppose: 3 training examples, 3

classes. With some W the scores f(X,0)= @Xx are:

cat 3.2 1.3
car 5.1 4.9
frog 1.7 2.0

88

Hinge loss:

Given an example (wi, yi)
where g is the image and
where Yi is the (integer) label,
and using the shorthand for the
scores vector: s = f(x @)

the loss has the form:

Li = 3z, max(0,s; — sy, + 1)

Losses: 29 0

Adapted from Andrej
Karpathy

12.9

=max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5 - (-3.1) + 1)
= max(0, 5.3+ 1) + max(0, 5.6 + 1)
=6.3+6.6
=12.9




Linear classifier: Hinge loss

Suppose: 3 training examples, 3
classes. With some W the scores f(Xx,0)= @x are:

cat 3.2 1.3
car 5.1 4.9 2.5
frog -1.7 20 -3.1

Losses: 2.9 0 12.9

Adapted from Andrej Karpathy

Hinge loss:

Given an example (wi, yi)

where g is the image and
where Yi is the (integer) label,

and using the shorthand for the
scores vector: s = f(x @)

the loss has the form:
kg = Z#yi max(0,s; — sy. + 1)

and the full training loss is the mean
over all examples in the training

data: ; i
L= & > izt Li

L=(2.9+0+12.9)3
=158/3=5.3




Linear classifier: Hinge loss

f(ma @) = Ox

L= % ZfL ijéyi max (0, f(zi ;0 ); — f(zi @ )y, +1)

N
L(e)= NSLi(f(mi, ©),Yi)
i=1

Adapted from Andrej Karpathy



Linear classifier: Regularization

y O
L(e )= N ZLi(f(xi, ©),Y;)

\ P
Y

Data loss: Model predictions
should match training data

Slide Credit: https://cs231n.stanford.edu/



https://cs231n.stanford.edu/

Linear classifier: Regularization Intuition

y

O
O QO

Slide Credit: https://cs231n.stanford.edu/



https://cs231n.stanford.edu/

Linear classifier: Regularization — Prefer simpler
models

f, f,

Slide Credit: https://cs231n.stanford.edu/



https://cs231n.stanford.edu/

Linear classifier: Regularization — Overfitting

THE BEST WAY'TO
EXPLAIN OVERFITTING

Slide Credit: Prof. Sandra Avila - UNICAMP




Linear classifier: Regularization

L(e) N ZLz(f(xza 0 ),yi) + AR(e)

=1
\’ A
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Slide Credit: https://cs231n.stanford.edu/



https://cs231n.stanford.edu/

Linear classifier: Regularization

N
L(0) =3 D Lilf(zi, ©),3:) + AR( o)

e
. /At
Y
Data loss: Model predictions  Regularization: Prevent the model
should match training data from doing too well on training data

Why Regularization?

Express preferences over weights
Make the model simple so it works on test data
Improve optimization by adding curvature

Slide Credit: https://cs231n.stanford.edu/



https://cs231n.stanford.edu/

Linear classifier: Regularization — Express

Preferences
L2 Regularization
= | Q)= @2
B =100 O]] Which of ©1 or ©2 will
- @,2 gt :0.25, 0.25, 0.25, 0.25]] the L2 regularizer prefer?

@flrm — Ggm —3 |

Slide Credit: https://cs231n.stanford.edu/



https://cs231n.stanford.edu/

Linear classifier: Hinge loss

A = regularization strength

Weight Regularization (hyperparameter) —

by = % Zf\il ijéy,- max (0, f(z:; @); — f(zi; ©)y, + 1) +AR(O)

In common use:

L2 regularization R(@) =33 0,
L1 regularization R(@) = 32 221 Okl
Dropout (will see later)

Adapted from Andrej Karpathy



[Extra] Lab 3: Regularization
Section 1

P P
jupyter
.\./




Another loss: Softmax (cross-entropy)

scores = unnormalized log probabilities of the classes

P{Y = &X' =) = Ze’;’

cat where S = f(x“ @)
car

Want to maximize the log likelihood, or (for a loss function) to
frog -1.7  minimize the negative log likelihood of the correct class:

L; = —log P(Y = yi| X = )

\ J
|

maximize

Y
Adapted from Andrej Karpathy minimize




Another loss: Softmax (cross-entropy)

Li = — log( ij;sj )

cat 3.2 24.5 N 0.13 | L. 23?899(0.13)
car 51 = |164.0—— | 0.87

frog -1.7 0.18 0.00

unnormalized log probabilities probabilities

unnormalized probabilities

Adapted from Andrej Karpathy



Training a Neural Network

Step 1-
Random initialization

l

Inputs

Step 2-
Feed Forward

actual
outputs

Desired loss

outputs function

Step 3-
Calculate loss function

Loss (error)
P metric

v

Step 4-
Calculate the
derivative of error

at this step

Slide Credit: Prof. Sandra Avila - UNICAMP



https://www.ic.unicamp.br/~sandra/

T
Gradient Computation: Backpropagation Algorithm

l
Intuition: 5](-) — “error” of nodej in layer /. ‘

//"‘}\}0,/% \

For each output unit (layer L = 4)

Ve O N2 O
k’{‘ ) kﬁé“:{‘z‘)‘i‘y
5(4) —_— a(4) _ S X );
J J y J

$
(he(x)),

Slide Credit: Prof. Sandra Avila - UNICAMP



https://www.ic.unicamp.br/~sandra/

T
Gradient Computation: Backpropagation Algorithm

l
Intuition: 5](-) — “error” of nodej in layer /. ‘

( k
OO
XL XREL = XK
ERNOEEX N

For each output unit (layer L = 4)

@ _ @
0;" =a; -y,

Vectorizing it, we have:
5(4) — a(4) ~y

Slide Credit: Prof. Sandra Avila - UNICAMP



https://www.ic.unicamp.br/~sandra/

Joinot menticom | use code 73653211 W Martiwater

Menti

Min_loss E O

Choose aslide to present

Gaven the mountomn, select the minemum oltiDuce




How to minimize the loss function?

Andrej Karpathy
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How to minimize the loss function?

In 1-dimension, the derivative of a function is:

df@) _ o Slerh) = f@) | e

dx h —0 h h: small value

In multiple dimensions, the gradient is the vector of (partial derivatives):
Thatis, for f: R" — R, its gradient V f: R" — R" is defined at

the point p = (1, ..., Z, ) in n-dimensional space as the vector:["]

or

0:171

Vf(p) =

of
| Bz, (P)

The nabla symbol V, written as an upside-down triangle and

pronounced "del”, denotes the vector differential operator.

Adapted from Andrej Karpathy, definition/equation from https://en.wikipedia.org/wiki/Gradient



https://en.wikipedia.org/wiki/Gradient

18
Computing the gradient numerically

current O: gradient dO:
[0.34, [,
-1.11, ?,
0.78, ?,
0.12, ?,
0.55, ?,
2.81, ?,
-3.1, ?,
-1.5, ?,
0.33,...] ?,...]
loss 1.25347

Andrej Karpathy



109
Computing the gradient numerically

current O: O + h (first dim): gradient d@:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 loss 1.25322

Andrej Karpathy
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Computing the gradient numerically

current O:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Andrej Karpathy

0O + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dO:

[-2.5,
?

?,\

(1.25322 - 1.25347)/0.0001
=-2.5

af(@) _ . fa+h) - f(@)

dx h—0 h

?,
?,...]

LRI




T
Computing the gradient numerically

current O: ©® + h (second dim): gradient d@:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347

Andrej Karpathy
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Computing the gradient numerically

current O:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Andrej Karpathy

O + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

3.1,

1.5,

0.33,...]

gradient dO©:

[-2.5,
0.6,

2, \
?,

- 1.25347)/0.0001

oy f@ )~ f@)




Computing the gradient numerically

current O:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

Andrej Karpathy

0O + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dO:
[-2
0. 6
?,
'7
?
?
?
?
? .

..}



1
Computing the gradient analytically

The loss is just a function of ©:
L= %ZililLi + 32, OF

Li =3z, max(0,s; — sy, + 1)

s=f(z; Q) = Oz

want VgL

Andrej Karpathy



15
Computing the gradient analytically

The loss is just a function of 9:
L= %Zij\;Li +2 OF

Li =% ;,, max(0,s; — sy, + 1)
s=f(z; @) = Oz
want VelL

Calculus

VelL =..

Andrej Karpathy
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Computing the gradient analytically

current ©: gradient d@:
[0.34, 25
-1.11, de = ... %.6,
0.78, (some function of 0,
0.12, data and ©) 02
0.55, 07
2.81, o 08
-3, 1.1,
1.5 13,
0.33,..] CXIR
loss 1.25347

Andrej Karpathy
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Computing the gradient analytically

f(x, ®) = dot(0, x) = 01*x1 + @2*x2 + ... + @D*xD
df(x,®)/dOi="?

df(x,®)/d®1=x1

df(x,®)/d 02 =x2

Gradient of f(x, @) wrt © is [x1 x2 ... xD] i.e. x



Loss gradients
oF,
7all)
00,
i.e. how does the loss change as a function of the weights
We want to change weights in a way that makes the loss decrease as fast
as possible

Different notations:

Vel

tangent line

slope= f'(x)




Gradient descent

We’'ll update weights { { ] |
Move in direction opposite to gradient: @.(7?1) _ 9,(7) . ?VE(@.(T))
Time

Learning rate

| ‘ = High Loss

. ‘ original ©

04

/

negative gradient direction

Figure from Andrej Karpathy



Gradient descent

Iteratively subtract the gradient with respect to
the model parameters (0)

|.e. we’re moving in a direction opposite to the
gradient of the loss

|.e. we're moving towards smaller loss



Lab 4: Gradient Descent

Duration: 10 min

s
jupyter P
.\./




Tojoin,goto: ahaslides.com/81RMT S AhaSlides

Please, fromLab 4: Gradient Descent [Coding Exercise 2.1],
submit the generated regression plot.

Allen Jung

Allen fromiphone
%

Abhay -
“ 4
-~ ~ —

v Slide 1 selected for PowerPoint v




13
How to compute the loss/gradient?

In classic gradient descent, we compute the gradient from the loss
for all training examples

Mini-batch gradient descent: Only use some of the data for each
gradient update, cycle through training examples multiple times
Each time we've cycled through all of them once is called an
‘epoch’
Allows faster training (e.g. on GPUs), parallelization
Some benefits for learning due to randomness



Learning rate selection

The effects of step size (or “learning rate”)
25 A

loss

very high learning rate

20

low learning rate

high learning rate

good learning rate
0.00 20 40 60 80 100 ’

poch “ epoch

https://www.deeplearning.ai/ai-notes/optimization/

Andrej Karpathy


https://www.deeplearning.ai/ai-notes/optimization/
https://www.deeplearning.ai/ai-notes/optimization/
https://www.deeplearning.ai/ai-notes/optimization/

Training a Neural Network

Step 1-
Random initialization

l

Desired loss
Inputs outputs function
actual
Step 2- outputs Step 3-
Feed Forward Calculate loss function
gradient
for
the last \ 4
layer Step 4-
Step 5-
Baskpropagats ¢ Calculate the

Loss (error)
P metric

derivative of error

at this step

Slide Credit: Prof. Sandra Avila - UNICAMP



https://www.ic.unicamp.br/~sandra/

Gradient descent in multi-layer nets

We’'ll update weights
Move in direction opposite to gradient:

-9-(’7""1) — @(T) _ WVE(Q(T))

How to update the weights at all layers?
Answer: backpropagation of error from higher layers to lower layers



127

Backpropagation: Graphic example

First calculate error of output units and use this to change the
top layer of weights.

(2)
Calculate how to W

update weights into j
(update at end of iter)

wi()

Adapted from Ray Mooney, equations from Chris Bishop



Backpropagation: Graphic example

Next calculate error for hidden units based on errors on the
output units it feeds into.

Adapted from Ray Mooney, equations from Chris Bishop



Backpropagation: Graphic example

Finally update bottom layer of weights based on errors
calculated for hidden units.

Update weights into i

Adapted from Ray Mooney, equations from Chris Bishop



Backpropagation
A Simple Example



T
Backpropagation: A Simple Example

fx,y,2)=(x+y)z
e.g,x=-2,y=5,z=-4

Slide Credit: Prof. Sandra Avila - UNICAMP

Andrej Karpathy


https://www.ic.unicamp.br/~sandra/

T
Backpropagation: A Simple Example

fx,y,2)=(x+y)z
e.g,x=-2,y=5,z=-4

Slide Credit: Prof. Sandra Avila - UNICAMP

Andrej Karpathy


https://www.ic.unicamp.br/~sandra/

T
Backpropagation: A Simple Example

fx, v, 2)=(x+y)z
e.g,x=-2,y=5,z=-4

0 0
g=x+Yy 8?6_1 a;]—l

_ o _, 9 _,
J =4z og ~° o7

Jf odf oOf
Want 5 5y oz

Andrej Karpathy

Slide Credit: Prof. Sandra Avila - UNICAMP



https://www.ic.unicamp.br/~sandra/

T
Backpropagation: A Simple Example

fx, v, 2)=(x+y)z
e.g,x=-2,y=5,z=-4

0 0
g=x+Yy 8?6_1 a;]—l

_ o _, 9 _,
J =4z og ~° o7

Jf odf oOf
Want 5 5y oz

Andrej Karpathy

Slide Credit: Prof. Sandra Avila - UNICAMP
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T
Backpropagation: A Simple Example

fx, v, 2)=(x+y)z
e.g,x=-2,y=5,z=-4

0 0
g=x+Yy 8?6_1 a;]—l

_ o _, 9 _,
J =4z og ~° o7

Jf odf oOf
Want 5 5y oz

Andrej Karpathy

Slide Credit: Prof. Sandra Avila - UNICAMP
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T
Backpropagation: A Simple Example

fx, v, 2)=(x+y)z
e.g,x=-2,y=5,z=-4

0 0
g=x+Yy 8?6_1 a;]—l

_ o _, 9 _,
J =4z og ~° o7

Jf odf oOf
Want 5 5y oz

Andrej Karpathy

Slide Credit: Prof. Sandra Avila - UNICAMP



https://www.ic.unicamp.br/~sandra/

T
Backpropagation: A Simple Example

Sy, 2)=(x+y)z X2
eg,x=-2,y=5,z=-4 5 3

. . ¥ f-12
qgq=x+Y az =1 0;] =1 I

f=q o=z g=4 T
07

Jf odf oOf
Want 5 5y oz

Andrej Karpathy

Slide Credit: Prof. Sandra Avila - UNICAMP
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T
Backpropagation: A Simple Example

Sy, z)=(x+y)z X2
eg,x=-2,y=5,z=-4 5 3
99 _1 99 g f1_12
g=x+Yy =1 =1
ox oy 2'4
3
f=qz 9 —, 9 - of
0q aZ a—q

Jf odf oOf
Want 5 5y oz

Andrej Karpathy

Slide Credit: Prof. Sandra Avila - UNICAMP
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T
Backpropagation: A Simple Example

fx, v, 2)=(x+y)z
e.g,x=-2,y=5,z=-4

0 0
g=x+Yy 8?6_1 a;]—l

_ o _, 9 _,
J =4z og ~° o7

Jf odf oOf
Want 5 5y oz

Andrej Karpathy

Slide Credit: Prof. Sandra Avila - UNICAMP
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T
Backpropagation: A Simple Example

fx, v, 2)=(x+y)z
e.g,x=-2,y=5,z=-4

0 0
g=x+Yy 8?6_1 a;]—l

f=qz %=z g];— of

Jf odf oOf
Want 5 5y oz

Andrej Karpathy

Slide Credit: Prof. Sandra Avila - UNICAMP
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Backpropagation: A Simple Example

fx, v, 2)=(x+y)z
e.g,x=-2,y=5,z=-4

qgq=x+Y g?c =1 g;] =1

_ of _ ., Of _
] =4 dg < 0z Chain rule %
Want: 9 9f of Jdf _ df oq

axay’az dy  0q

Andre Slide Credit: Prof. Sandra Avila - UNICAMP
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Backpropagation: A Simple Example

fx, v, 2)=(x+y)z
e.g,x=-2,y=5,z=-4

qgq=x+Y g?c =1 g;] =1

_ of _ ., Of _
] =4 dg < 0z Chain rule %
Want: 9 9f of Jdf _ df oq

axay’az dy  0q

Andre Slide Credit: Prof. Sandra Avila - UNICAMP
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T
Backpropagation: A Simple Example

fx, v, 2)=(x+y)z
e.g,x=-2,y=5,z=-4

0 0
g=x+Yy d?c =1 a;]—l
g O o . p
] =4 dg < 0z Chain rule Wf
of of Oof O _ 4x1=4
Want: o Iy oz Oy X

Slide Credit: Prof. Sandra Avila - UNICAMP

Andrej Karpathy
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Backpropagation: A Simple Example

fx, v, 2)=(x+y)z
e.g,x=-2,y=5,z=-4

0 0
g=x+Yy 8?6_1 a;]—l

_ o _, 9 _,
J =4z og ~° o7

Jf odf oOf
Want 5 5y oz

Andrej Karpathy

Slide Credit: Prof. Sandra Avila - UNICAMP
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Backpropagation: A Simple Example

fx, v, 2)=(x+y)z
e.g,x=-2,y=5,z=-4

0 0
g=x+Yy 8?6_1 a;]—l

_ o _, 9 _,
J =4z og ~° o7

Jf odf oOf
Want 5 5y oz

Andrej Karpathy

Slide Credit: Prof. Sandra Avila - UNICAMP
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Slide Credit: Prof. Sandra Avila - UNICAMP

Andrej Karpathy
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“local gradient”

0.
o0x

Slide Credit: Prof. Sandra Avila - UNICAMP

Andrej Karpathy
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“local gradient”

0.
o0x

gradients

Slide Credit: Prof. Sandra Avila - UNICAMP

Andrej Karpathy


https://www.ic.unicamp.br/~sandra/

gradients

Slide Credit: Prof. Sandra Avila - UNICAMP

Andrej Karpathy


https://www.ic.unicamp.br/~sandra/

“local gradient”

0.
o0x

gradients

0Y i karpatny Slide Credit: Prof. Sandra Avila - UNICAMP
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“local gradient”

0

gradients

a‘y Andrej Karpathy Slide Credit: Prof. Sandra Avila - UNICAMP
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Training a Neural Network

Step 1-
Random initialization

l

Step 6-
Update the weights

Desired loss
Inputs outputs function
actual
Step 2- outputs Step 3-
Feed Forward Calculate loss function
gradients gra}glrent
flc;r :Irl the last \ 4
¢ Backpropagals ¢ Calculate the

Update
frequency

Optimizer function (delta
rule / adadelta...)

Loss (error)
P metric

derivative of error

at this step

Slide Credit: Prof. Sandra Avila - UNICAMP
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Training a Neural Network

Step 1- .
Random initialization Desired loss
l Inputs outputs function
Step 7 actual Loss (error)
ep I~ outputs
lterate until > Step 2- 0 > Step3- g metric
convergence Feed Forward Calculate loss function at this step
gradients grig'fnt
| flc;r :Irl the last \ 4
/ layer Step 4-
otep & < Step 5- ¢ Calculate the
Update the weights
¥ = Backpropagate derivative of error

Update Optimizer function (delta
frequency rule / adadelta...) Slide Credit: Prof. Sandra Avila - UNICAMP



https://www.ic.unicamp.br/~sandra/
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“A friendly introduction to Neural Networks”
https://youtu.be/BR9h47Jtqgyw

Neural Network

A friendly introduction to Deep Learning and Neural Networks
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25 train_size = int (0.75*1len(data))
6 idx = torch.randperm(len(data))
$2 27 train_sampler = SubsetRandomSampler (idx[O:train_size])
test_sampler = SubsetRandomSampler (idx[train_size:])
O

0 train_loader = DataLoader(data, sampler=train_sampler,
batch_size=10, num_workers=4)

3 test_loader = DatalLoader(data, sampler=test_sampler,
34 batch size=10, num workers=4)
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Summary
- We use deep neural networks because of their strong performance in
practice

- Training deep neural nets
We need an objective function that measures and guides us towards good performance
We need a way to minimize the loss function: stochastic gradient descent

We need backpropagation to propagate error from end of net towards all layers and
change weights at those layers

- Practices for preventing overfitting
Regularization



