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let n be the size of the array
count = 0
for i from 1 to n:
for j from 1 to n:
count = count + 1
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[Key CS Link] Summations
💻 Analyzing a Nested Loop
Consider a simple, but common, programming task: multiplying every element
of an array with every other element. A naive approach would use two nested
for loops. The number of operations, and thus the algorithm's runtime, can be
expressed as a summation.

Here's a pseudocode example:



Today's topics
• Sequences and Summations

• Specifying and recognizing sequences
• Summation notation
• Closed forms of summations
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Definition: A sequence is a function from a subset of the set of integers to a set 
S. We use the notation an to denote the image of the integer n. an is called a 
term of the sequence.

Examples:
• 1, 3, 5, 7, 9, 11 A sequence with 6 terms
• 1, 1/2, 1/3, 1/4, 1/5, … An infinite sequence

Note:  The second example can be described as the sequence {an} where an = 
1/n
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Sequences are ordered lists of elements



In-class Activities
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What makes sequences so special?
Question: Aren’t sequences just sets?

Answer: The elements of a sequence are members of a set, but a sequence is 
ordered, a set is not.

Question:  How are sequences different from ordered n-tuples?

Answer: An ordered n-tuple is ordered, but always contains n elements. 
Sequences can be infinite!
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Some special sequences
Geometric progressions are sequences of the form {arn} 
where a and r are real numbers

Examples:
• 1, 1/2, 1/4, 1/8, 1/16, … a = 1, r = ½
• 1, -1, 1, -1, 1, -1, … a = 1, r = -1

Arithmetic progressions are sequences of the form 
{a + nd} where a and d are real numbers.

Examples:
• 2, 4, 6, 8, 10, … a = 2, d = 2
• -10, -15, -20, -25, … a = -10, d = -5
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In-class Activities

8

Submit on



Questions to ask yourself:

1. Are there runs of the same value?

2. Are terms obtained by multiplying the previous value by a particular amount? (Possible 
geometric sequence)

3. Are terms obtained by adding a particular amount to the previous value? (Possible 
arithmetic sequence)

4. Are terms obtained by combining previous terms in a certain way?

5. Are there cycles amongst terms?
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Sometimes we need to figure out the formula for a 
sequence given only a few terms



Problem 1: 1, 5, 9, 13, 17, …
• Arithmetic sequence with a = 1, d = 4

Problem 2: 1, 3, 9, 27, 81, …
• Geometric sequence with a = 1, r = 3

Problem 3: 2, 3, 3, 5, 5, 5, 7, 7, 7, 7, 11, 11, 11, 11, 11, …
• Sequence in which the nth prime number is listed n times

Problem 4: 1, 1, 2, 3, 5, 8, 13, 21, 34, …
• Each term is the sum of the two previous terms

This is called the Fibonacci sequence.
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What are the formulas for these sequences?



This is a recursive approach to specifying the terms
• Later terms are specified from earlier terms

For instance, consider this definition of the Fibonacci sequence:
• 𝑓! = 0
• 𝑓" = 1
• For any 𝑛 > 1, 𝑓# = 𝑓#$" + 𝑓#$%

Note that we need at least one initial condition
• Like a base case when writing recursive code
• We’ll return to recursion later in the term
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Sequences are often specified using recurrence relations



Summation notation lets us compactly 
represent the sum of terms am + am+1 + … + an

Example: ∑1≤i≤5 i2 = 1 + 4 + 9 + 16 + 25 = 55

Index of summation Lower limit

Upper limit
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Sometimes we want to find the sum of the terms in a 
sequence



Constant factors can be pulled out of the 
summation

A summation over a sum (or difference) can be split into a sum (or 
difference) of smaller summations

Example:
• ∑1≤j≤3 (4j + j2) = (4+1) + (8+4) + (12+9) = 38
• 4∑1≤j≤3 j + ∑1≤j≤3 j2 = 4(1+2+3) + (1+4+9) = 38
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Summations are linear: The usual laws of algebra apply
!
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Example sums
Example: Express the sum of the first 50 terms of the sequence 1/n2 for n = 1, 
2, 3, …

Answer:

Example: What is the value of

Answer: 
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Example: Compute

Answer:  (0 + 2) + (2 + 2) + (4 + 2) + (6 + 2) = 20

Example:  Let f(x) = x3 + 1. Compute 

Answer:  f(1) + f(3) + f(5) + f(7) = 2 + 28 + 126 + 344 = 
500
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We can also compute the summation of the elements of 
some set



In-class Activities
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This is particularly useful when combining two or more 
summations. For example:

Let j = k - 1

Need to add 1 
to each j
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Sometimes it is helpful to shift the index of a summation



Often, you’ll see this when analyzing nested loops 
within a program (i.e., CS 1501/1502)

Example: Compute

Solution: 

Expand inner sum

Simplify if possible

Expand outer sum
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Summations can be nested within one another



Would you really want to calculate              by hand?

Fortunately, we have a closed-form solution for 
computing the sum of a geometric series:

So, Why?
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Computing the sum of a geometric series by hand is time 
consuming…
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Proof of geometric series closed form

On Whiteboard



Sum Closed Form
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There are other closed form summations that you should 
know



Final thoughts
• Sequences allow us to represent (potentially infinite) ordered lists

of elements

• Summation notation is a compact representation for adding
together the elements of a sequence

• Next time:
• Midterm exam review
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