

CS 441: Logic Puzzles and Propositional Equivalence

PhD. Nils Murrugarra-Llerena
nem177@pitt.edu

[Key CS Link] Logic Puzzle

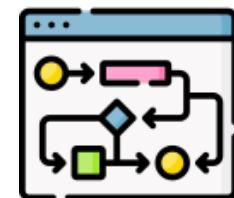
The Case of the Missing Laptop

A brand-new, top-of-the-line laptop has gone missing from the university's computer science lab. There are three suspects: Alice, Bob, and Carol, all known to have been in the lab that day. Your job, as the Logic Detective Agency, is to use the provided clues to deduce who took the laptop.

The Suspects: Alice, Bob, and Carol

The Clues:

- If Alice took the laptop, then she was in the computer lab at 2 PM.
- Carol was in the lab at 2 PM.
- If Bob took the laptop, then he was not in the lab at 2 PM.
- Either Alice took the laptop or Carol took the laptop.
- If Carol was in the lab at 2 PM, then she did not take the laptop.



Precise /
accurate
Programs

Who took the Laptop?

Today's topics

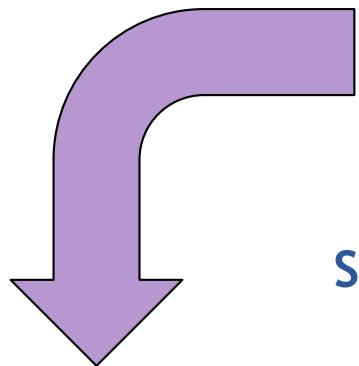
- Logic puzzles
- Propositional equivalences

A technical support riddle

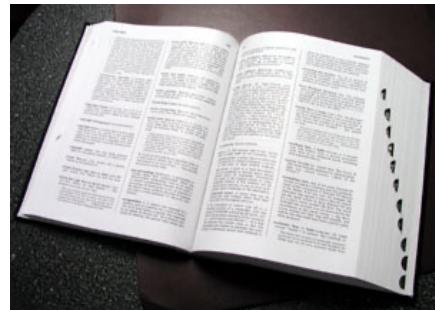
Alice and Bob are technical support agents. If an agent is having a bad day, they will always lie to you. If an agent is having a good day, they will always tell you the truth. Alice tells you that Bob is having a bad day. Bob tells you that he and Alice are both having the same type of day. Can you trust the advice you receive from Alice during your call?

How do we solve this
type of problem?

Solving logic puzzles systematically



Step 1: Identify rules
and constraints



Step 2: Assign propositions
to key concepts

Step 3: Make assumptions
and reason logically!

Technical support revisited

Alice and Bob are technical support agents. If an agent is having a bad day, they will always lie to you. If an agent is having a good day, they will always tell you the truth. Alice tells you that Bob is having a bad day. Bob tells you that he and Alice are both having the same type of day. Can you trust the advice you receive from Alice during your call?

Step 1: Identify the rules of the puzzle

Step 2: Assign propositions to the key concepts in the puzzle

Step 3: Make assumptions and reason logically

[Case 1]

Let's assume **A** is **True**,

So Alice is **telling the truth**.

Therefore, Alice's Statement "Bob is having a bad day" is **True**.

Bob **lies**

- **A** \equiv "Alice is having a good day"
- **B** \equiv "Bob is having a good day"

Bob's statement that he and Alice are both having the same type of day is a **lie** \rightarrow **Alice and Bob have a different type of day**

All these statements are consistent with our assumptions 😊

[Case 2]

Let's assume **A** is **False** \rightarrow "Alice is having a bad day",

So Alice **lies**.

Therefore, Alice's Statement "Bob is having a bad day" is **False**. \rightarrow "Bob is having a good day"

Bob is **telling the truth**.

Bob's statement that he and Alice are both having the same type of day is **True** \rightarrow **However ...**

There is a contradiction.

Another example

Consider a group of friends: **Fredrik**, **Anuradha**, and **Cai**. If **Fredrik** is not the oldest, then **Anuradha** is. If **Anuradha** is not the youngest, then **Cai** is the oldest. Determine the relative ages of Fredrik, Anuradha, and Cai.

Propositions:

Rules:

Step 3: Make assumptions and reason logically

[Case 1: Fredrik is the oldest]

R1 does not apply,

It is irrelevant to consider Anuradha is the oldest

Consider R2,

Let's consider Anuradha is “in the middle”, so Cai is the oldest [Contradiction]

Let's consider Anuradha is the youngest, R2 does not apply
Cai is in “in the middle”

All these statements are consistent with our assumptions ☺

[Case 2: Fredrik is not the oldest]

Consider R1,

Anuradha is the oldest

Consider R2,

Cai is the oldest [Contradiction]

R1: $\neg f \rightarrow a$ (If Fredrik is not the oldest, Anuradha is the oldest)

R2: $\neg a' \rightarrow c$ (If Anuradha is not the youngest, then Cai is the oldest)

Sometimes no solution is a solution!

Alice and Bob are technical support agents. Alice says, “I am having a good day.” Bob says, “I am having a good day.” Can you trust either Alice or Bob?

Step 1: Identify rules

Step 2: Assign propositions

Step 3: Make assumptions and reason logically

[Case 1]

Let's assume **A** is **True**,

Unfortunately, we can not say anything about **B**.

- **A** \equiv “Alice is having a good day”
- **B** \equiv “Bob is having a good day”

[Case 2]

Let's assume **B** is **True**,

Unfortunately, we can not say anything about **A**.

→ [No solution] We need more information to make any conclusion.

In-class Activities

Activity 1: **Alice** and **Bob** are technical support agents working to fix your computer. **Alice** tells you that Bob is having a bad day today and that you should expect a long wait before your computer is fixed. **Bob** tells you not to worry, Alice is just having a bad day—your computer will be ready in no time.

[\[miro\]](#)

Question: Can you draw any conclusions about when your computer will be fixed? If so, what can you learn?

Submit on

Steps:

1. Introduce to a classmate
2. Work in pairs on the exercise
3. Submit answers on miro
4. Volunteers to share answers

[Key CS Link] Propositional Equivalences

Debugging a Conditional Statement

Imagine you're a programmer working on an e-commerce website. There's a bug: a discount code isn't being applied correctly. You examine the code and find a complex conditional statement that determines if a user qualifies for the discount.


```
if not(isGoldMember or (hasPurchasedBefore and hasLoggedInRecently))  
    # apply discount  
else:  
    # don't apply discount
```

This code snippet is confusing. The logic says "if it's **NOT** true that the user is a Gold Member **OR** (they have purchased before **AND** have logged in recently), **then** apply the discount." The nested NOT and OR make it hard to read and easy to introduce bugs. **How can we simplify this expression?**

Propositional equivalences: preliminaries

Definition: A **tautology** is a compound proposition that is always **true**, regardless of the truth values of the propositions occurring within it.

Definition: A **contradiction** is a compound proposition that is always **false**, regardless of the truth values of the propositions occurring within it.

Definition: A **contingency** is a compound proposition whose truth value is dependent on the propositions occurring within it.

Examples

Are the following compound propositions tautologies, contradictions, or contingencies?

- $p \vee \neg p$ **tautology**
- $\neg p \wedge p$ **contradiction**
- $p \vee q$ **contingency**

What are logical equivalences and why are they useful?

Definition: Compound propositions p and q are **logically equivalent** exactly when $p \leftrightarrow q$ is a tautology. The notation $p \equiv q$ means that p and q are logically equivalent.

Logical equivalences are extremely useful!

- Aid in the construction of proofs
- Allow us to simplify compound propositions

Example: $p \rightarrow q \equiv \neg p \vee q$

*How do we prove
this type of
statement?*

Proving logical equivalences the “easy” (but tedious) way

We can prove simple logical equivalences using our good friend the truth table!

Prove: $p \rightarrow q \equiv \neg p \vee q$

p	q	$\neg p$	$\neg p \vee q$	$p \rightarrow q$
T	T			
T	F			
F	T			
F	F			

DeMorgan's laws allow us to distribute negation over compound propositions

Two laws:

- $\neg(p \vee q) \equiv \neg p \wedge \neg q$
- $\neg(p \wedge q) \equiv \neg p \vee \neg q$

If "p or q" isn't true, then neither p nor q is true

If "p and q" isn't true, then at least one of p or q is false

Prove: $\neg(p \vee q) \equiv \neg p \wedge \neg q$

p	q	$p \vee q$	$\neg(p \vee q)$	$\neg p$	$\neg q$	$\neg p \wedge \neg q$
T	T	T	F	F	F	F
T	F	T	F	F	T	F
F	T	T	F	T	F	F
F	F	F	T	T	T	T

Using DeMorgan's laws

Use DeMorgan's laws to negate the following expressions:

- “Tito is wearing blue pants and a sweatshirt”
 - $b \wedge s$
 - $\neg(b \wedge s) \equiv \neg b \vee \neg s$
 - Tito is not wearing blue pants or is not wearing a sweatshirt
- “I will drive or I will walk”
 - $d \vee w$
 - $\neg(d \vee w) \equiv \neg d \wedge \neg w$
 - I will not drive and I will not walk

In-class Activities

Activity 2: Prove that $\neg(p \wedge q)$ and $\neg p \vee \neg q$ are logically equivalent, i.e., $\neg(p \wedge q) \equiv \neg p \vee \neg q$. This is the second DeMorgan's law. [\[miro\]](#)

Activity 3: Use DeMorgan's laws to negate the following propositions: [\[miro\]](#)

- Today I will go running or ride my bike
- Tom likes both pizza and beer

Activity 4: Rewrite conditional statement from *Debugging a Conditional Statement* problem. [\[miro\]](#)

Submit on
 miro

Steps:

1. Introduce to a classmate
2. Work in pairs on the exercise
3. Submit answers on miro
4. Volunteers to share answers

Sometimes using truth tables to prove logical equivalencies can become cumbersome

Recall that for an equivalence with n propositions, we need to build a truth table with 2^n rows

- Fine for tables with $n = 2, 3$, or 4
- Consider $n = 30$ —we would need 1,073,741,824 rows in the truth table!

Another option: Direct manipulation of compound propositions using known logical equivalencies

There are many useful logical equivalences

Equivalence	Name

More useful logical equivalences

Equivalence	Name

These, and more equivalencies, are in the book!

Prove that $(p \wedge q) \rightarrow (p \vee q)$ is a tautology

Prove: $(p \rightarrow q) \vee (p \rightarrow r) \equiv p \rightarrow (q \vee r)$

Final Thoughts

- Logic can help us solve real world problems and play challenging games
- Logical equivalences help us simplify complex propositions and construct proofs
 - More on proofs later in the course
- Next:
 - Predicate logic and quantification
 - Please read section 1.4