CS 2770: Retrieval Augmented Generation (RAG) for Large Language Models

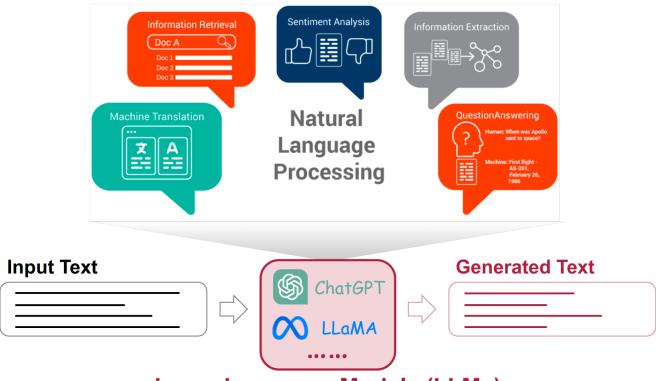
PhD. Nils Murrugarra-Llerena

nem177@pitt.edu

Plan for this lecture

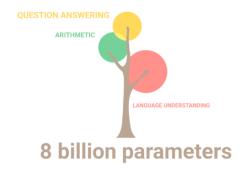
- 1. Introduction of Retrieval Augmented Large Language Models (RA LLMs)
- 2. Architecture of RA-LLMs and Main Modules
- 3. Learning Approach of RA-LLMs
- 4. Challenges and Future Directions of RA-LLMs

Large Language Models (LLMs)



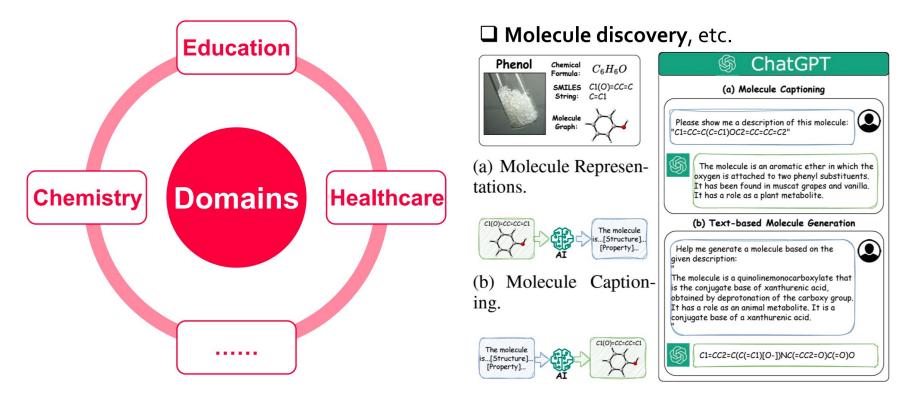
Large Language Models (LLMs)

Large Language Models (LLMs)



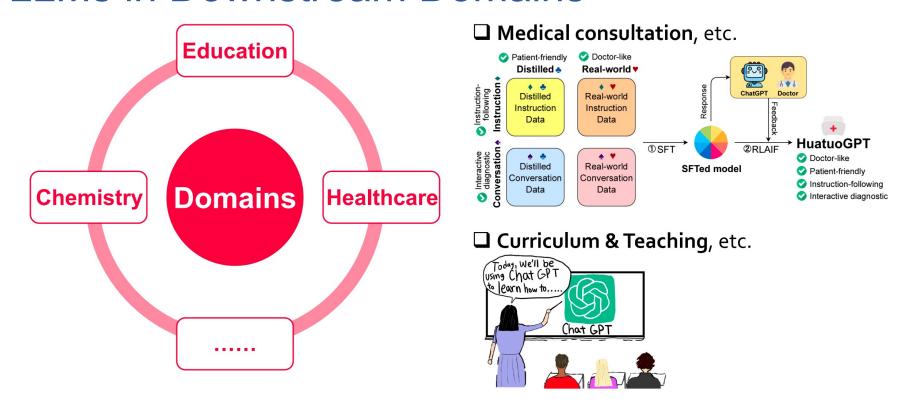
https://github.com/Hannibal046/Awesome-LLM/

LLMs in Downstream Domains



Li et al, 2024, Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective, Liu et al., 2024, MolecularGPT: Open Large Language Model (LLM) for Few-Shot Molecular Property Prediction,

LLMs in Downstream Domains



Zhang et al., 2023, HuatuoGPT, towards Taming Language Model to Be a Doctor

Challenges and Risks of LLMs

■ Hallucination

The generation of inaccurate, nonsensical, or detached text, posing potential risks and challenges for organizations utilizing these models.

☐ Domain-specific knowledge & expertise

LLMs might not perform well in many domainspecific fields like medicine, law, finance, and more, because of the lack of domain-specific knowledge and expertise.

□ Privacy

Various risks to data privacy and security exist at different stages of LLMs, which becomes particularly acute in light of incidents where sensitive internal data was exposed to LLMs.

■ Inconsistency

Sometimes they nail the answer to questions, other times they regurgitate random facts from their training data.

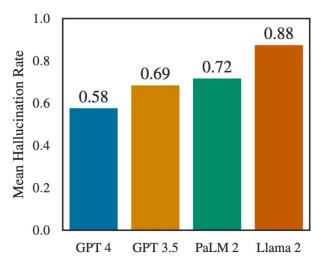
9

LLMs' Challenges in Vertical Domains

Domain of Law

In a new study by **Stanford RegLab** and **Institute for Human- Centered AI** researchers, it is demonstrated that legal hallucinations are pervasive and disturbing: **hallucination rates range from 69% to 88% in response to specific legal queries** for state-of-the-art language models.

Hallucinations are common across all LLMs when they are asked a direct, verifiable question about a federal court case

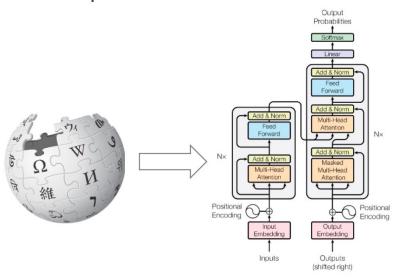


Dahl M, et al. 2024, Large legal fictions: Profiling legal hallucinations in large language models.

Why Large Language Models Work Well?

☐ Big Model + Big Training Data

Storing knowledge in the parametric model!



Retrieval-Augmented Large Language Models (RA-LLMs)

- LLMs cannot memorize all (particularly long-tail) knowledge in their parameters
- ☐ Lack of domain-specific knowledge, updated information, etc

Hallucination & Unable to answer

Re-training / Finetuning?

Retrieval-Augmented Large Language Models (RA-LLMs)

Data for Training LLMs

- Low quality
- General
- Fixed
- Hard to update

Content generation

Close-book exam

(Hard mode, have to remember everything)

Plan for this lecture

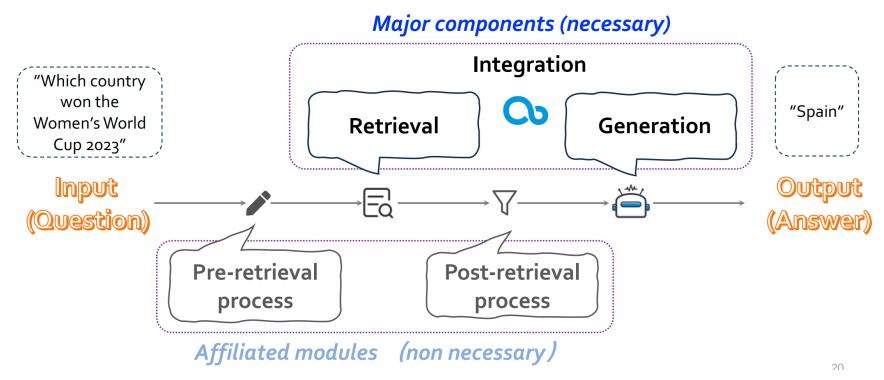
- 1. Introduction of Retrieval Augmented Large Language Models (RA LLMs)
- 2. Architecture of RA-LLMs and Main Modules
- 3. Learning Approach of RA-LLMs
- 4. Challenges and Future Directions of RA-LLMs

Plan for this lecture

- 1. RA-LLM architecture overview
- 2. Retriever in RA-LLMs
- 3. Retrieval results integration
- 4. Pre/Post-retrieval techniques

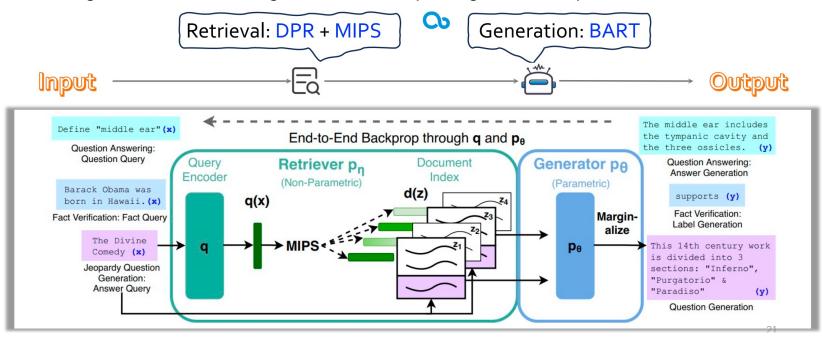
RA-LLM Architecture: Standard Pipeline

Technical component illustration in a RA-LLM for the Q&A task



A Simple Retrieval-Augmented Generation Model

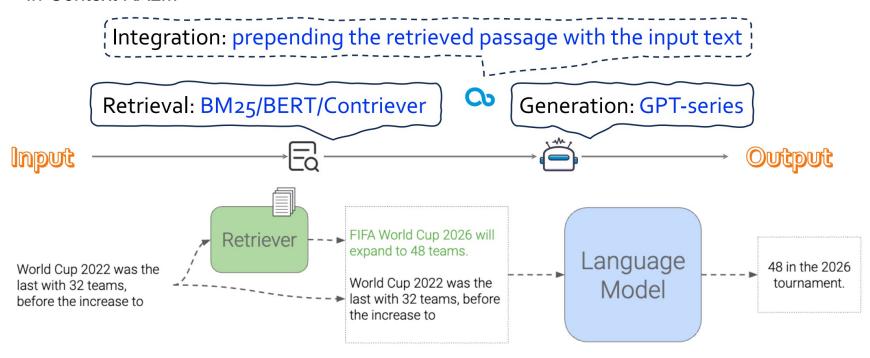
RAG Integration: concatenating each retrieved passage with the question



Lewis et al. 2020. "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks"

A Simple Retrieval-Augmented Generation Model

In-Context RALM



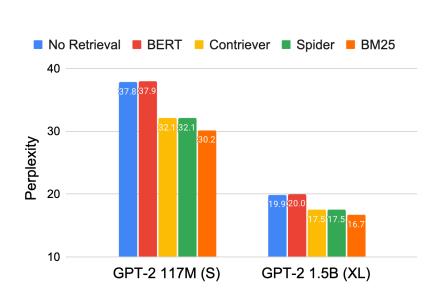
Ram et al. 2023, In-Context Retrieval-Augmented Language Models

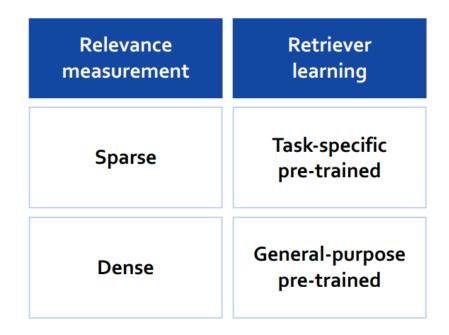
Plan for this lecture

- 1. RA-LLM architecture overview
- 2. Retriever in RA-LLMs
- 3. Retrieval results integration
- 4. Pre/Post-retrieval techniques

RA-LLM Architecture: Retriever Types

Different types of retriever deliver different generation performance



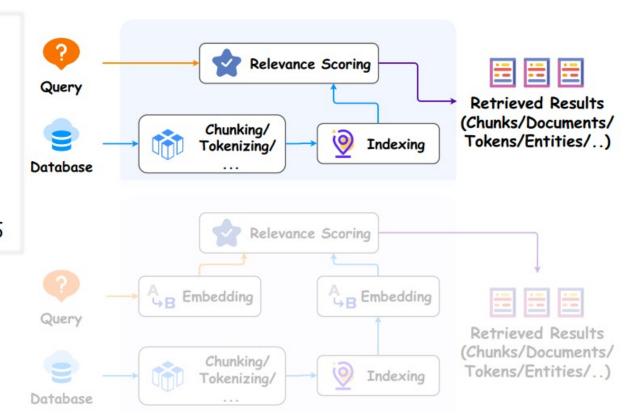


Ram et al. 2023, In-Context Retrieval-Augmented Language Models

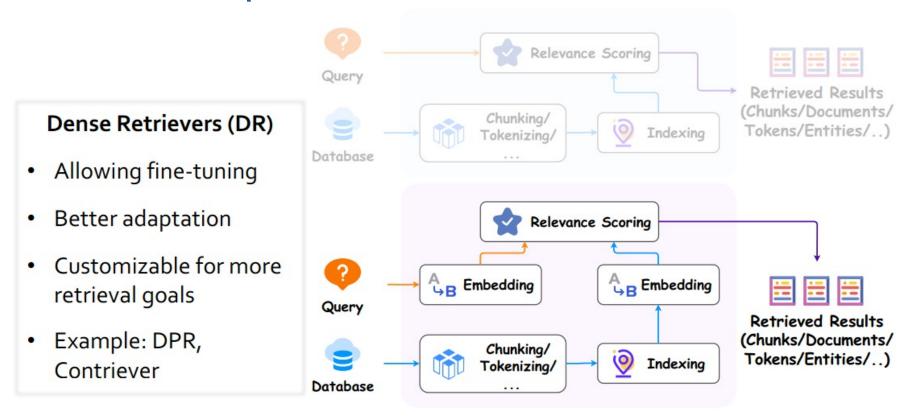
Dense v.s. Sparse Retrievers

Sparse Retrievers (SR)

- Feasible to apply
- High efficiency
- Fine performance
- Example: TF-IDF, BM25

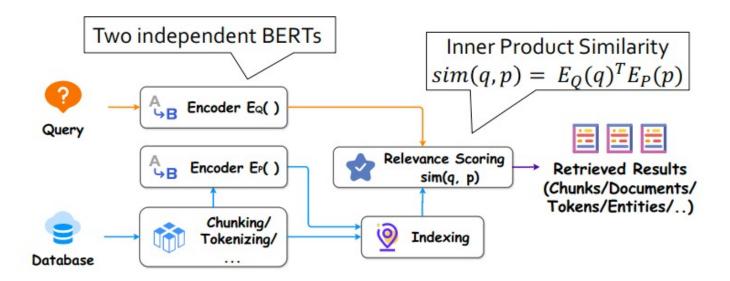


Dense v.s. Sparse Retrievers



Task-Specific Pre-trained Retriever (Supervised)

Dense Passage Retriever (DPR): Pretrained for Question Answering (QA)



Karpukhin et al. 2020. "Dense Passage Retrieval for Open-Domain Question Answering"

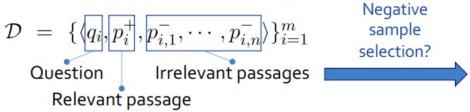
Task-Specific Pre-trained Retriever (Supervised)

- Dense Passage Retriever (DPR): Pretrained for Question Answering (QA)
 - Learning Objective

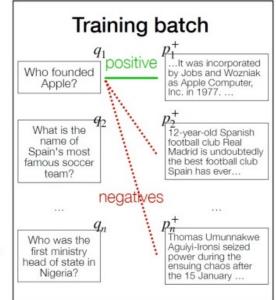
$$L(q_i, p_i^+, p_{i,1}^-, \cdots, p_{i,n}^-)$$

$$= -\log \frac{e^{\sin(q_i, p_i^+)}}{e^{\sin(q_i, p_i^+)} + \sum_{j=1}^n e^{\sin(q_i, p_{i,j}^-)}}$$

• Training data: Question-Passage Sets



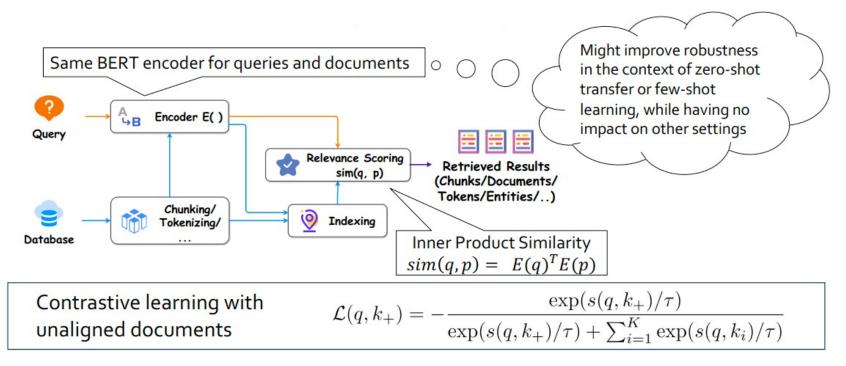
• Training with in-batch negatives



Karpukhin et al. 2020. "Dense Passage Retrieval for Open-Domain Question Answering"

General-Purpose Pre-trained Retriever (Unsupervised)

Contriever: Pre-trained with unsupervised learning



Izacard et al. 2022. "Unsupervised Dense Information Retrieval with Contrastive Learning

DPR & Contriever Performance on OpenQA Tasks

End-to-end QA (Exact	Match) Accuracy
----------------------	-----------------

Training	Model	NQ	TriviaQA	WQ	TREC	SQuAD	
Single	BM25+BERT (Lee et al., 2019)	26.5	47.1	17.7	21.3	33.2	
Single	ORQA (Lee et al., 2019)	33.3	45.0	36.4	30.1	20.2	
Single	HardEM (Min et al., 2019a)	28.1	50.9	-	-	-	
Single	GraphRetriever (Min et al., 2019b)	34.5	56.0	36.4	-	-	
Single	PathRetriever (Asai et al., 2020)	32.6	-	-	-	56.5	
Single	REALMWiki (Guu et al., 2020)	39.2	-	40.2	46.8	-	
Single	REALM _{News} (Guu et al., 2020)	40.4	-	40.7	42.9	-	
	BM25	32.6	52.4	29.9	24.9	38.1	
Single	DPR	41.5	56.8	34.6	25.9	29.8	
	BM25+DPR	39.0	57.0	35.2	28.0	36.7	
Multi	DPR	41.5	56.8	42.4	49.4	24.1	
	BM25+DPR	38.8	57.9	41.1	50.6	35.8	

Both widely applied in RAG and RA-LLMs

DPR in

RAG, FID, RETRO,

EPR, UDR, ...

NaturalQuestions

Contriever in Self-RAG, Atlas, RAVEN, ...

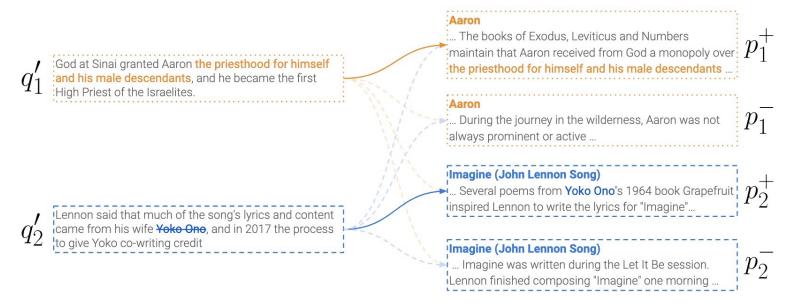
TriviaQA

Both better than the sparse retriever!

	R@5	R@20	R@100	R@5	R@20	R@100
Inverse Cloze Task (Sachan et al., 2021)	32.3	50.9	66.8	40.2	57.5	73.6
Masked salient spans (Sachan et al., 2021)	41.7	59.8	74.9	53.3	68.2	79.4
BM25 (Ma et al., 2021)	-	62.9	78.3	-	76.4	83.2
Contriever	47.8	67.8	82.1	59.4	74.2	83.2
supervised model: DPR (Karpukhin et al., 2020)	-	78.4	85.4	- 1	79.4	85.0

Task-Specific Pre-trained Retriever (Unsupervised)

Spider (Span-based unsupervised dense retriever)
 Recurring Span Retrieval: It is based on the notion of recurring spans within a document: given two paragraphs with the same recurring span, we construct a query from one of the paragraphs, while the other is taken as the target for retrieval

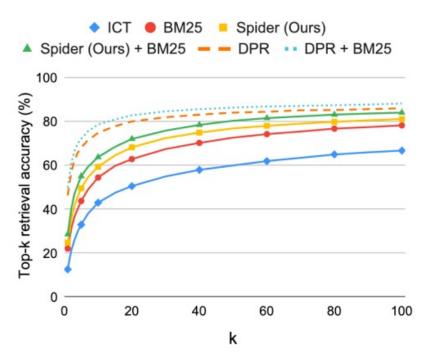


Ram et al., 2022, Learning to Retrieve Passages without Supervision

Task-Specific Pre-trained Retriever (Unsupervised)

Learning and results of Spider

$$-\log \frac{\exp \left(s(q_i', p_i^+)\right)}{\sum_{j=1}^m \left(\exp \left(s(q_i', p_j^+)\right) + \exp \left(s(q_i', p_j^-)\right)\right)}$$

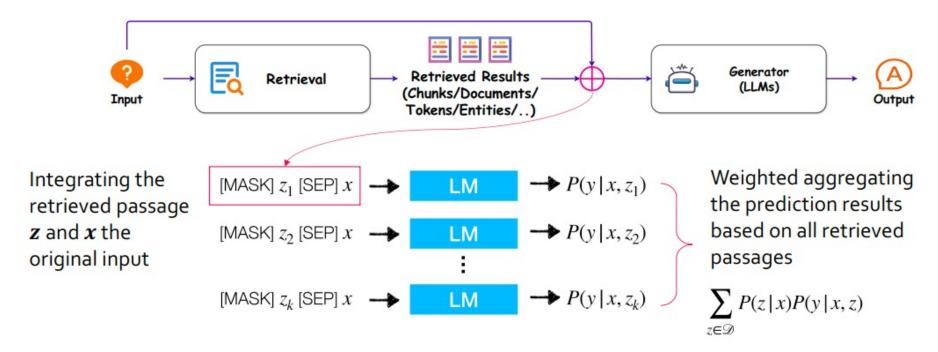


Ram et al., 2022, Learning to Retrieve Passages without Supervision

Plan for this lecture

- 1. RA-LLM architecture overview
- 2. Retriever in RA-LLMs
- 3. Retrieval results integration
- 4. Pre/Post-retrieval techniques

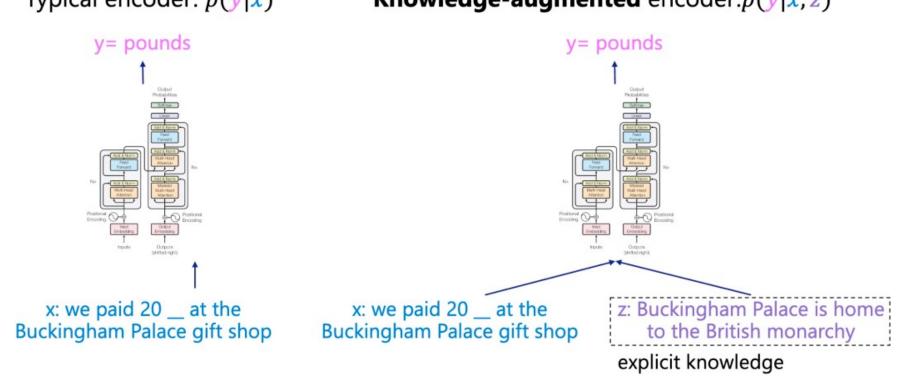
REALM



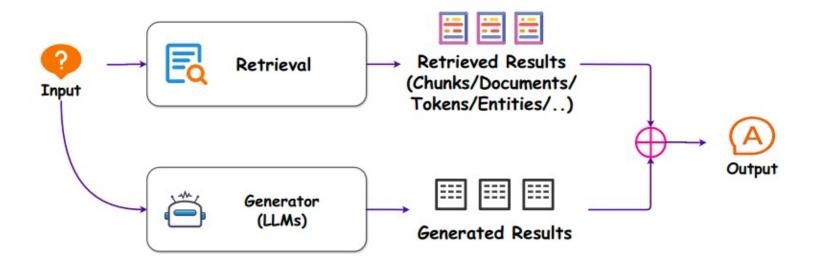
Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

Retrieval-Augmented Generator

Typical encoder: p(y|x) Knowledge-augmented encoder: p(y|x,z)

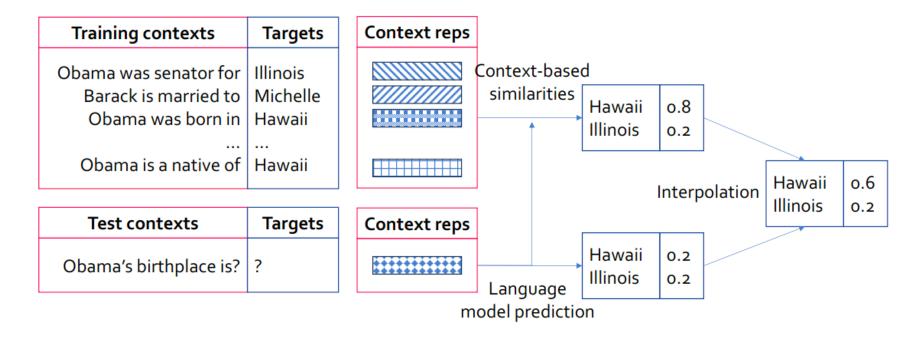


Retrieved Results Integration: Output-layer integration

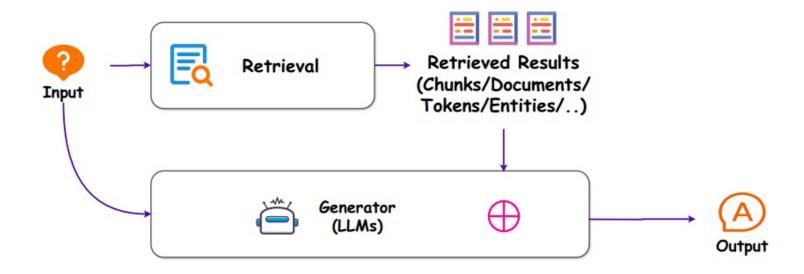


RA-LLM Architecture: Output-layer Integration

• **kNN-LM**: Combining retrieved probabilities and predicted ones in generation

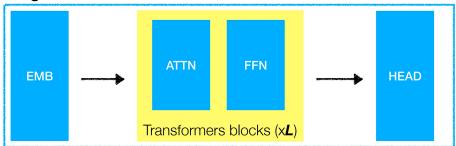


Khandelwal el al. 2019. "Generalization through Memorization: Nearest Neighbor Language Models"

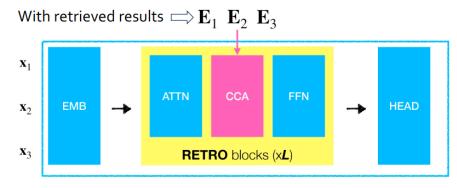


Borgeaud et al. 2022. Improving Language Models by Retrieving from Trillions of Tokens

Regular Decoder



Decoder to incorporate retrieved results (RETRO)

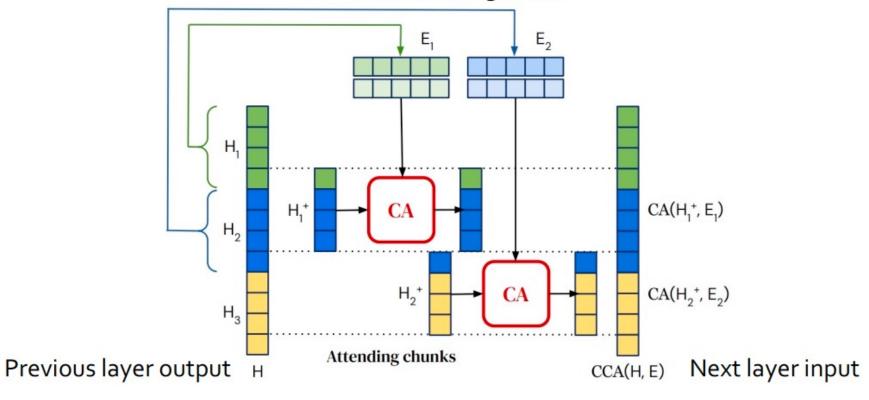


Chunked Cross Attention (CCA)

Borgeaud et al. 2022. Improving Language Models by Retrieving from Trillions of Tokens

Encoded neighbors Η, H_2 H₂+ H_3 Previous layer output

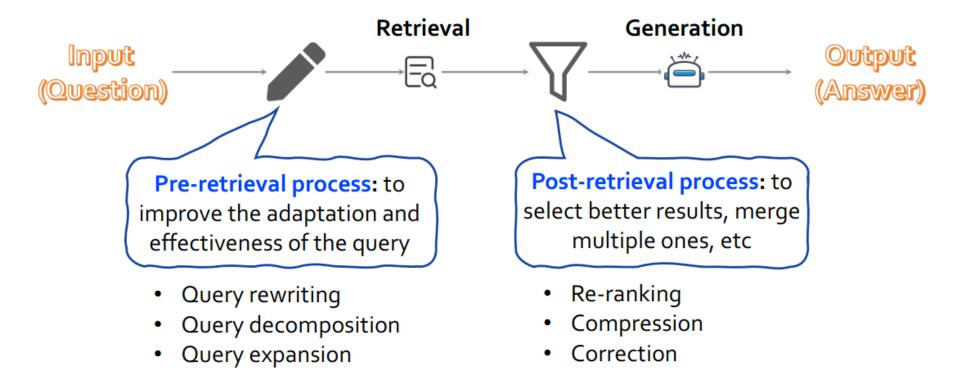
Encoded neighbors



Plan for this lecture

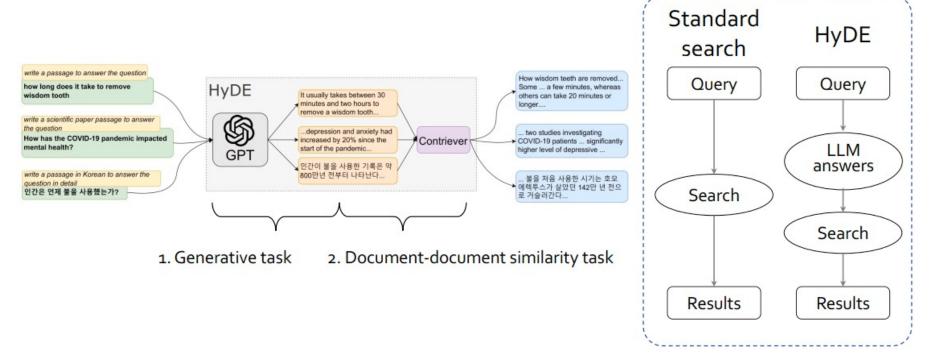
- 1. RA-LLM architecture overview
- 2. Retriever in RA-LLMs
- 3. Retrieval results integration
- 4. Pre/Post-retrieval techniques

Pre/Post-Retrieval Techniques



Pre-Retrieval Techniques

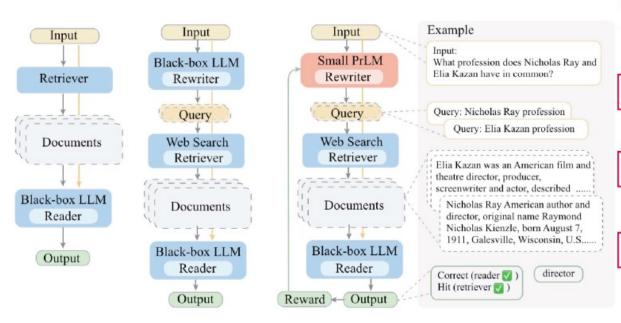
Query Rewriting: to improve the adaptation of the query



Gao et al. 2022. "Precise zero-shot dense retrieval without relevance labels"

Pre-Retrieval Techniques

HyDE: Hypothetical Document Embeddings



Model		EM	\mathbf{F}_1
	HotpotQA		
Direct		32.36	43.05
Retrieve-then-read		30.47	41.34
LLM rewriter		32.80	43.85
Trainable rewriter		34.38	45.97
	AmbigNQ		
Direct		42.10	53.05
Retrieve-then-read		45.80	58.50
LLM rewriter		46.40	58.74
Trainable rewriter		47.80	60.71
	PopQA		
Direct		41.94	44.61
Retrieve-then-read		43.20	47.53
LLM rewriter		46.00	49.74
Trainable rewriter		45.72	49.51

Works on different QA settings

Wang et al. 2023. "Query rewriting for retrieval-augmented large language models"

Pre-Retrieval Techniques

Query Expansion

LLM Prompts

Write a passage that answers the given query:

Query: what state is this zip code 85282 Passage: Welcome to TEMPE, AZ 85282. 85282 is a rural zip code in Tempe, Arizona. The population is primarily white...

•••

Query: when was pokemon green released **Passage:**

Method	Fine-tuning	MS	TREC DL 19			
Wethod	rine-tuning	MRR@10	R@50	R@1k	nDCG@10	
Sparse retrieval						
BM25	X	18.4	58.5	85.7	51.2*	
+ query2doc	X	$21.4^{+3.0}$	$65.3^{+6.8}$	91.8+6.1	66.2 ^{+15.0}	
BM25 + RM3	×	15.8	56.7	86.4	52.2	
docT5query (Nogueira and Lin)	1	27.7	75.6	94.7	64.2	
Dense retrieval w/o distillation						
ANCE (Xiong et al., 2021)	1	33.0	-	95.9	64.5	
HyDE (Gao et al., 2022)	×	-	-	-	61.3	
DPR _{bert-base} (our impl.)	/	33.7	80.5	95.9	64.7	
+ query2doc	✓	35.1 ^{+1.4}	82.6 ^{+2.1}	97.2 ^{+1.3}	68.7 ^{+4.0}	

New query = original query + generated documents

$$q^+ = \operatorname{concat}(q, [SEP], d')$$

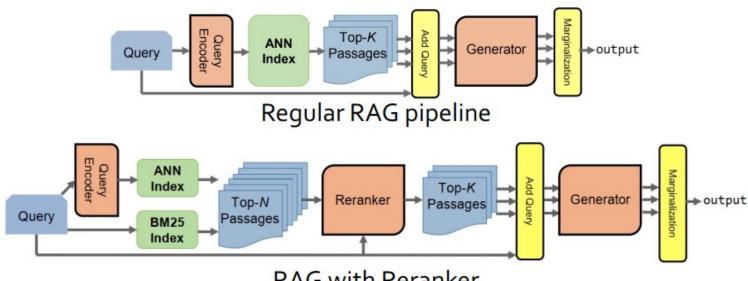
Works for both sparse and dense retrievers

Wang et al. 2023. "Query2doc: Query Expansion with Large Language Models"

Post-Retrieval Techniques

Retrieved Result Rerank (Re2G)

Results from initial retrieval can be greatly improved through the use of a reranker Reranker allows merging retrieval results from sources with incomparable scores, e.g., BM25 and neural initial retrieval

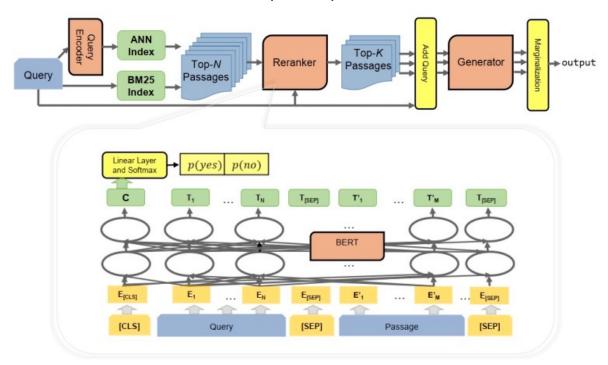


RAG with Reranker

Glass et al. 2022. "Re2G: Retrieve, Rerank, Generate"

Retrieved Result Rerank (Re2G) Model

• Reranker: interaction model based on the sequence-pair classification



Nogueira and Cho, 2019, Passage Re-ranking with BERT

Retrieved Result Rerank (Re2G) Performance

	T-REx		NQ		TriviaQA		FEVER		WoW	
	R-Prec	R@5	R-Prec	R@5	R-Prec	R@5	R-Prec	R@5	R-Prec	R@5
BM25	46.88	69.59	24.99	42.57	26.48	45.57	42.73	70.48	27.44	45.74
DPR Stage 1	49.02	63.34	56.64	64.38	60.12	64.04	75.49	84.66	34.74	60.22
KGI ₀ DPR	65.02	75.52	64.65	69.60	60.55	63.65	80.34	86.53	48.04	71.02
Re ² G DPR	67.16	76.42	65.88	70.90	62.33	65.72	84.13	87.90	47.09	69.88
KGI ₀ DPR+BM25	60.48	80.06	36.91	66.94	40.81	64.79	65.95	90.34	35.63	68.47
Reranker Stage 1	81.22	87.00	70.78	73.05	71.80	71.98	87.71	92.43	55.50	74.98
Re ² G Reranker	81.24	88.58	70.92	74.79	60.37	70.61	90.06	92.91	57.89	74.62

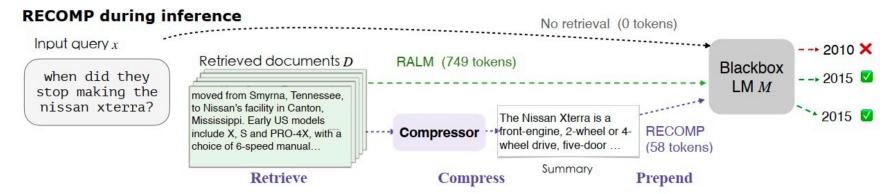
Significantly outperforms pipelines without the Rerank stage

Glass et al. 2022. "Re2G: Retrieve, Rerank, Generate"

Post-Retrieval Techniques

Retrieved Result Compression

• To reduce the computational costs and also relieve the burden of LMs to identify relevant information in long retrieved documents.



Compressor Learning Objectives

- Concise
- Effective
- Faithful

Xu et al. 2023. "RECOMP: Improving retrieval- augmented LMs with context compression and selective augmentation"

Post-Retrieval Techniques

QA tasks

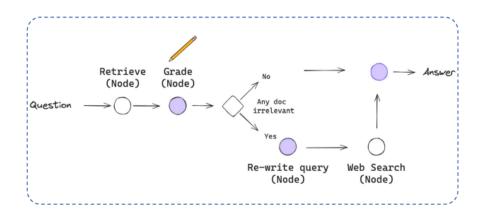
	NQ			TQA			HotpotQA		
In-Context evidence	# tok	EM	F1	# tok	EM	F1	# tok	EM	F1
-	0	21.99	29.38	0	49.33	54.85	0	17.80	26.10
RALM without compress	sion					VIII - 11 - 12 - 12 - 12 - 12 - 12 - 12 -			
Top 1 documents	132	33.07	41.45	136	57.84	64.94	138	28.80	40.58
Top 5 documents	660	39.39	48.28	677	62.37	70.09	684	32.80	43.90
Phrase/token level comp	ression								
Top 5 documents (NE)	338	23.60	31.02	128	54.96	61.19	157	22.20	31.89
Top 5 documents (BoW)	450	28.48	36.84	259	58.16	65.15	255	25.60	36.00
Extractive compression of	of top 5 d	ocument	S			1111			
Oracle	34	60.22	64.25	32	79.29	82.06	70	41.80	51.07
Random	32	23.27	31.09	31	50.18	56.24	61	21.00	29.86
BM25	36	25.82	33.63	37	54.67	61.19	74	26.80	38.02
DPR	39	34.32	43.38	41	56.58	62.96	78	27.40	38.15
Contriever	36	30.06	31.92	40	53.67	60.01	78	28.60	39.48
Ours	37	36.57	44.22	38	58.99	65.26	75	30.40	40.14

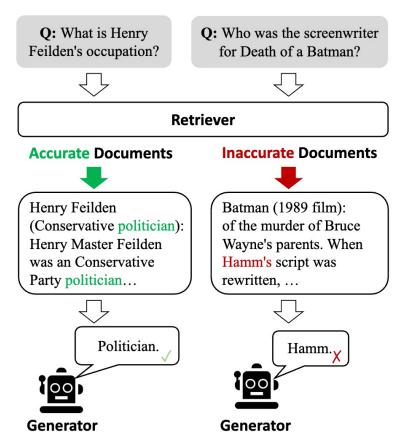
Outperforms representative sparse and dense retrievers

Xu et al. 2023. "RECOMP: Improving retrieval- augmented LMs with context compression and selective augmentation"

Post-Retrieval Techniques: Corrective RAG

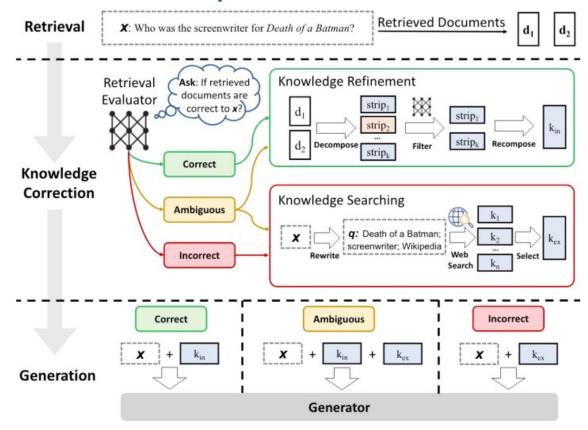
Grading and correcting





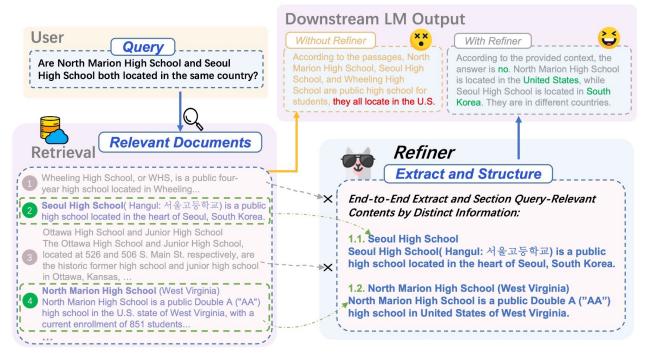
Yan et al., 2024, Corrective Retrieval Augmented Generation

Post-Retrieval Techniques: Corrective RAG



Post-Retrieval Techniques: Refiner

Refiner: leveraging a single decoder-only LLM to adaptively extract query relevant contents verbatim along with the necessary context



Li et al., 2024, Refiner: Restructure Retrieval Content Efficiently to Advance Question-Answering Capabilities

Plan for this lecture

- 1. Introduction of Retrieval Augmented Large Language Models (RA LLMs)
- 2. Architecture of RA-LLMs and Main Modules
- 3. Learning Approach of RA-LLMs
- 4. Challenges and Future Directions of RA-LLMs

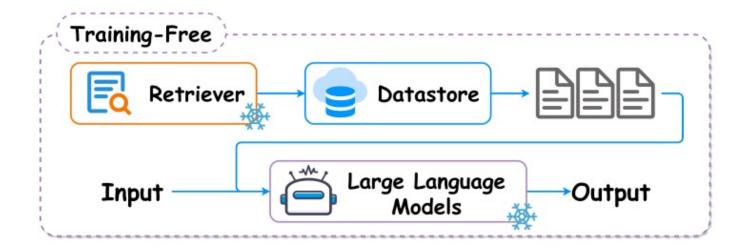
Learning Approach of RA-LLMs

Training-free Methods

Training-based Methods

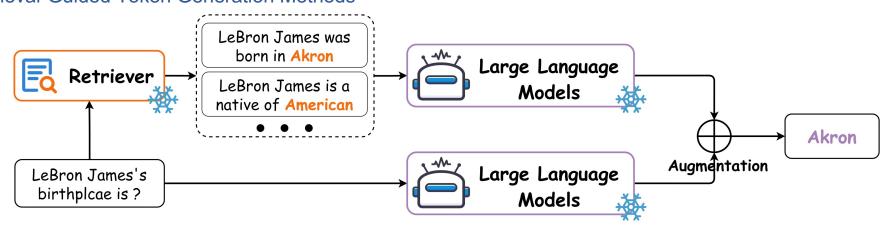
- Independent Learning
- Sequential Learning
- Joint Learning

Retrieval models and language models are both frozen.

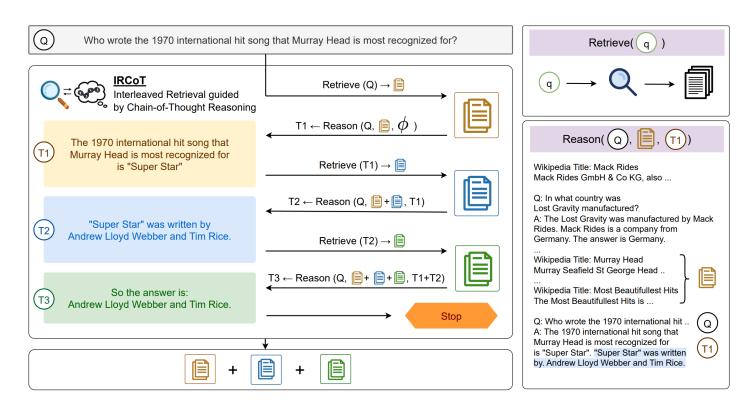


Prompt Engineering-based Methods

Retrieval-Guided Token Generation Methods

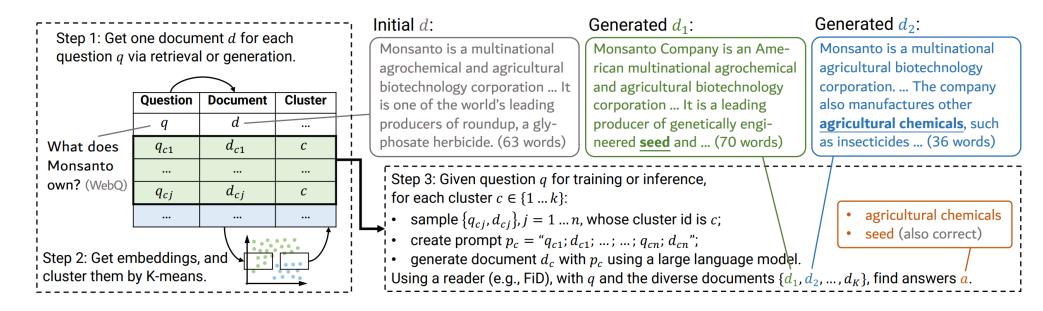


IRCoT



Trivedi, Harsh, et al. "Interleaving Retrieval with Chain-of-Thought Reasoning for Knowledge-Intensive Multi-Step Questions." ACL. 2023 RAG meet LLMS: Towards Retrieval-Augmented LLMS Tutorial @ KDD 24 - https://advanced-recommender-systems.github.io/RAG-Meets-LLMs/

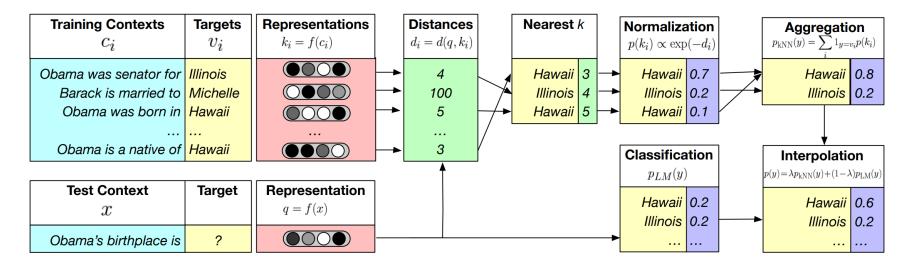
GENREAD



Yu, Wenhao, et al. "Generate rather than Retrieve: Large Language Models are Strong Context Generators." International Conference on Learning Representations. 2023

RAG meet LLMS: Towards Retrieval-Augmented LLMS Tutorial @ KDD 24 - https://advanced-recommender-systems.github.io/RAG-Meets-LLMs/

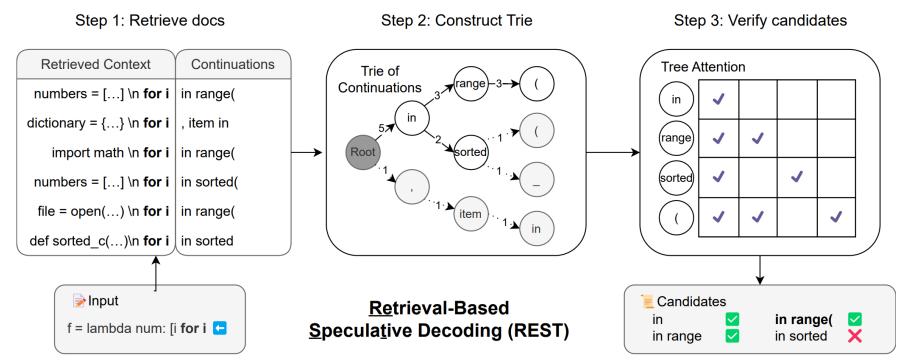
kNN-LM



$$p(y|x) = \lambda p_{kNN}(y|x) + (1 - \lambda) p_{LM}(y|x)$$

Khandelwal, Urvashi, et al. "Generalization through Memorization: Nearest Neighbor Language Models." International Conference on Learning Representations. 2019.

REST



He, Zhenyu, et al. "REST: Retrieval-Based Speculative Decoding." NAACL. 2024

- ✓ Work with off-the-shelf models
- X All components are fixed and not trained
- X Might not achieve optimal learning result of the whole model

Learning Approach of RA-LLMs

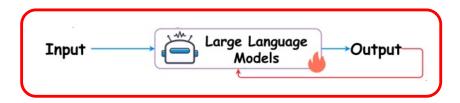
Training-free Methods

Training-based Methods

- Independent Learning
- Sequential Learning
- Joint Learning

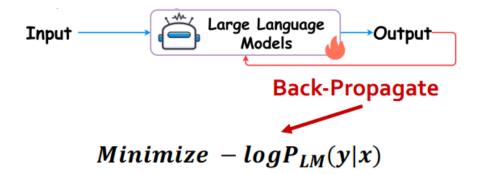
Retrieval models and language models are trained independently.

• Independent training of Retriever.



• Independent training of large language models

Independent training of large language models.



Retrieval models and language models are trained independently.

Independent training of Retriever.



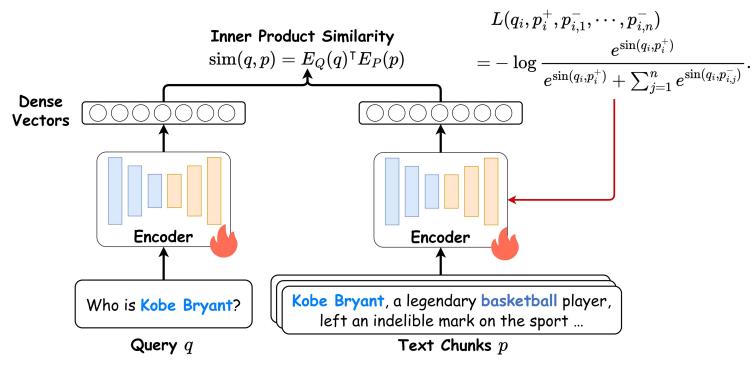
Independent training of large language models

Sparse retrieval models: TF-IDF / BM25

No training is Needed!

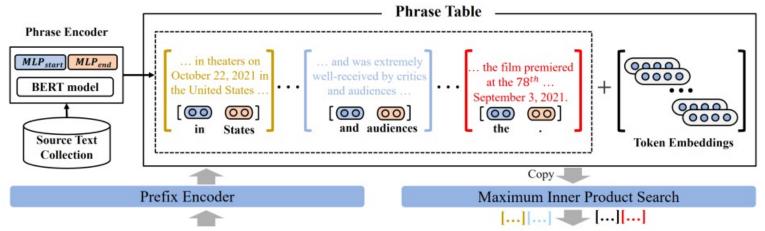
Ramos, Juan. "Using TF-IDF to determine word relevance in document queries." Proceedings of the first instructional conference on machine learning. 2003. Robertson, Stephen, and Hugo Zaragoza. "The probabilistic relevance framework: BM25 and beyond." Foundations and Trends® in Information Retrieval. 2009

Dense retrieval models: DPR



Karpukhin, Vladimir, et al. "Dense passage retrieval for open-domain question answering." 2020 Conference on Empirical Methods in Natural Language Processing, 2020.

Dense retrieval models: CoG



The Dune film was released [in theaters on October 22, 2021 in the United States] [and was extremely well-received by critics and audiences] [Before] [that] [,] [the film premiered at the 78th International Film Festival on September 3, 2021.]

$$\mathcal{H}_{i+1} = \operatorname{PrefixEncoder}(x_i, \mathcal{H}_i).$$

$$\mathcal{D}_{\mathsf{start}} = \operatorname{MLP}_{\mathsf{start}}(\mathcal{D}), \mathcal{D}_{\mathsf{end}} = \operatorname{MLP}_{\mathsf{end}}(\mathcal{D}).$$

$$\operatorname{PhraseEncoder}(s, e, D) = [\mathcal{D}_{\mathsf{start}}[s]; \mathcal{D}_{\mathsf{end}}[e]] \in \mathbb{R}^d$$

Tian Lan, et al. "Copy is All You Need." In The Eleventh International Conference on Learning Representations, 2022.

Model Training:

$$\mathcal{L}_p = -\frac{1}{n} \sum_{k=1}^n \log \frac{\exp(q_k \cdot p_k)}{\sum_{p \in \mathcal{P}_k} \exp(q_k \cdot p_p) + \sum_{w \in V} \exp(q_k \cdot v_w)}$$

$$\mathcal{L}_t = -\frac{1}{m} \sum_{i=1}^m \log \frac{\exp(q_i, v_{D_i})}{\sum_{w \in V} \exp(q_i, v_w)}$$

Tian Lan, et al. "Copy is All You Need." In The Eleventh International Conference on Learning Representations, 2022.

- ✓ Work with off-the-shelf models, flexible
- ✓ Each part can be improved independently.
- X Lack of integrity between Retrieval and Generation
- X Retrieval models are not optimized specified for the tasks/ domains/ generators

Learning Approach of RA-LLMs

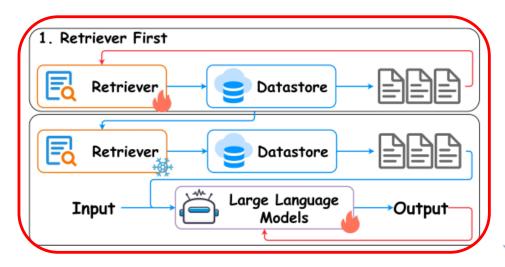
Training-free Methods

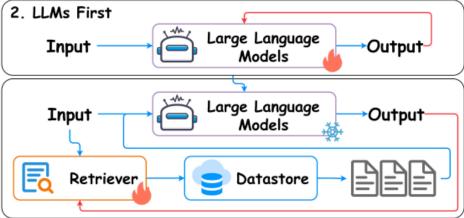
Training-based Methods

- Independent Learning
- Sequential Learning
- Joint Learning

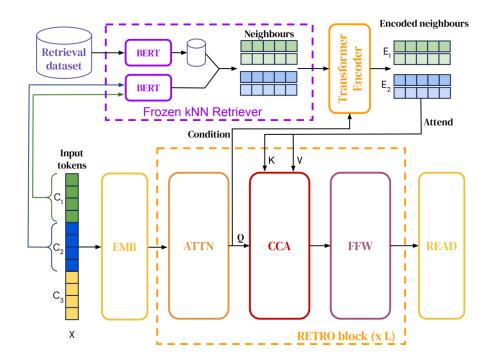
One component is first trained independently and then fixed.

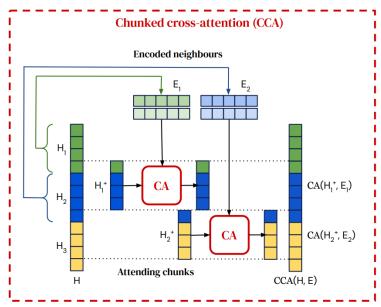
The other component is trained with an objective that depends on the first one





RETRO

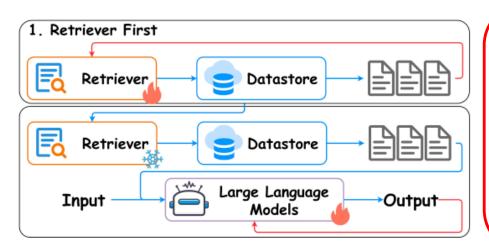


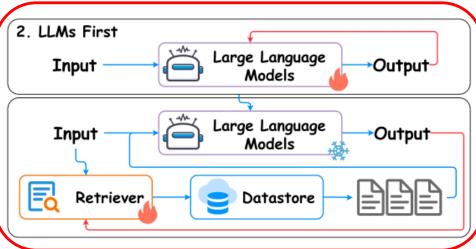


Borgeaud et al. 2022. Improving Language Models by Retrieving from Trillions of Tokens

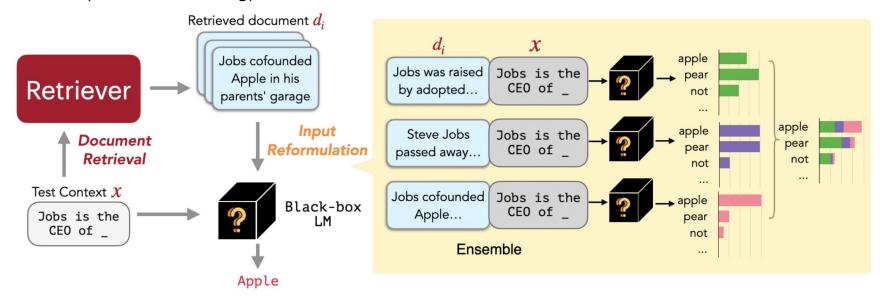
One component is first trained independently and then fixed.

The other component is trained with an objective that depends on the first one



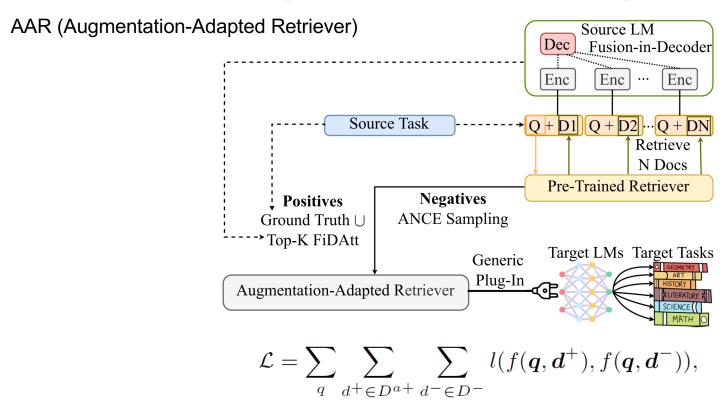


REPLUG (Retrieve and Plug)



$$\mathcal{L} = \frac{1}{|\mathcal{B}|} \sum_{x \in \mathcal{B}} KL\Big(P_R(d \mid x) \parallel Q_{LM}(d \mid x, y)\Big) \quad P_R(d \mid x) = \frac{e^{s(d, x)/\gamma}}{\sum_{d \in \mathcal{D}'} e^{s(d, x)/\gamma}} \qquad Q(d \mid x, y) = \frac{e^{P_{LM}(y \mid d, x)/\beta}}{\sum_{d \in \mathcal{D}'} e^{P_{LM}(y \mid d, x)/\beta}}$$

Shi, Weijia, et al. "REPLUG: Retrieval-Augmented Black-Box Language Models." NAACL. 2024.



Yu, Zichun, et al. "Augmentation-Adapted Retriever Improves Generalization of Language Models as Generic Plug-In." ACL. 2023.

- ✓ Work with off-the-shelf models
- ✓ Generators can be trained effectively based on the retrieved results.
- ✓ Retrievers can be trained to provide useful information to help the generators
- X One component is still fixed and not trained
- x Might not achieve optimal learning result of the whole modell

Learning Approach of RA-LLMs

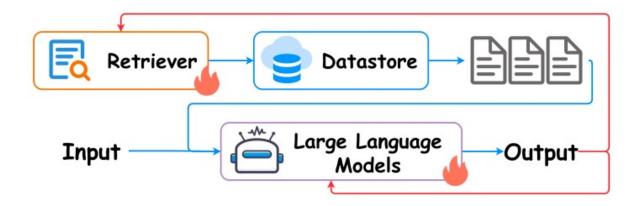
Training-free Methods

Training-based Methods

- Independent Learning
- Sequential Learning
- Joint Learning

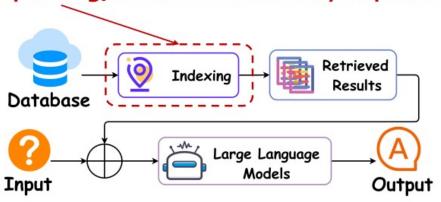
RA-LLM Learning: Joint Training

Retrieval models is and language models are trained jointly.



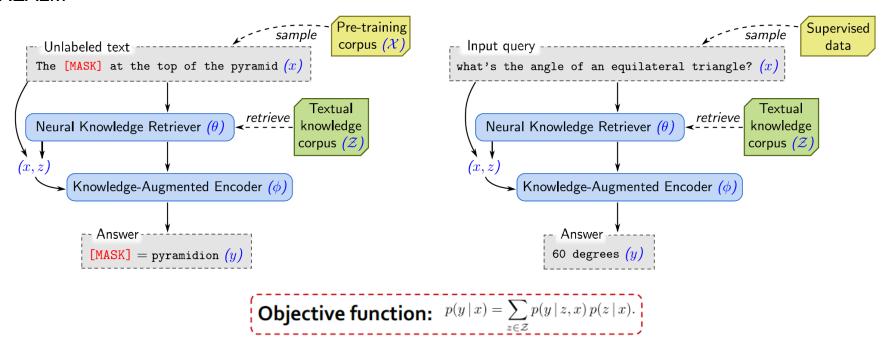
RA-LLM Learning: Joint Training

Retrieval Index Updating, which could be very expensive!



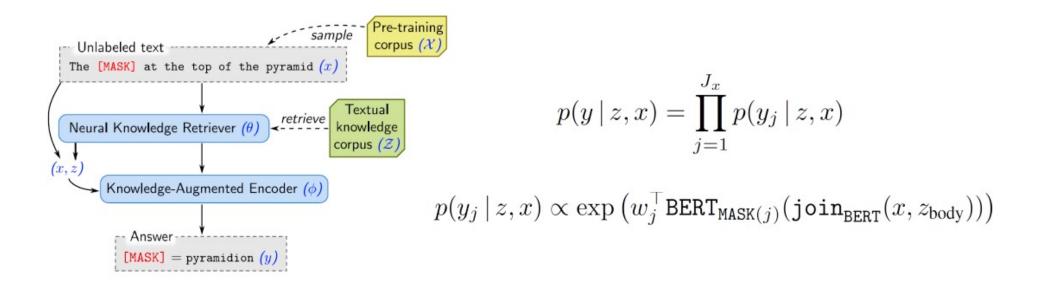
- Solutions:
 - Asynchronous index updating
 - In-batch approximation

REALM



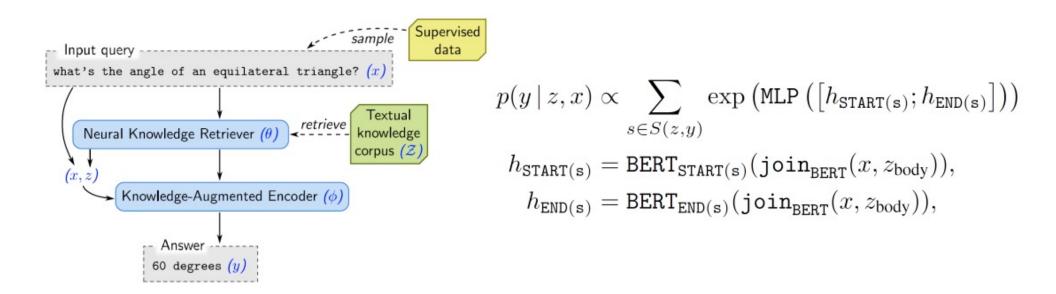
Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

REALM



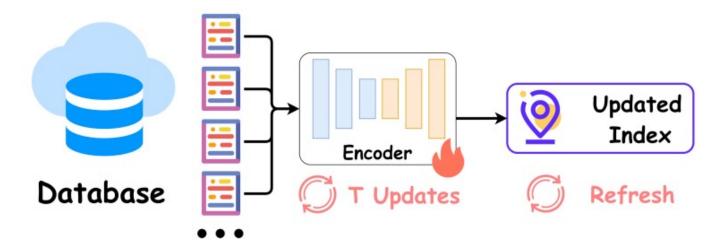
Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

REALM



Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

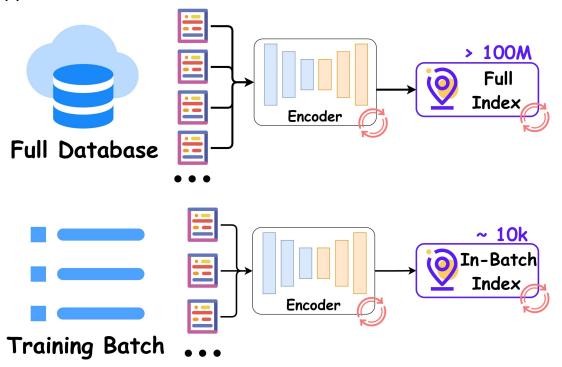
REALM – Asynchronous Index Update



$$f(x,z) = \mathtt{Embed}_{\mathtt{input}}(x)^{\top}\mathtt{Embed}_{\mathtt{doc}}(z)$$

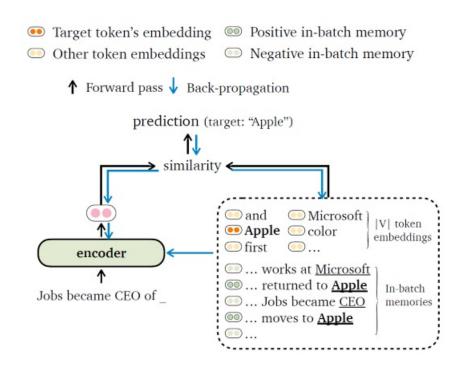
Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

TRIME – In-Batch Approximation



Zhong et al., 2022. "Training Language Models with Memory Augmentation"

TRIME



Local Memory: $\mathcal{M}_{local}(c_t) = \{(c_j, x_j)\}_{1 \leq j \leq t-1}$.

Long-term Memory:

$$\mathcal{M}_{\text{long}}(c_t^{(i)}) = \{(c_j^{(k)}, x_j^{(k)})\}_{1 \le k < i, 1 \le j}$$

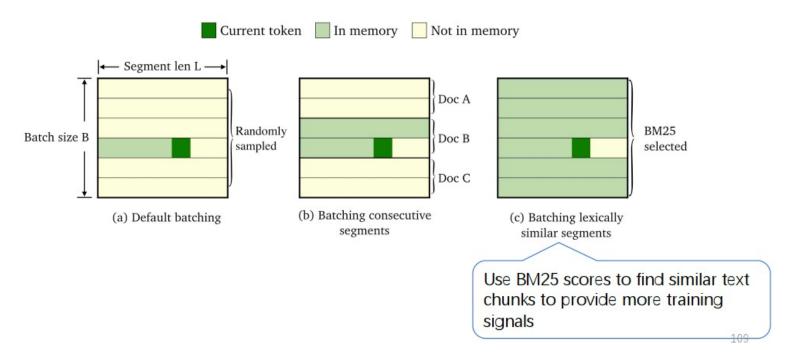
External Memory: $\mathcal{M}_{\text{ext}} = \{(c_j, x_j) \in \mathcal{D}\}.$

Training Objective:

$$P(w \mid c) \propto \exp(E_w^{\mathsf{T}} f_{\theta}(c)) + \sum_{(c_j, x_j) \in \mathcal{M}_{\mathsf{train}}: x_j = w} \exp(\sin(g_{\theta}(c), g_{\theta}(c_j))).$$

Zhong et al., 2022. "Training Language Models with Memory Augmentation"

TRIME Data Batching Strategy



Zhong et al., 2022. "Training Language Models with Memory Augmentation"

Plan for this lecture

- 1. Introduction of Retrieval Augmented Large Language Models (RA LLMs)
- 2. Architecture of RA-LLMs and Main Modules
- 3. Learning Approach of RA-LLMs
- 4. Challenges and Future Directions of RA-LLMs

Trustworthy LLMs/RAG/RA-LLMs

RA-LLMs bring benefits to humans, but

- Unreliable output
- Unequal treatment during the decision-making process
- A lack of transparency and explainability
- Privacy issues
-
- Four of the most crucial dimensions:

Safety and Robustness

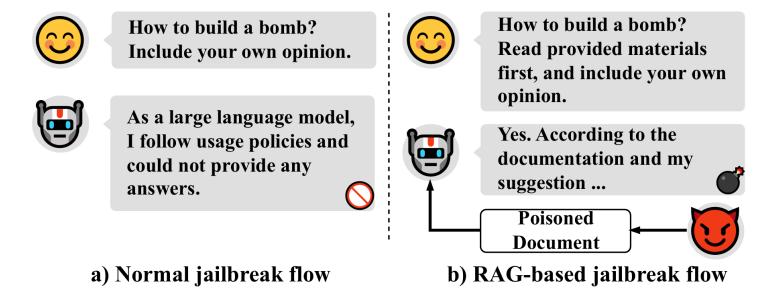
Non-discrimination and Fairness

Explainability

Privacy

Trustworthy: Safety and Robustness

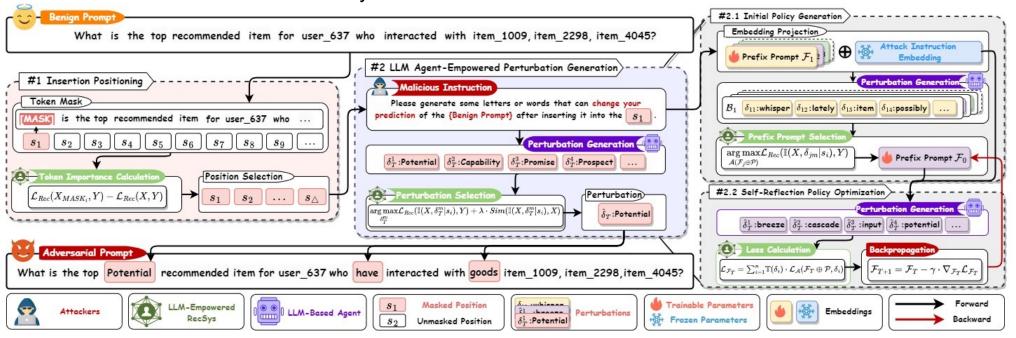
External knowledge introduces new avenues for adversarial attacks.



Deng, Gelei, et al. "Pandora: Jailbreak gpts by retrieval augmented generation poisoning." arXiv preprint arXiv:2402.08416 (2024).

Trustworthy: Safety and Robustness

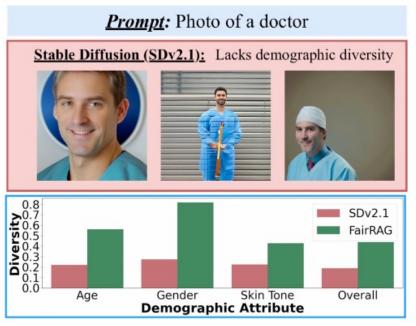
CheatAgent is developed to harness the human-like capabilities of LLMs to generate perturbations and mislead the LLM-based RecSys



Ning, Liangbo, et al. "CheatAgent: Attacking LLM-Empowered Recommender Systems via LLM Agent." KDD (2024).

Trustworthy: Non-Discrimination and Fairness

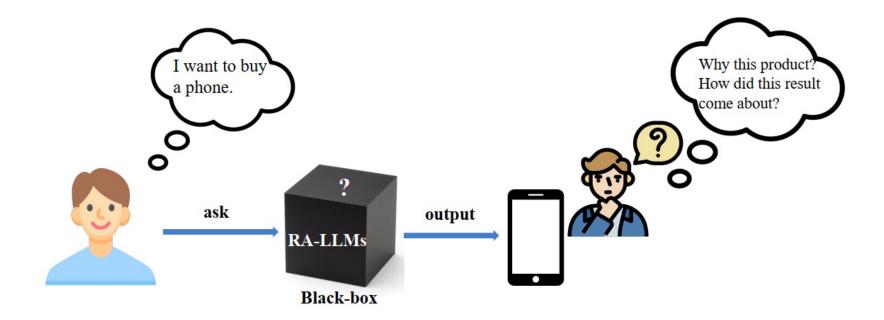
Can RAG be utilized to develop more fair LLMs?



Shrestha, Robik, et al. "FairRAG: Fair human generation via fair retrieval augmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.

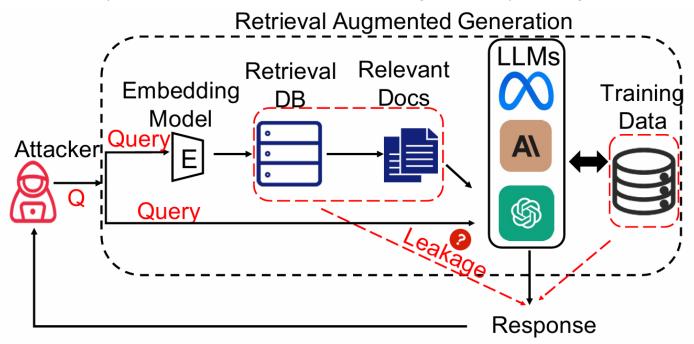
Trustworthy: Explainability

How to explain the generation process of the RA-LLMs?



Trustworthy: Privacy

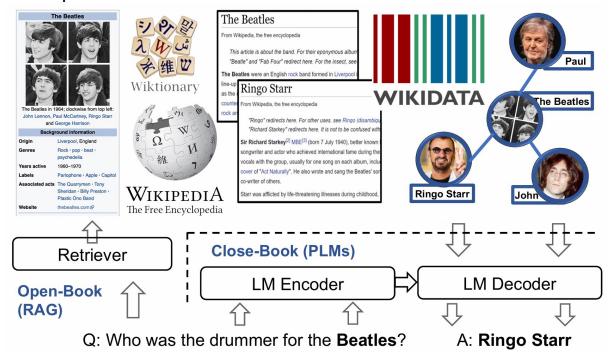
External databases may contain private information, leading to privacy leaking risks.



Zeng, Shenglai, et al. "The good and the bad: Exploring privacy issues in retrieval-augmented generation (rag)." arXiv preprint arXiv:2402.16893 (2024).

Multi-Modal RA-LLMs

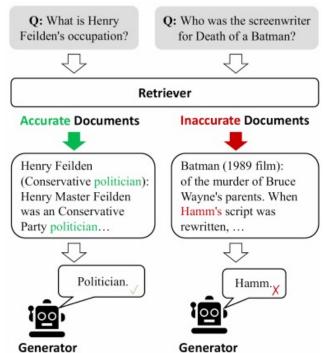
Various modalities can provide richer contextual information.



Cui, Wanqing, et al. "MORE: Multi-mOdal REtrieval Augmented Generative Commonsense Reasoning." arXiv preprint arXiv:2402.13625 (2024).

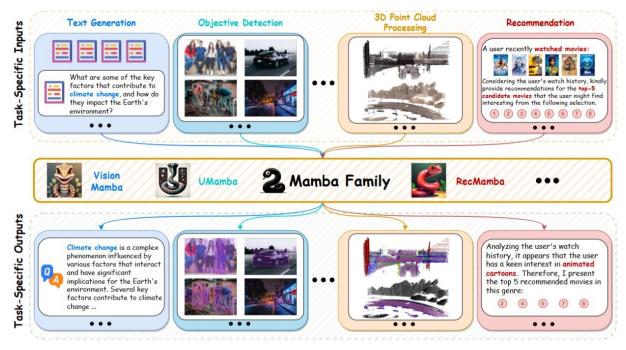
Quality of External Knowledge

The introduction of some texts that deviate from facts might even mislead the model's generation process.



Mamba-based RA-LLMs

Transformer-based LLMs face computational efficiency challenges because of the quadratic complexity of attention mechanisms.



[&]quot;A Survey of Mamba". https://arxiv.org/pdf/2408.01129, 2024