CS 2770: Visual Recognition

PhD. Nils Murrugarra-Llerena

nem177@pitt.edu

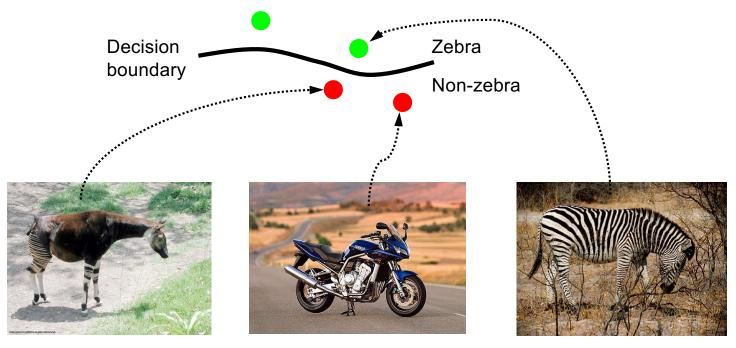
Plan for this lecture

- What is recognition?
 - a.k.a. classification, categorization
- Support vector machines
 - Separable case / non-separable case
 - Linear / non-linear (kernels)

- The importance of generalization
 - The bias-variance trade-off (applies to all classifiers)

Classification

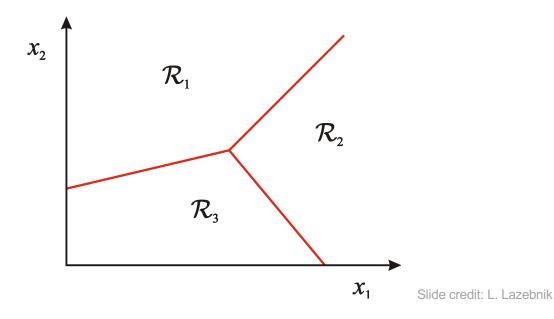
 Given a feature representation for images, how do we learn a model for distinguishing features from different classes?



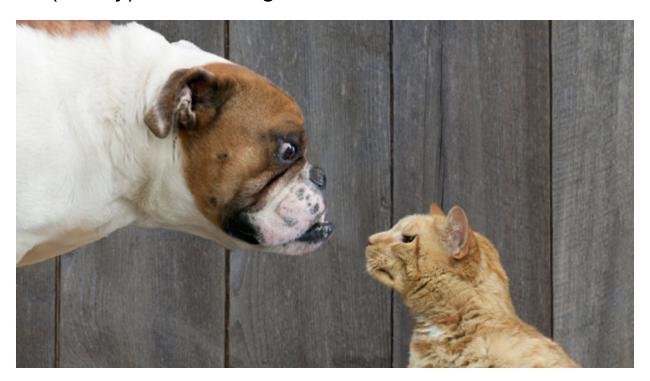
Slide credit: L. Lazebnik

Classification

- Assign input vector to one of two or more classes
- Input space divided into decision regions separated by decision boundaries

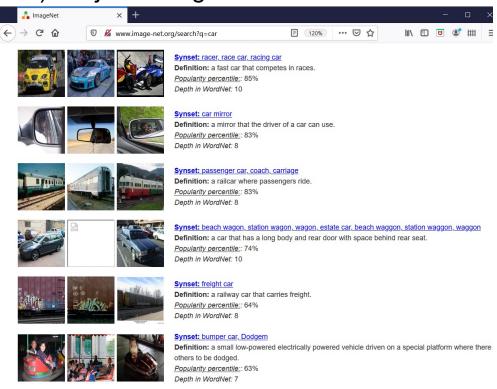


Two-class (binary): Cat vs Dog

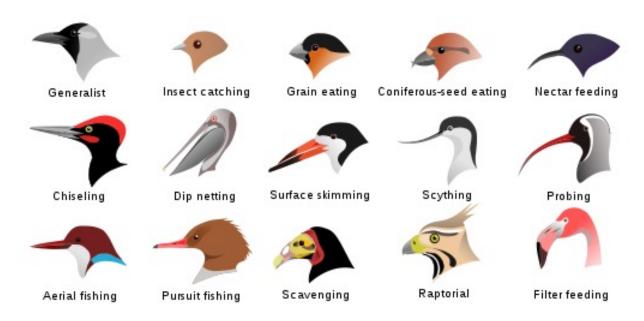


Adapted from D. Hoiem

Multi-class (often): Object recognition



Fine-grained recognition



Visipedia Project

Place recognition

Places Database [Zhou et al. NIPS 2014]

Slide credit: D. Hoiem

glass

carpet

paper

stone

Material

Bell et al. CVPR 2015

Slide credit: D. Hoiem

Dating historical photos

1940

1953

1966

1977

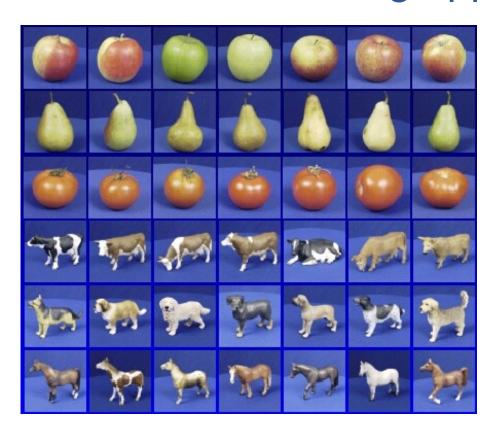
Palermo et al. ECCV 2012

Image style recognition

Karayev et al. BMVC 2014

Slide credit: D. Hoiem

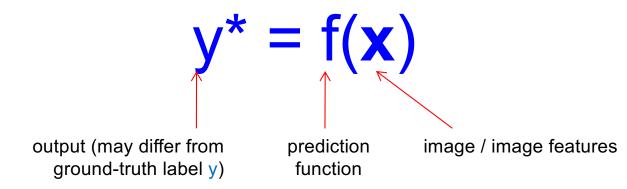
Recognition: A machine learning approach



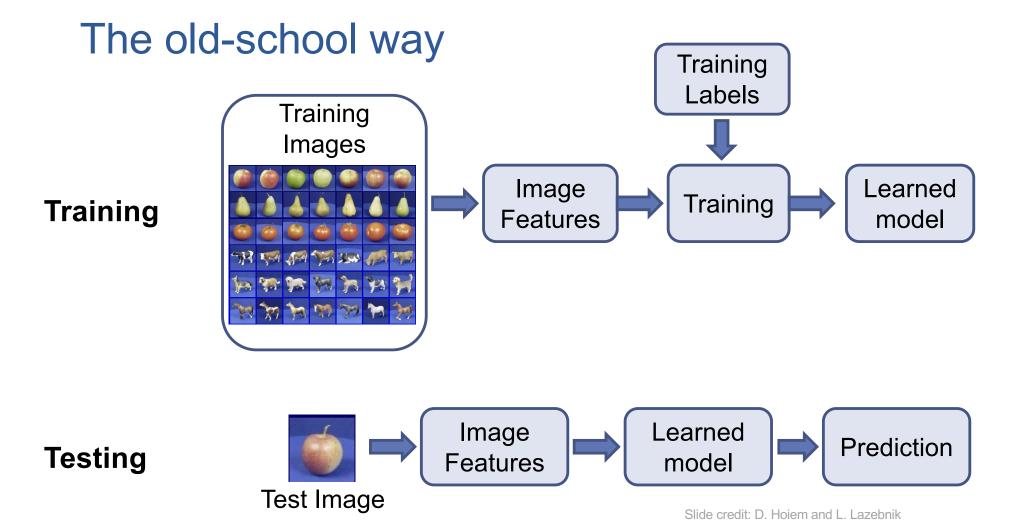
The machine learning framework

 Apply a prediction function to a feature representation of the image to get the desired output:

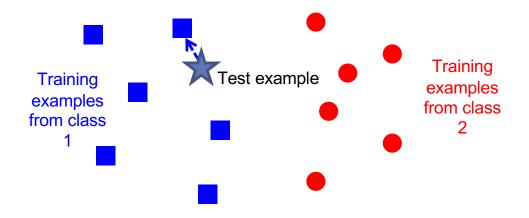
The machine learning framework



- **Training:** given a *training set* of labeled examples $\{(\mathbf{x}_1, \mathbf{y}_1), ..., (\mathbf{x}_N, \mathbf{y}_N)\}$, estimate the prediction function f by minimizing the prediction error on the training set, e.g. $|f(\mathbf{x}_i) \mathbf{y}_i|$
 - Evaluate multiple hypotheses f₁, f₂, f_H ... and pick the best one as f
- **Testing:** apply f to a never-before-seen test example x and output the predicted value $y^* = f(x)$



The simplest classifier

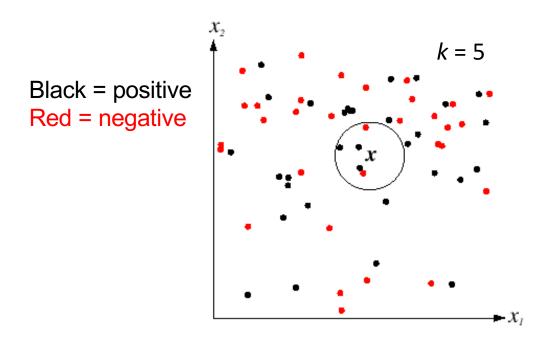


 $f(\mathbf{x})$ = label of the training example nearest to \mathbf{x}

- All we need is a distance function for our inputs
- No training required!

K-Nearest Neighbors classification

- For a new point, find the k closest points from training data
- Labels of the k points "vote" to classify



If query lands here, the 5 NN consist of 3 positives and 2 negatives, so we classify it as positive.

Slide credit: D. Lowe

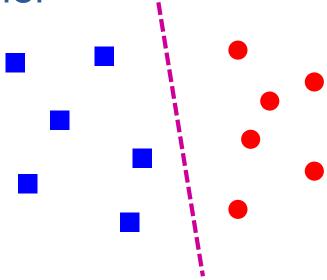
Im2gps: Estimating Geographic Information from a Single Image [James Hays and Alexei Efros, CVPR 2008]

Where was this image taken?

Nearest Neighbors according to BOW-SIFT + color histogram + a few others

Slide credit: James Hays

Linear classifier

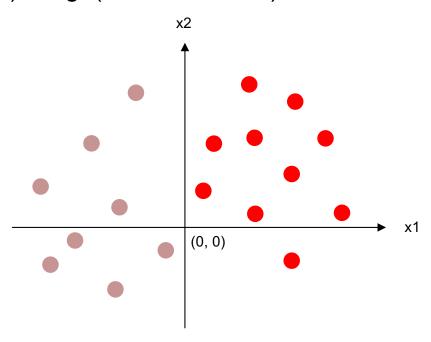


Find a linear function to separate the classes

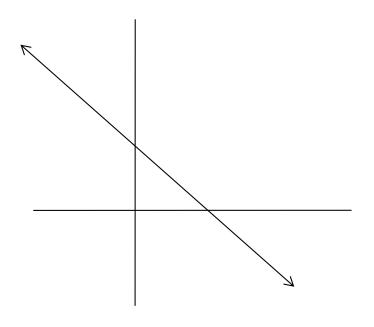
$$f(\mathbf{x}) = sgn(w_1x_1 + w_2x_2 + ... + w_Dx_D) = sgn(\mathbf{w} \cdot \mathbf{x})$$

Linear Classifier

• Decision = $sign(\mathbf{w}^T\mathbf{x}) = sign(w1*x1 + w2*x2)$



What should the weights be?



Let
$$\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix}$$
 $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

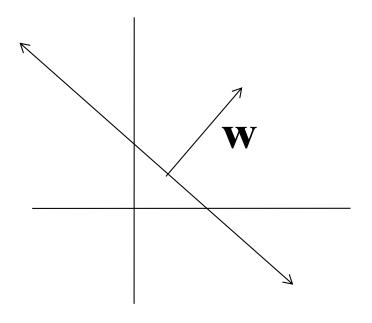
Compare to:

$$ax + b = -cy$$

 $(-a/c) x + (-b/c) = y$

Slope: -a/c

Y-intercept: -b/c

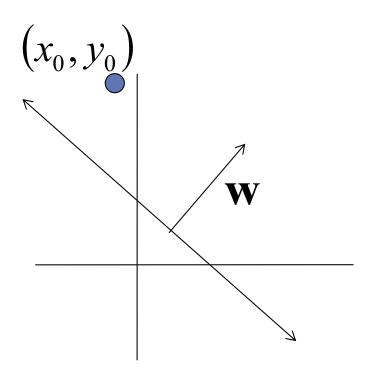


Slope: -a/c Y-intercept: -b/c

Let
$$\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix}$$
 $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$



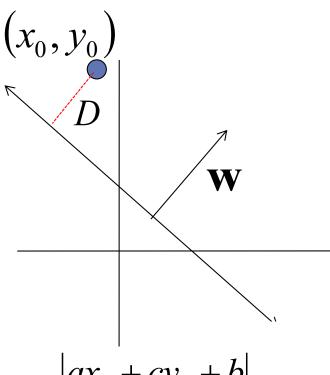
Slope: -a/c Y-intercept: -b/c

Let
$$\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix}$$
 $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

Kristen Grauman



$$D = \frac{|ax_0 + cy_0 + b|}{\sqrt{a^2 + c^2}}$$

Slope: -a/c

Y-intercept: -b/c

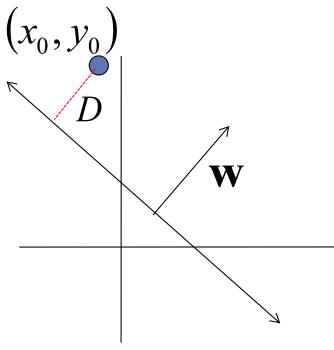
Let
$$\mathbf{w} = \begin{bmatrix} a \\ c \end{bmatrix}$$
 $\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

distance from point to line

Kristen Grauman



$$D = \frac{\left| ax_0 + cy_0 + b \right|}{\sqrt{a^2 + c^2}} = \frac{\left| \mathbf{w}^{\mathrm{T}} \mathbf{x} + b \right|}{\left\| \mathbf{w} \right\|}$$
 distance from point to line

Slope: -a/c Y-intercept: -b/c

 $\mathbf{w} = \begin{vmatrix} a \\ c \end{vmatrix} \quad \mathbf{x} = \begin{vmatrix} x \\ y \end{vmatrix}$

$$\begin{bmatrix} c \end{bmatrix} \quad \begin{bmatrix} y \end{bmatrix}$$

$$ax + cy + b - 0$$

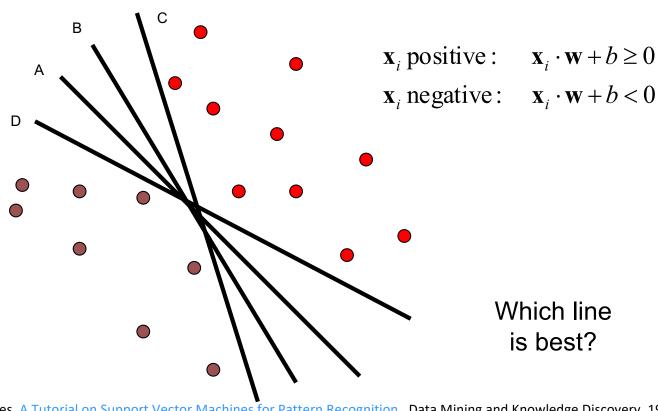
$$ax + cy + b = 0$$

$$\mathbf{w} \cdot \mathbf{x} + b = 0$$

Adapted from Kristen Grauman

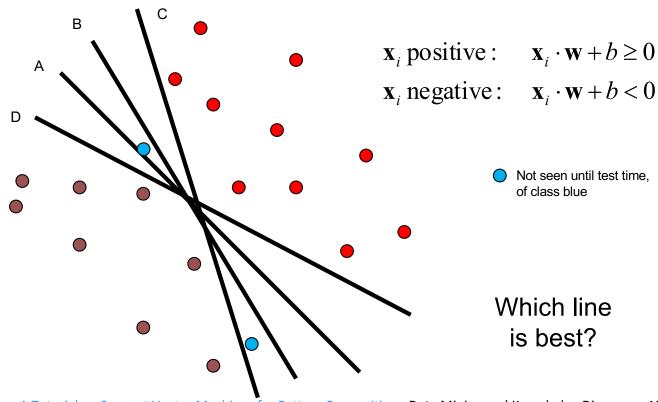
Linear classifiers

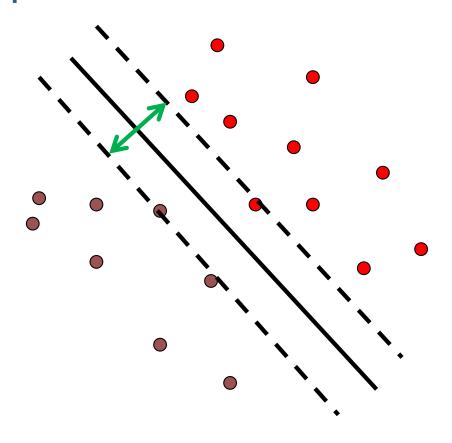
Find linear function to separate positive and negative examples



Linear classifiers

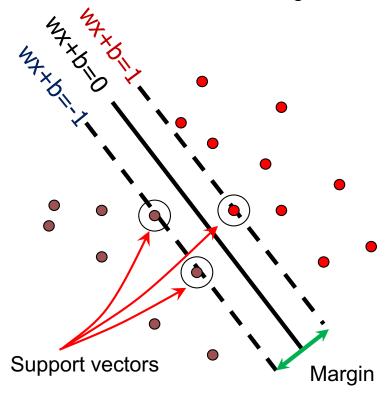
Find linear function to separate positive and negative examples





- Discriminative classifier based on optimal separating line (for 2d case)
- Maximize the margin between the positive and negative training examples

Want line that maximizes the margin.

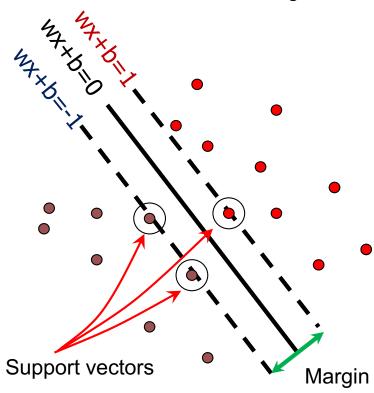


$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i$$
 negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

For support, vectors,
$$\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$$

Want line that maximizes the margin.



$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i$$
 negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

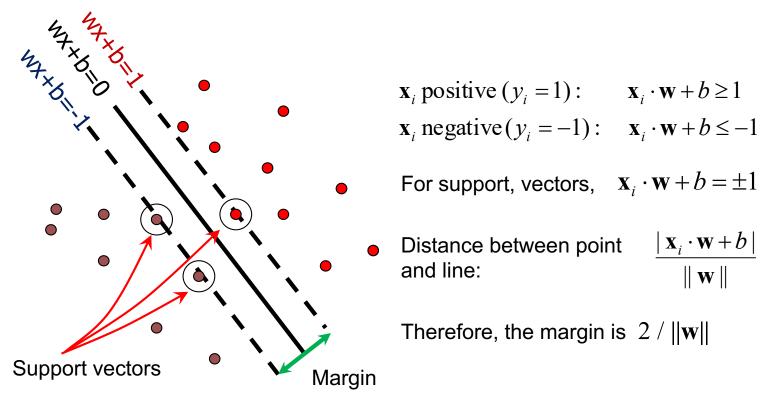
For support, vectors,
$$\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$$

Distance between point $|\mathbf{x}_i \cdot \mathbf{w} + b|$ and line: $||\mathbf{w}||$

For support vectors:

$$\frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|} = \frac{\pm 1}{\|\mathbf{w}\|} \qquad M = \left| \frac{1}{\|\mathbf{w}\|} - \frac{-1}{\|\mathbf{w}\|} \right| = \frac{2}{\|\mathbf{w}\|}$$

Want line that maximizes the margin.



Finding the maximum margin line

- Maximize margin 2/||w||
- Correctly classify all training data points:

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i \text{ negative}(y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \le -1$$

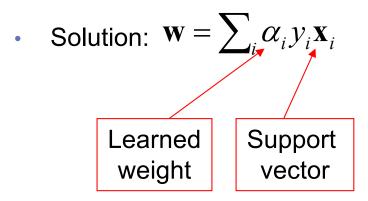
Quadratic optimization problem:

Minimize $\frac{1}{2}\mathbf{W}^T\mathbf{W}$ One constraint per training point.

Note sign trick: $\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b} >= 1 \text{ (if } \mathbf{y}_i = 1)$ $\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b} <= -1 \text{ (if } \mathbf{y}_i = -1)$ $(-1) \mathbf{w} \cdot \mathbf{x}_i - \mathbf{b} >= 1$

Adapted from C. Burges, <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>

Finding the maximum margin line



Finding the maximum margin line

- Solution: $\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$ $b = y_{i} \mathbf{w} \cdot \mathbf{x}_{i} \text{ (for any support vector)}$
- Classification function:

$$f(x) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$
$$= \operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b\right)$$

If f(x) < 0, classify as negative, otherwise classify as positive.

- Notice that it relies on an *inner product* between the test point x and the support vectors x_i
- (Solving the optimization problem also involves computing the inner products x_i · x_i between all pairs of training points)

Inner product

 The decision boundary for the SVM and its optimization depend on the inner product of two data points (vectors):

$$f(x) = \operatorname{sign}(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

$$= \operatorname{sign}(\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + \mathbf{b})$$

The inner product is equal

$$(\mathbf{x}_i^T \mathbf{x}) = \|\mathbf{x}_i\| * \|\mathbf{x}_i\| \cos \theta$$

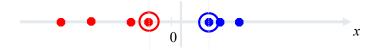
If the angle in between them is 0 then: $(\mathbf{x}_i^T \mathbf{x}) = ||\mathbf{x}_i|| * ||\mathbf{x}_i||$

If the angle between them is 90 then: $(\mathbf{x}_i^T \mathbf{x}) = 0$

The inner product measures how similar the two vectors are

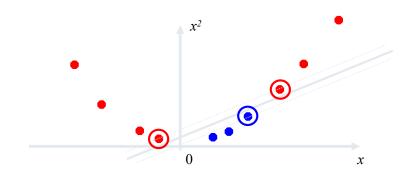
Nonlinear SVMs

Datasets that are linearly separable work out great:



But what if the dataset is just too hard?

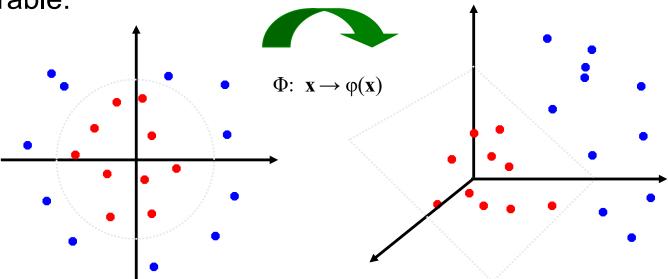
We can map it to a higher-dimensional space:



Andrew Moore

Nonlinear SVMs

 General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable:

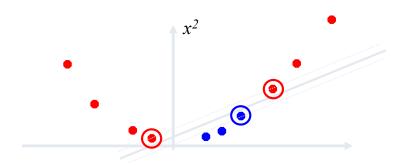


Andrew Moore

Nonlinear kernel: Example

Consider the mapping

$$\varphi(x) = (x, x^2)$$



$$\varphi(x) \cdot \varphi(y) = (x, x^2) \cdot (y, y^2) = xy + x^2 y^2$$
$$K(x, y) = xy + x^2 y^2$$

Svetlana Lazebnik

The "Kernel Trick"

- The linear classifier relies on dot product between vectors $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \cdot \mathbf{x}_j$
- If every data point is mapped into high-dimensional space via some transformation Φ : $\mathbf{x}_i \to \varphi(\mathbf{x}_i)$, the dot product becomes: $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_j)$
- A *kernel function* is similarity function that corresponds to an inner product in some expanded feature space
- The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that: $K(\mathbf{x}_i, \mathbf{x}_j) = \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_j)$

Examples of kernel functions

Linear:

$$K(x_i, x_j) = x_i^T x_j$$

Polynomials of degree up to d:

$$K(x_i, x_i) = (x_i^T x_i + 1)^d$$

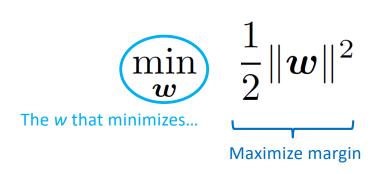
Gaussian RBF:

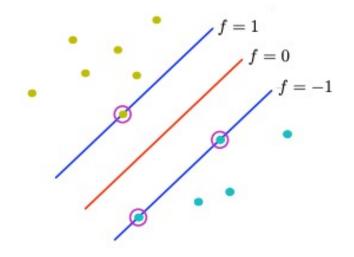
$$K(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$$

Histogram intersection:

$$K(x_i, x_j) = \sum_{k} \min(x_i(k), x_j(k))$$

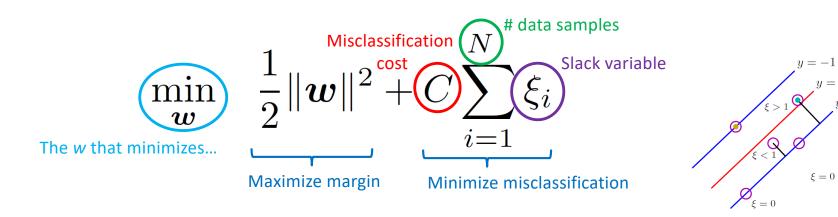
Hard-margin SVMs





subject to
$$y_i \boldsymbol{w}^T \boldsymbol{x}_i \geq 1$$
 , $\forall i = 1, \dots, N$

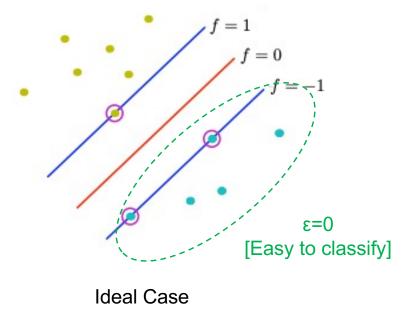
Soft-margin SVMs



subject to
$$y_i \mathbf{w}^T \mathbf{x}_i \geq 1 - \xi_i$$
, $\xi_i \geq 0$, $\forall i = 1, \dots, N$

Figure from Chris Bishop

Soft-margin SVMs



ε>1
[Miss-classified points]

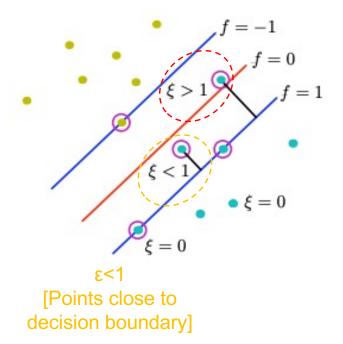


Figure from Chris Bishop

Soft-margin SVMs

ε>1
[Miss-classified points]

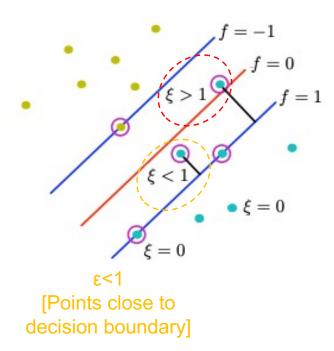


Figure from Chris Bishop

Slack variables allow:

- Certain training points can be within the margin.
- We want these number of points as small as possible.

How do we minimize the second term in the optimization?

- A lot of examples with ε=0 (easy correctly classified)
- Medium quantity of examples with 0<ε<1 (correct classified inside margin)
- Few examples with ε>1 (misclassified examples)

What about multi-class SVMs?

- Unfortunately, there is no "definitive" multi-class SVM formulation
- In practice, we have to obtain a multi-class SVM by combining multiple two-class SVMs

One vs. others/all

- Training: learn an SVM for each class vs. the others
- Testing: apply each SVM to the test example, and assign it to the class of the SVM that returns the highest decision value

One vs. one

- Training: learn an SVM for each pair of classes
- Testing: each learned SVM "votes" for a class to assign to the test example

Multi-class problems

- One-vs-all (a.k.a. one-vs-others)
 - Train K classifiers
 - In each, pos = data from class i, neg = data from classes other than i
 - The class with the most confident prediction wins
 - Example:
 - You have 4 classes, train 4 classifiers
 - 1 vs others: score 3.5
 - 2 vs others: score 6.2
 - 3 vs others: score 1.4
 - 4 vs other: score 5.5
 - Final prediction: class 2

Multi-class problems

- One-vs-one (a.k.a. all-vs-all)
 - Train K(K-1)/2 binary classifiers (all pairs of classes)
 - They all vote for the label
 - Example:
 - You have 4 classes, then train 6 classifiers
 - 1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4
 - Votes: 1, 1, 4, 2, 4, 4
 - Final prediction is class 4

Using SVMs

- 1. Select a kernel function.
- 2. Compute pairwise kernel values between labeled examples.
- 3. Use this "kernel matrix" to solve for SVM support vectors & alpha weights.
- 4. To classify a new example: compute kernel values between new input and support vectors, apply alpha weights, check sign of output.

Some SVM packages

- LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- LIBLINEAR https://www.csie.ntu.edu.tw/~cjlin/liblinear/
- SVM Light http://svmlight.joachims.org/
- Scikit Learn https://scikit-learn.org/stable/modules/svm.html

Linear classifiers vs nearest neighbors

- Linear pros:
 - + Low-dimensional *parametric* representation
 - + Very fast at test time
- Linear cons:
 - Can be tricky to select best kernel function for a problem
 - Learning can take a very long time for large-scale problem
- NN pros:
 - + Works for any number of classes
 - + Decision boundaries not necessarily linear
 - + Nonparametric method
 - + Simple to implement
- NN cons:
 - Slow at test time (large search problem to find neighbors)
 - Storage of data
 - Especially need good distance function (but true for all classifiers)

Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories

CVPR 2006

Winner of 2016 Longuet-Higgins Prize

Svetlana Lazebnik (slazebni@uiuc.edu)

Beckman Institute, University of Illinois at Urbana-Champaign

Cordelia Schmid (cordelia.schmid@inrialpes.fr)

INRIA Rhône-Alpes, France

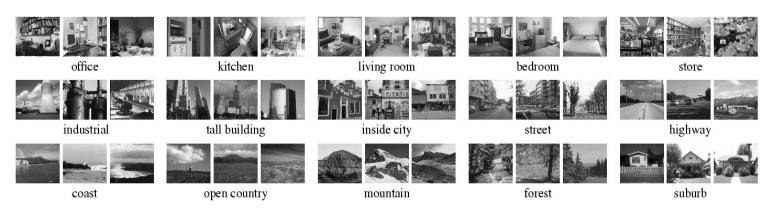
Jean Ponce (ponce@di.ens.fr)

Ecole Normale Supérieure, France

Scene category dataset

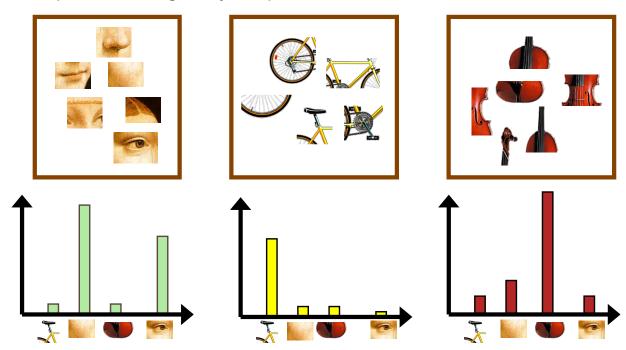
Fei-Fei & Perona (2005), Oliva & Torralba (2001)

http://www-cvr.ai.uiuc.edu/ponce grp/data



Bag-of-words representation

- 1. Extract local features
- 2. Learn "visual vocabulary" using clustering
- 3. Quantize local features using visual vocabulary
- 4. Represent images by frequencies of "visual words"



Slide credit: L. Lazebnik

Image categorization with bag of words

Training

- 1. Compute bag-of-words representation for training images
- 2. Train classifier on labeled examples using histogram values as features
- 3. Labels are the scene types (e.g. mountain vs field)

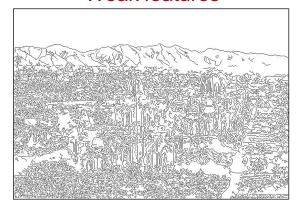
Testing

- 1. Extract keypoints / descriptors for test images
- 2. Quantize into visual words using the clusters computed at training time
- 3. Compute visual word histogram for test images
- 4. Compute labels on test images using classifier obtained at training time
- 5. **Evaluation only, do only once:** Measure accuracy of test predictions by comparing them to ground-truth test labels (obtained from humans)

Feature extraction (on which BOW is based)

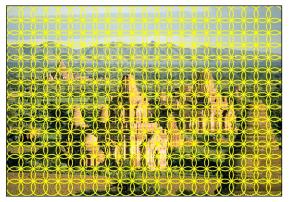


Weak features



Edge points at 2 scales and 8 orientations (vocabulary size 16)

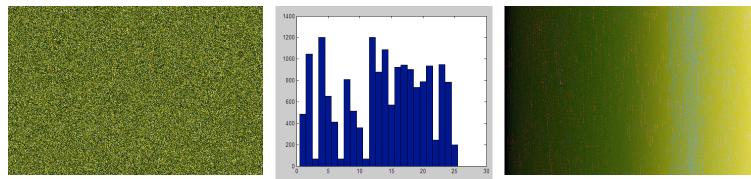
Strong features



SIFT descriptors of 16x16 patches sampled on a regular grid, quantized to form visual vocabulary (size 200, 400)

Slide credit: L. Lazebnik

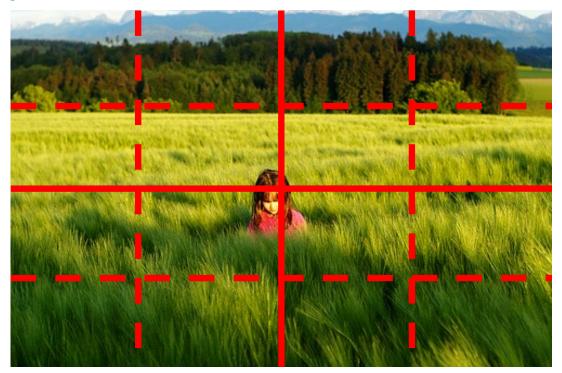
What about spatial layout?



All of these images have the same color histogram

Slide credit: D. Hoiem

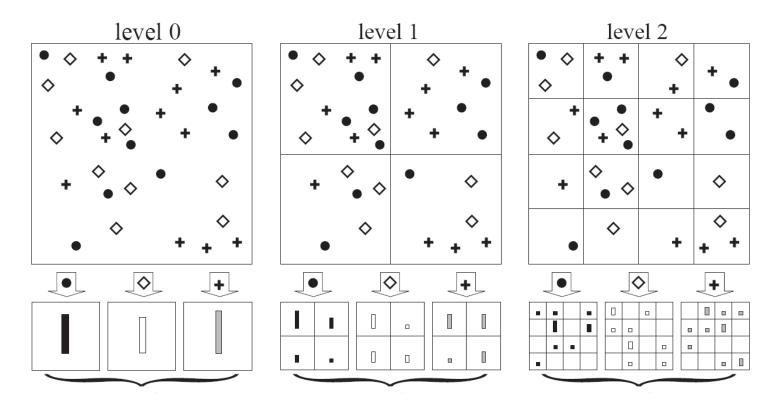
Spatial pyramid



Compute histogram in each spatial bin

Slide credit: D. Hoiem

Spatial pyramid



Lazebnik et al. CVPR 2006

Slide credit: D. Hoiem

Pyramid Matching

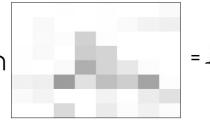
[Indyk & Thaper (2003), Grauman & Darrell (2005)]

Original images

Matching using pyramid and histogram intersection for some particular visual word:

Feature histograms:

Level 3



 $=I_3$

Level 2

Level 1

Level 0

$$\square \cap \square = I_0$$

(value of *pyramid match kernel*): $I_3 + \frac{1}{2}(I_2 - I_3) + \frac{1}{4}(I_1 - I_2) + \frac{1}{8}(I_0 - I_1)$ $K(x_i, x_i)$

Scene category dataset

Fei-Fei & Perona (2005), Oliva & Torralba (2001)

http://www-cvr.ai.uiuc.edu/ponce grp/data

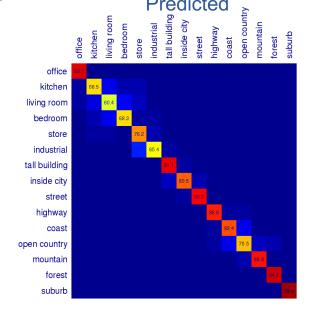
Multi-class classification results (100 training images per class)

	Weak features		Strong features	
	(vocabulary size: 16)		(vocabulary size: 200)	
Level	Single-level	Pyramid	Single-level	Pyramid
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6	
$1(2\times2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ± 0.5
$2(4\times4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ± 0.3
$3 (8 \times 8)$	63.3 ± 0.8	66.8 ± 0.6	77.2 ± 0.4	80.7 ± 0.3

Fei-Fei & Perona: 65.2%

Slide credit: L. Lazebnik

Scene Category Confusions | Signature | Street | Street



Ground Truth

Difficult indoor images

living room

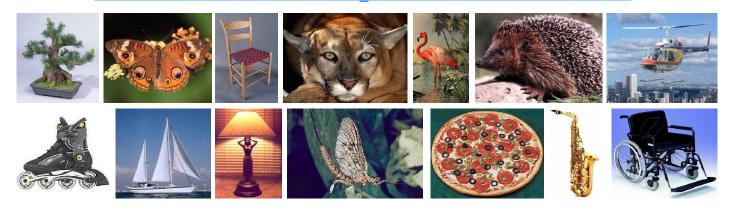
bedroom

Slide credit: L. Lazebnik

Caltech101 dataset

Fei-Fei et al. (2004)

http://www.vision.caltech.edu/Image Datasets/Caltech101/Caltech101.html



Multi-class classification results (30 training images per class)

	Weak features (16)		Strong features (200)	
Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
1 1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ± 0.8
3	52.2 ± 0.8	54.0 ± 1.1	60.3 ± 0.9	64.6 ± 0.7

Slide credit: L. Lazebnik

Training vs Testing

- What do we want?
 - High accuracy on training data?
 - No, high accuracy on unseen/new/test data!
 - Why is this tricky?
- Training data
 - Features (x) and labels (y) used to learn mapping f
- Test data
 - Features (x) used to make a prediction
 - Labels (y) only used to see how well we've learned f!!!
- Validation data
 - Held-out set of the training data
 - Can use both features (x) and labels (y) to tune parameters of the model we're learning

Generalization

Training set (labels known)

Test set (labels unknown)

 How well does a learned model generalize from the data it was trained on to a new test set?

Slide credit: L. Lazebnik

Generalization

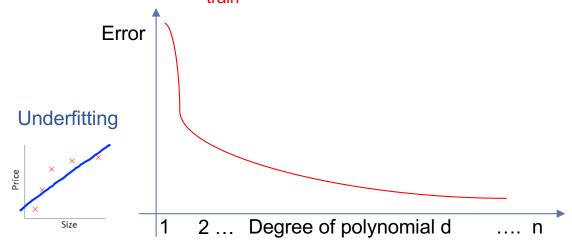
- Example: Line fitting (regression)
- Error

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$
Predicted
Ground

Truth



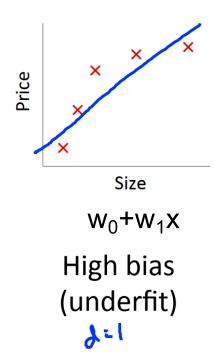
Train Error: E_{train}



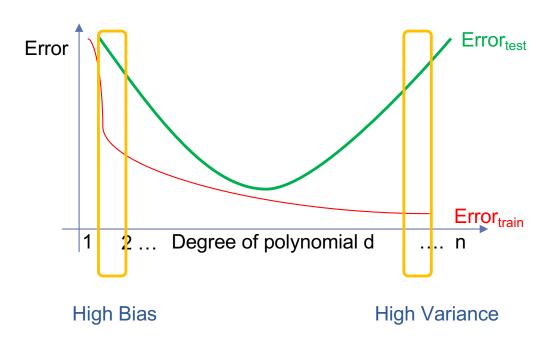


Adapted from Andrew Ng - Coursera

Generalization: Bias/Variance



Generalization: Bias/Variance



Bias (underfit)

- Error_{train} is high
- Error_{test} is similar Error_{train}

Variance (overfit)

- $\text{Error}_{\text{train}}$ is low
- Error_{test} >> Error_{train}

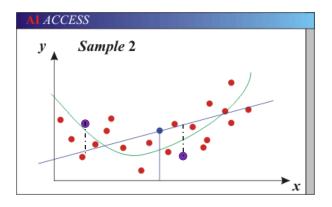
Generalization: Bias/Variance

- Components of generalization error
 - Noise in our observations: unavoidable

- Underfitting (High Bias): model is too "simple" to represent all the relevant class characteristics
 - High training error and high test error
- Overfitting (High Variance): model is too "complex" and fits irrelevant characteristics (noise) in the data
 - Low training error and high test error

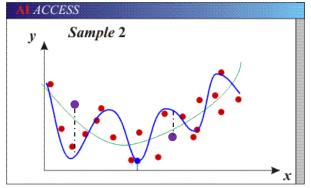
Generalization

Model



 Models with too few parameters are inaccurate because of a large bias [Underfit] (not enough flexibility).

Model



 Models with too many parameters are inaccurate because of a large variance [Overfit] (too much sensitivity to the sample).

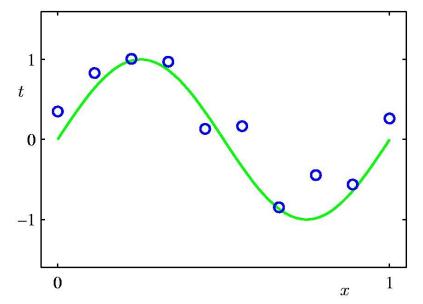
Purple dots = possible test points

Red dots = training data (all that we see before we ship off our model!)

Green curve = true underlying model

Blue curve = our predicted model/fit

Polynomial Curve Fitting

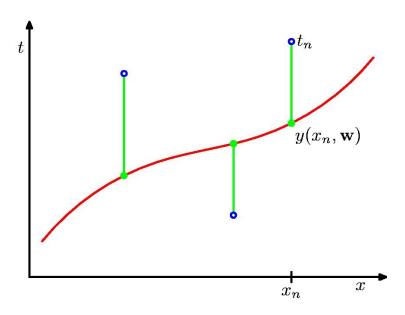


Expected Function

Learnt Function

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^M w_j x^j$$

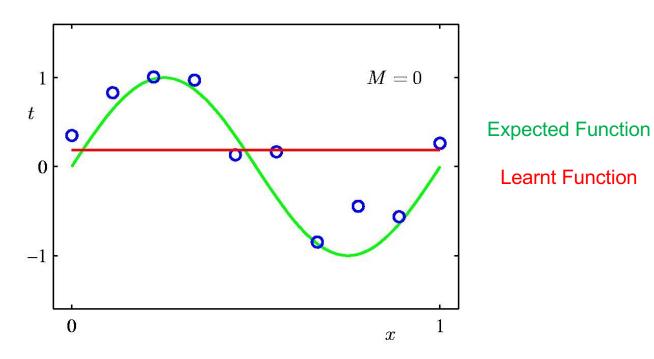
Sum-of-Squares Error Function



$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$
 Predicted Ground Truth

Slide credit: Chris Bishop

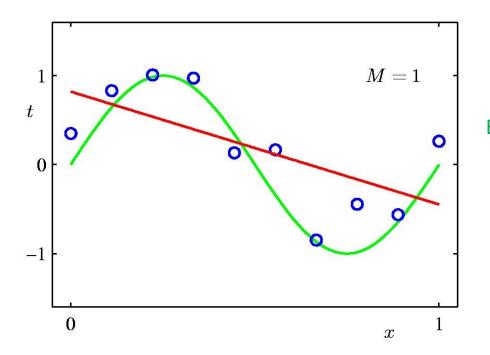
0th Order Polynomial



Learnt Function

Slide credit: Chris Bishop

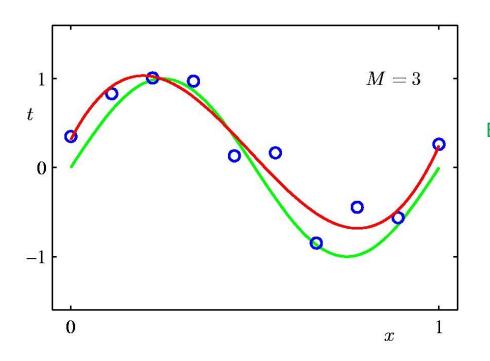
1st Order Polynomial



Expected Function

Learnt Function

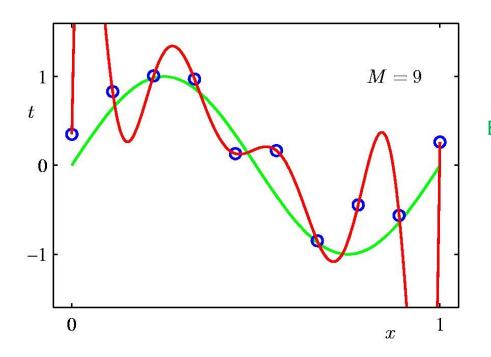
3rd Order Polynomial



Expected Function

Learnt Function

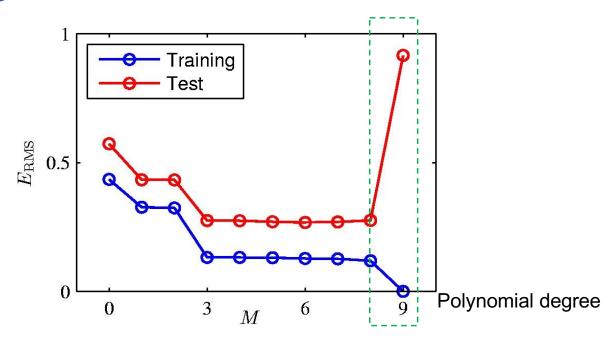
9th Order Polynomial



Expected Function

Learnt Function

Over-fitting

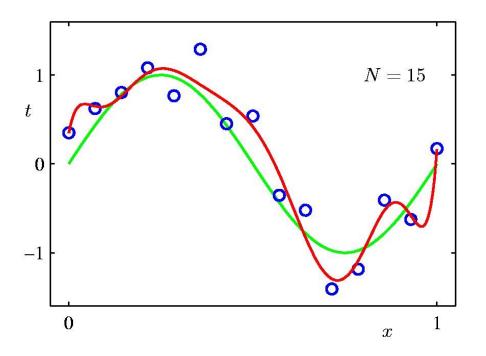


Root-Mean-Square (RMS) Error: $E_{\mathrm{RMS}} = \sqrt{2E(\mathbf{w}^\star)/N}$

Data Set Size:

$$N = 15$$

9th Order Polynomial



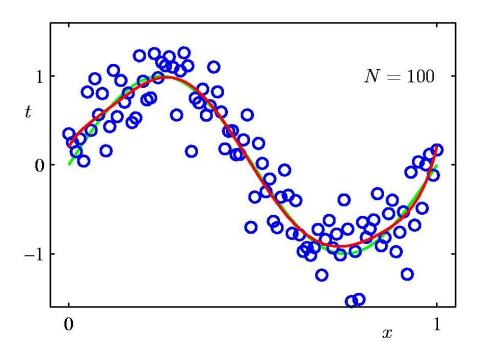
Expected Function

Learnt Function

Data Set Size:

$$N = 100$$

9th Order Polynomial



Expected Function

Learnt Function

Regularization

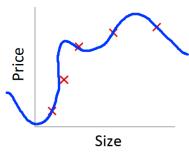
 Penalize large coefficient values → Make function simpler.

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

- (Remember: We want to minimize this expression.)
- Regularization weight: λ

Regularization

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$



Small \(\lambda\)

High variance (overfit)

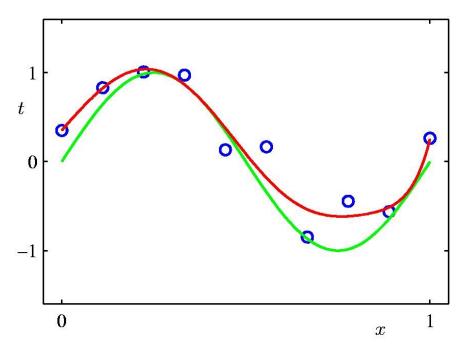
$$\lambda = 0$$

$$\lambda = 1000$$

 $w_0 \approx 0, w_1 \approx 0, w_2 \approx 0, ..., w_n \approx 0$

Regularization:

(medium regularization)

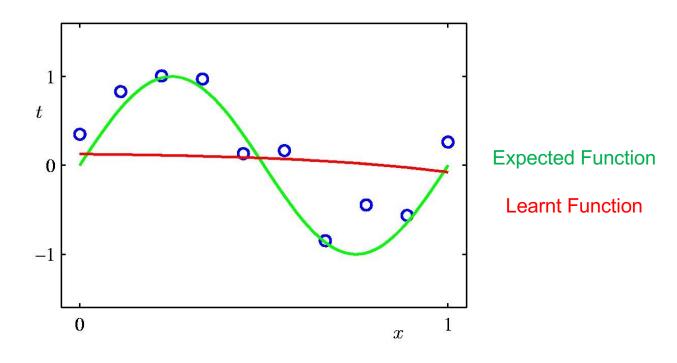


Expected Function

Learnt Function

Regularization:

(huge regularization)



What's happening from medium to huge regularization?

Polynomial Coefficients

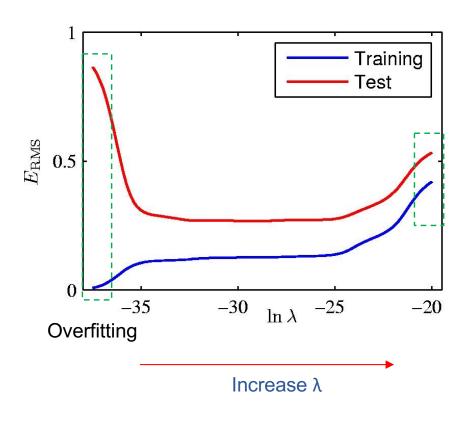
	M = 0	M = 1	M = 3	M = 9
$\overline{w_0^{\star}}$	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^\star				-231639.30
w_5^\star				640042.26
w_6^\star				-1061800.52
w_7^{\star}				1042400.18
w_8^\star				-557682.99
$\overset{\circ}{w_9^\star}$				125201.43
_	1			

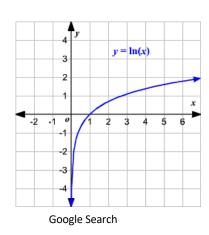
Polynomial Coefficients

No regularization			Huge regularization
$\overline{w_0^{\star}}$	0.35	0.35	0.13
w_1^\star	232.37	4.74	-0.05
w_2^\star	-5321.83	-0.77	-0.06
w_3^\star	48568.31	-31.97	-0.05
w_4^{\star}	-231639.30	-3.89	-0.03
w_5^{\star}	640042.26	55.28	-0.02
w_6^{\star}	-1061800.52	41.32	-0.01
w_7^\star	1042400.18	-45.95	-0.00
w_8^\star	-557682.99	-91.53	0.00
w_9^{\star}	125201.43	72.68	0.01

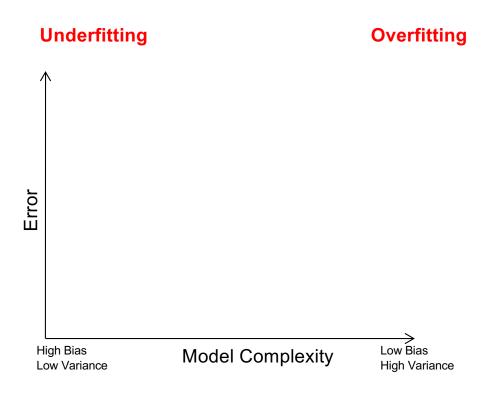
Increase λ

Regularization: $E_{\rm RMS}$ vs. $\ln \lambda$



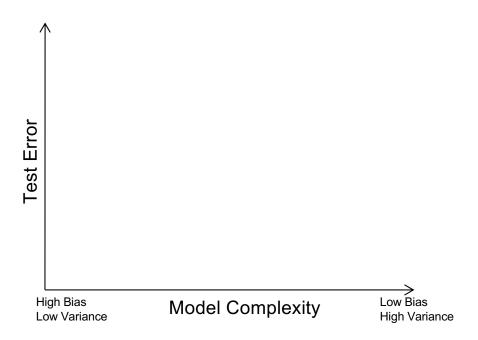


Training vs test error



Slide credit: D. Hoiem

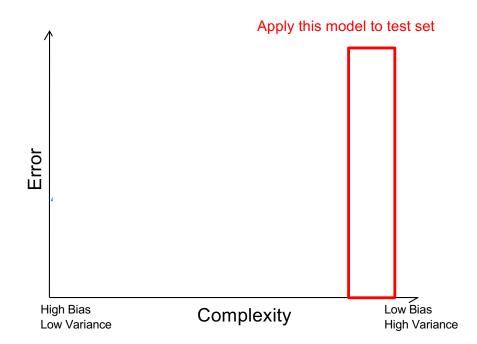
The effect of training set size



Slide credit: D. Hoiem

Choosing the trade-off between bias and variance

Need validation set (separate from the test set)

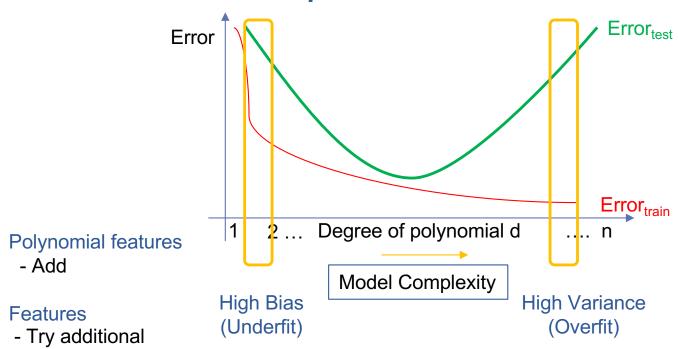


Slide credit: D. Hoiem

Generalization tips

- Try simple classifiers first
- Better to have smart features and simple classifiers than simple features and smart classifiers
- Use increasingly powerful classifiers with more training data
- As an additional technique for reducing variance, try regularizing the parameters (penalize high magnitude weights)

Generalization tips: Bias/Variance



Training Examples

- Get more

Features

- Try smaller set

Regularizer

- Increase λ

- Decrease λ

Regularizer

Adapted from Andrew Ng - Coursera