[Supp] CS 2770: Linear Algebra

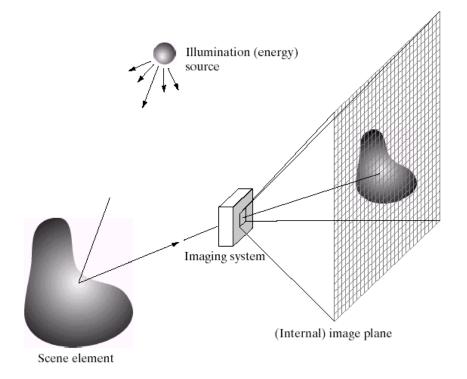
PhD. Nils Murrugarra-Llerena

nem177@pitt.edu

Linear Algebra Review

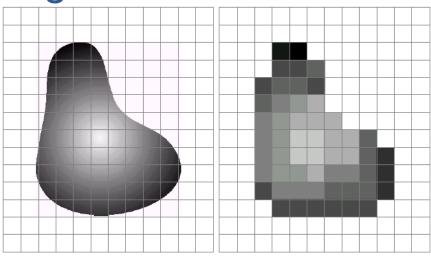
What are images? (in Python) – Image Formation

- Python treats images as matrices of numbers
- To proceed, let's talk very briefly about how images are formed



Slide credit: Derek Hoiem

Digital Images



a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)

Slide credit: Derek Hoiem, Steve Seitz

Digital Images

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)
- What does quantizing signal look like?

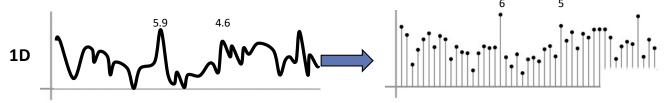
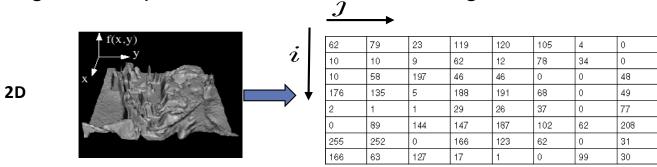


Image thus represented as a matrix of integer values.



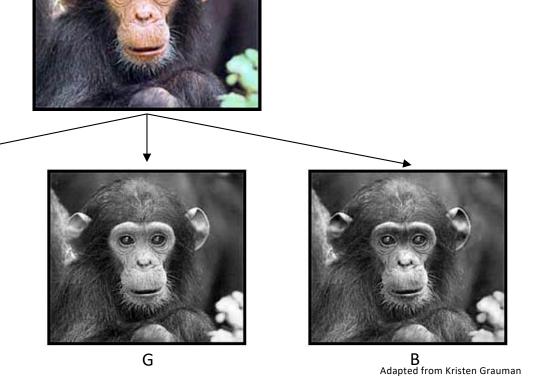
Adapted from S. Seitz

Digital Color Images

Color images, RGB color space:

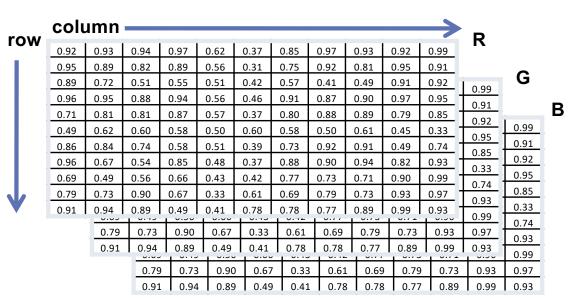
Split image into three channels

R



Images in Python

- Color images represented as a matrix with multiple channels (=1 if grayscale)
- Suppose we have a NxM RGB image called "im"
 - Im[0,0,0] = top-left pixel value in R-channel
 - im(y, x, b) = y pixels down, x
 pixels to right in the bth channel
 - im(N, M, 3) = bottom-right pixel in B-channel
- cv2.imread(filename) returns a uint8 image (values 0 to 255)



Vectors and Matrices

- Vectors and matrices are just collections of ordered numbers that represent something: movements in space, scaling factors, word counts, movie ratings, pixel brightness, etc.
- We'll define some common uses and standard operations on them.

Vector

- A column vector $\mathbf{v} \in \mathbb{R}^{n imes 1}$ where

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

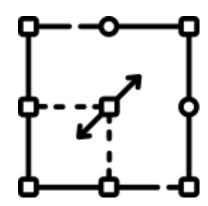
- A row vector $\mathbf{v}^T \in \mathbb{R}^{1 imes n}$ where

$$\mathbf{v}^T = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$$

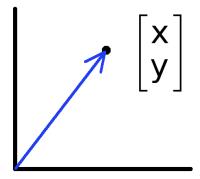
T denotes the transpose operation

Vector

- You'll want to keep track of the orientation of your vectors when programming in Python.
- You can transpose a vector V in Python by writing V.T.



Vectors have two main uses



- Vectors can represent an offset in 2D or 3D space
- Points are just vectors from the origin

- Data can also be treated as a vector
- Such vectors don't have a geometric interpretation, but calculations like "distance" still have value

Norms

• L1 norm

$$\left\|oldsymbol{x}
ight\|_1 := \sum_{i=1}^n |x_i|$$

• L2 norm

$$\|oldsymbol{x}\|:=\sqrt{x_1^2+\cdots+x_n^2}$$
 ,

• L^p norm (for real numbers $p \ge 1$)

$$\left\|\mathbf{x}
ight\|_p := igg(\sum_{i=1}^n \left|x_i
ight|^pigg)^{1/p}$$

Distances

L1 (Manhattan) distance

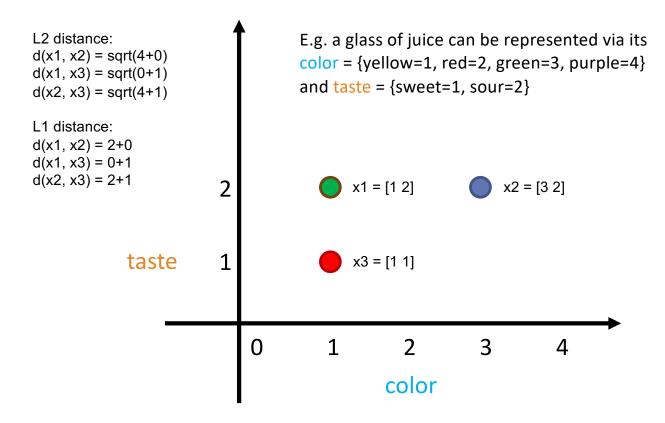
L2 (Euclidean) distance

$$d(\mathbf{p,q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

Example: feature representation

- A vector representing measurable characteristics of a data sample we have.
- E.g. a glass of juice can be represented via its color = {yellow=1, red=2, green=3, purple=4} and taste = {sweet=1, sour=2}
- A given glass i can be represented as a vector: $\mathbf{x}_i = [3\ 2]$ represents green, sour juice
- For D features, this defines a D-dimensional space where we can measure similarity between samples

Example: Feature representation



Matrix

• A matrix $A \in \mathbb{R}^{m \times n}$ is an array of numbers with size $m \downarrow by n \rightarrow$, i.e. m rows and n columns.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix}$$

• If $m \equiv n$, we say that ${f A}$ is square.

Matrix Operations

Addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} a+1 & b+2 \\ c+3 & d+4 \end{bmatrix}$$

 Can only add a matrix with matching dimensions, or a scalar.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + 7 = \begin{bmatrix} a+7 & b+7 \\ c+7 & d+7 \end{bmatrix}$$

Scaling

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \times 3 = \begin{bmatrix} 3a & 3b \\ 3c & 3d \end{bmatrix}$$

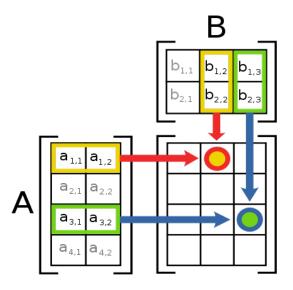
Matrix Multiplication

- Let X be an axb matrix, Y be an bxc matrix
- Then Z = X*Y is an axc matrix

 Second dimension of first matrix, and first dimension of second matrix have to be the same, for matrix multiplication to be possible

Matrix Multiplication

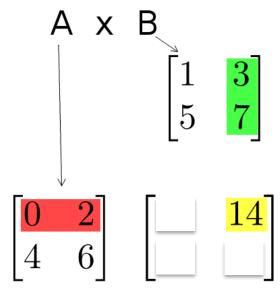
The product AB is:



• Each entry in the result is (that row of A) dot product with (that column of B)

Matrix Multiplication

Example:



 $0 \cdot 3 + 2 \cdot 7 = 14$

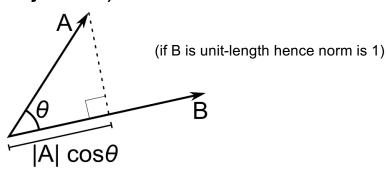
- Each entry of the matrix product is made by taking the dot product of the corresponding row in the left matrix, with the corresponding column in the right one.

Inner Product

Multiply corresponding entries of two vectors and add up the result

$$\mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i$$
 (scalar)

- x·y is also |x||y|Cos(angle between x and y)
- If B is a unit vector, then A·B gives the length of A which lies in the direction of B (projection)



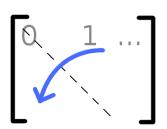
Fei-Fei Li

Different Types of Product

- **x**, **y** = column vectors (nx1)
- **X, Y** = matrices (mxn)
- x, y = scalars (1x1)
- $\mathbf{x}^T \mathbf{y} = \mathbf{x} \cdot \mathbf{y} = \text{inner product } (1 \times n \times 1 = \text{scalar})$
- $\mathbf{x} \otimes \mathbf{y} = \mathbf{x} \mathbf{y}^T = \text{outer product (nx1 x 1xn = matrix)}$
- **X*** **Y** = matrix product
- **X**.* **Y** = element-wise product

Matrix Operations

Transpose – flip matrix, so row 1 becomes column 1



$$\begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 4 & 5 \end{bmatrix}^T = \begin{bmatrix} 0 & 2 & 4 \\ 1 & 3 & 5 \end{bmatrix}$$

A useful identity:

$$(ABC)^T = C^T B^T A^T$$

Matrix Operation Properties

- Matrix addition is commutative and associative
 - A + B = B + A
 - A + (B + C) = (A + B) + C
- Matrix multiplication is associative and distributive but not commutative
 - $A(B^*C) = (A^*B)C$
 - A(B + C) = A*B + A*C
 - A*B != B*A

Special Matrices

Identity matrix I

- Square matrix, 1's along diagonal, 0's elsewhere
- I · [another matrix] = [that matrix]

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Diagonal matrix

- Square matrix with numbers along diagonal, 0's elsewhere
- A diagonal · [another matrix]
 scales the rows of that matrix

$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 2.5 \end{bmatrix}$$

Special Matrices

Symmetric matrix

$$\mathbf{A}^T = \mathbf{A}$$

$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 1 & 7 \\ 5 & 7 & 1 \end{bmatrix}$$

Python tutorial

Setup Conda Environment:

https://canvas.pitt.edu/courses/310280/pages/condaenvironment?module_item_id=5337312

Python tutorial

https://github.com/nineilpitt/cs2770 spring25/blob/main/supp/module 1 python/tutorial.ipynb