CS 441: Discrete Structures for Computer Science

PhD. Nils Murrugarra-Llerena <u>nem177@pitt.edu</u>

Who am I?

B.S. Computer Science at National University of Trujillo

M.S. in Computer Science at University of São Paulo in Al

Who am I?

PhD in Computer Science at University of Pittsburgh in Computer Vision

Research scientist at Snap Inc.

Who am I?

Assistant professor at Weber State University

Teaching Assistant Professor at University of Pittsburgh

[Students' presentations]

Name, hobbies, and mention one thing that you expect to learn in this course ③

Syllabus

Course intro: Syllabus

- Contact Information
 - Prof. Nils Murrugarra
 - o <u>nem177@pitt.edu</u>
 - Please, add prefix "[CS 441]" in all emails.
 - Website: <u>https://nineil.github.io/courses/spring25_cs441/</u>
- Lectures:
 - [Section A] Mon/Wed: 4:30pm 5:45pm @ SENSQ 5502
 - [Section B] Mon/Wed: 2:30pm 3:45pm @ SENSQ 5502
- Office hours:
 - Mon 11:00 am 1:00 pm and Tue 9:00 am 11:00 am [SENSQ 5419]

Course intro: Textbook

Discrete Mathematics and its Applications

Edition: 8th

By Kenneth Rosen

ISBN: 1260091996

Year: 2018

Course intro: What to expect?

- Material is based on previous iterations of *CS 441: Discrete Structures for Computer Science* from Prof. William Garrison.
- Exams mainly cover this material
- We will do around 11 to 13 assignments

Course intro: What to expect?

- There will be a lot of work!
- However, you will learn a lot :). Please, ask questions in class and use office hours as needed.

• I would like to help you much as possible.

Course intro: What to expect?

H/T Kirk Pruhs

Review Syllabus

Canvas Link:

Section A Section B

Questions?

Course overview

- What *is* discrete mathematics?
- Why is a math course part of the computer science curriculum?
- Will I really ever use this stuff again?
- How to succeed in this course?

What is discrete mathematics?

- Discrete mathematics is the study of *distinct* objects or structures and their relationships to one another
- For example:
 - How many ways can a valid password be chosen?
 - Can traffic flow between two computers in a network?
 - How can we transform messages to hide their contents?
 - How do we parse a given sequence of commands?
- By contrast, continuous mathematics (e.g., calculus) studies objects and relationships that vary continuously
 - e.g., position, velocity, and acceleration of a projectile

Why study discrete math?

Reason 1: Computers do not process continuous data

Why study discrete math?

Reason 2: Computers aren't actually all that smart, they are just deterministic functions that map discrete inputs to discrete outputs

Example: Does a given string contain an odd number of 1s?

Why study discrete math?

In general: Discrete mathematics allows us to better understand computers and algorithms

function fib(int n)
if(n == 0 || n == 1)
return 1;
else
return fib(n-1) + fib(n-2);

function fib(int n)
int first = 0;
int second = 1;
int tmp;
for(i = 1 to n)
tmp = first + second;
first = second;
second = tmp;
end for
return first;

Tentative Syllabus

- Logic and proofs
- Sets
- Functions
- Algorithms and analysis
- Integers, modular arithmetic, cryptography
- Induction
- Relations

Are these topics really useful?

Logic and proofs

Sets define collections of objects...

... and give us a means of reasoning about the relationships between

objects

Functions

Hardware design

Theory of computation

Computer graphics

Algorithms and analysis

Studying algorithms helps us write better code...

... and algorithm analysis helps us determine which approaches scale best

Integers and Modular Arithmetic

0111 0101 0110 1011 + 0101 1001 1110 0001 1100 1111 0100 1100

Binary arithmetic and bitwise operations

Induction is a proof technique that helps us reason about infinite objects (e.g. recursion)... ... and processes...

... and data structures!

Relations

<u>Name</u>	<u>Age</u>	<u>Phone</u>]
Alice	19	555-1234	
Danielle	33	555-5353	
Zach	27	555-3217	
Charlie	21	555-2335	

Relational databases

25

Syllabus, redux

- Logic and proofs
- Sets
- Functions
- Algorithms and analysis
- Integers, modular arithmetic, cryptography
- Induction
- Relations

Are these topics really useful?

Yes

Mastering discrete mathematics requires practice!

- Succeeding in this class requires practicing the skills that we will acquire, thinking critically, and asking questions
 - We are practicing clear and precise communication in the language of mathematics and logic—be specific!

Keys to success:

- Attend class and take notes
- Do your homework
- Work extra problems when you're unsure
 - Solutions to odd-numbered exercises are provided in textbook
- Go to your recitation every week
- Take advantage of office hours

What should I do now?

- 1. Check your Canvas notification settings
- 2. Read the chapter for next lecture
- 3. Decide if you need Inclusive Access, and opt out if not
- 4. Install Top Hat if you plan to use the mobile app
 - Then, wait to be added to the course on TH
- 5. Watch for a Gradescope invitation, where you'll submit recitation and homework assignments
- 6. Email me if you have any special circumstances that you may need accommodated

Final thoughts

- Our goal is to prepare you to be stronger computer scientists by:
 - Exploring the formal underpinnings of computer science
 - Developing critical thinking skills
 - Articulating ties between theory and practice
- Next: Propositional logic (Sec 1.1)