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Although anterior cruciate ligament (ACL) injuries are not
gender specific, they do occur at a significantly greater rate in
females. Biomechanical and neuromuscular deficits in females
have been documented as factors contributing to ACL injuries,
however little research has been conducted in the area of
preventative training programs to improve these deficits. This
article will describe the biomechanical and neuromuscular
factors that contribute to ACL injuries in females, and provide
a foundation from which preventative training programs should
be designed. Curr Opin Rheumatol 2002, 14:168–173 © 2002 Lippincott

Williams & Wilkins, Inc.

Anterior cruciate ligament (ACL) injury rate in the
United States exceeds 1 in every 3,000 persons. Of these
physically active individuals, females tear their ACL two
to eight times more frequently than their male counter-
parts with the risk of injury increasing with participation
in the sports of soccer and basketball [1–6]. A 1999 Na-
tional Institutes of Health/American Academy of Ortho-
paetic Surgeons-sponsored consensus conference on fe-
male ACL injuries determined that biomechanical and
neuromuscular factors are the most likely risk factors as-
sociated with this injury. Current research has shown that
the most vulnerable moment related to the injury is
ground contact while landing, coupled with an awkward
body position. A series of studies over 4 four years sug-
gests that intercollegiate female athletes have signifi-
cantly different proprioceptive characteristics [7,8],
muscle firing patterns [9,10], and landing strategies [11]
compared with their male counterparts, and that there
may be several underlying physiological mechanisms po-
tentially responsible for these differences [7–11].

Anatomy and biomechanics
The knee is classified as a modified hinge joint; in fact,
it is the largest and most complex in the body. This
tibiofemoral joint allows flexion and extension in the
sagittal plane by rolling, spinning, and gliding [12]. The
tibial plateau and asymmetrical condyles provide limited
boney structural support while the soft tissue structures
are largely responsible for providing static and dynamic
support to the joint.

The soft tissue structures that provide static support to
the knee are the capsule, the ligaments, and the menis-
cus, which are also referred to as primary stabilizers or
restraints [12]. These primary restraints are mechanical
in nature and are responsible for stabilizing and guiding
the skeletal components [12]. The anterior cruciate liga-
ment (ACL) is responsible for resisting anterior transla-
tion of the tibia onto the femur, specifically resisting
80–85% of anterior transitory loads [12,13]. The ACL is
made of two bundles, the anteromedial and posterolat-
eral. Both bundles rise from the posterior medial femoral
condyle and insert into the anterior medial aspect of the
tibial plateau [12]. Anterior instability or translation is
the result of ACL rupture; therefore, the muscles and
tendons must compensate for the increased joint motion
to maintain joint stability [14].

The soft tissues that provide dynamic support to the
knee are the tendons and muscles, which are referred to
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as secondary stabilizers or restraints. The quadriceps,
hamstrings, and gastrocnemius are the main secondary
stabilizers of the knee. The orientation of the proximal
attachments of the gastrocnemius and the distal attach-
ments of the hamstrings are important to the dynamic
stabilization of the knee because they provide a posterior
force on the tibia that counteracts anterior translation.
Specifically, the hamstring muscle group is synergistic to
the ACL by unloading the ligament via increasing the
load to failure rate, up to 40% [12,15,16]. Previous re-
search suggests that several neuromuscular character-
istics contribute to this dynamic restraint mechanism
[16–19].

Dynamic restraint mechanism
Embedded within capsuloligamentous and tenomuscular
structures are mechanoreceptors that send neurosignals
about tissue deformation [20,21]. As tissue deformation
increases, the frequency of neurosignals and the number
of mechanoreceptors that are stimulated are also in-
creased. There are three main types of mechanorecep-
tors found in the knee. Pacinian corpusles, located in the
joint capsule, which quickly depolarize subsequent to a
stimulus and provide conscious and unconscious sensa-
tion of joint motion (kinesthesia) [21,22]; Meissner cor-
pulses or Ruffini endings, housed within ligaments, me-
nisci, and capsular tissue, which slowly adapt to stimuli
and provide constant feedback concerning joint position
(proprioception) [21,22]; and Golgi tendon orgranlike
endings, located in the ligaments and menisci, which are
also slow to adapt, and are thought to detect extreme
ranges of motion [21]. The mechanoreceptors in the
ACL are believed to contribute to the dynamic restraint
system only when it is overloaded [15].

Mechanoreceptors located within skeletal muscle are
called muscle spindles. Muscle spindles sense changes in
muscle length and velocity [23]. They mediate muscle
activity via stretch reflexes, which transmit afferent sig-
nals to motor nerves through monosynaptic pathways
[23]. Additionally, mechanoreceptors located near the
musculotendinous junction are called golgi tendon or-
gans (GTO’s) and monitor muscle tension [23]. Golgi
tendon organs reflexively activate antagonist muscles
and inhibit agonist muscles thus causing reflex inhibition
or relaxation [23].

Information gathered from these mechanoreceptors was
thought to be transmitted from the peripheral receptors
through the afferent pathways to the central nervous sys-
tem [24]. A direct reflex loop is formed between the
afferent structures and the efferent motor nerves. For
example, anterior translation loads cause an excitatory
response on the hamstrings and gastrocnemius muscles
[25,26] and an inhibitory response on the quadriceps
[27]. These reflexive muscular contractions are theorized
to contribute to dynamic stability [15]. Conversely, alter-

native theories state that afferent information from liga-
ments does not directly affect the motor nerves as once
proposed. Instead, afferent information affects the
muscle spindles, which regulate muscle activity via the
stretch reflex’s feedback loop that constantly modifies
muscle activity [18,27,28]. For example, a 5 N force
on the ACL excites the muscle spindles of the ham-
strings [27].

Neuromuscular characteristics of
dynamic restraint
Several characteristics contribute to the dynamic re-
straint system, which allows joint stability in potentially
unsafe conditions. Neuromuscular control involves infor-
mation from the proprioceptive, kinesthetic, visual, and
vestibular systems, and also involves cortical and spinal
motor commands [20]. Only a few aspects of neuromus-
cular control will be focused on in this section.

Preparatory and reactive muscle activity
Recent scientific theories focus on preactivated muscle
patterns that anticipate movement and joint loads [29].
These muscle patterns are acquired by performing a
task, whereupon sensory information is fed forward to
preprogram muscle activity for future tasks. This is de-
scribed as feed-forward neuromuscular control. This
mechanism is important to dynamic stability because it
provides fast compensation for encountered external
loads [29–34]. Preparatory muscle activity is derived
from centrally generated motor commands and high-
speed movements that create a model of the parameters
of a task [27,33]. When executing motor commands very
quickly, the feed-forward mechanism is not dependent
on reflex pathways, but instead increases the sensitivity
of the muscle spindles, which in turn increase the aware-
ness of joint motion and position [27,28,30]. Thus, sen-
sory information is used to assess the results of a task,
adjust accordingly for future motor patterns, and influ-
ence reactive muscle activity.

Muscle activity that occurs after a perturbation or event
is termed reactive muscle activity. Sensory information is
constantly fed back through several reflex pathways to
coordinate muscle activity to complete a task [33]. To
effectively coordinate muscle activity to protect a joint,
the reactive activity requires a very fast response;
30–70 ms [17,25]. Unfortunately there is a latency period
between preparatory and reactive muscle activation that
is a result of electromechanical delay (EMD). Men were
found to have a shorter EMD than women [34,35]. It is
likely that preparatory muscle activity improves reactive
muscle activity via the muscle spindles by identifying
unexpected perturbations more quickly [17,25,29,30].
However, the amount of time taken to generate reactive
muscle activity and the production of adequate force will
determine the efficiency of dynamic stabilization [17].
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Muscle force production
Muscle force production is one of several neuromuscular
characteristics that assist muscles in providing dynamic
stability. If the muscle cannot generate a sufficient
amount of force in a timely fashion, excessive joint mo-
tion may occur, and ultimately, this may affect static
structures [15,17,31]. Males are typically stronger than
females; most likely a result of differences in muscle
mass and possibly elastic tissue composition. The shorter
EMD times of males may also contribute to the strength
difference between the genders. Additionally, fatigue
was linked to slower leg muscle response to perturbation
and increased anterior tibial translation, possibly result-
ing in decreased dynamic stability of the knee [36].

Specifically, qualitative measures of the time required to
attain the peak torque of muscle force are most often
determined by isokinetic evaluation. The variable used
to assess strength is peak torque, or peak torque to body
weight ratio, which normalizes the data to make com-
parisons among subjects. Men and women possess
strength differences of the quadriceps and hamstrings; in
particular, women have a lesser amount of hamstring
strength [37]. As the speed of the isokinetic test in-
creases, the corresponding hamstring strength decreases
and the knee angle at which peak torque occurs is later
in the range of motion [37,38]. Additionally, females gen-
erate hamstring peak torque significantly later in the
range of motion for 60° and 180°/second compared with
men [37]. A negative correlation to muscle strength was
found for females, indicating that peak torque angles
occurred later in the range of motion as muscle strength
decreased [37]. Lastly, when comparing strength training
programs, an agility training program was found to im-
prove leg muscle reaction times in response to perturba-
tion the most, whereas agility and isokinetic training
most effectively improves the time to peak muscle
torque [39].

Kinetic and kinematic characteristics
of landing
When analyzing human movement and noncontact inju-
ries we must consider several forces that act on a body,
including weight, ground reaction force, joint reaction
force, muscle force, elastic force, and inertia force. Ad-
ditionally, the biomechanical principle of impulse sum-
marizes potential errors in landing techniques. Impulse
is defined as the size of a force multiplied by the time of
that force’s application. One has ideal impulse if a force
is absorbed over a longer period of time. To do so, joints
must go through a complete range of motion to ensure
the maximum time available to absorb that force was
used [40]. Applying this information to potentially haz-
ardous knee injuries is the degree of knee flexion on
landing and impact velocity. Lesser degrees of knee flex-
ion may be associated with increased peak vertical or
ground reaction forces [41]. The lower the ground reac-

tion forces the greater the impulse and the less chance of
injury. Researchers found that lowered ground reaction
forces demonstrate an increase of the angular displace-
ment of the knee after ground contact and increased
hamstring activity [10].

Gender differences do exist when athletes perform ath-
letic maneuvers, such as cutting and landing from a
jump. Women tend to land with the knee [42–47] and
hip [44] in a more extended position, and therefore sub-
ject themselves to higher forces per body weight during
the impact of landing [42]. As illustrated in Figure 1,
females tend to demonstrate greater valgus angles than
males at ground contact, suggesting that the load on the
ACL increases as knee valgus increases [44,48].

Likewise, skilled and unskilled individuals land from a
jump with notable differences [49–51]. Alterations in
strategy and landing characteristics are often attributed
to skill. Skilled individuals may exhibit increased ankle
plantar flexion [49,50], knee flexion [50], hip flexion
[50], and muscle preactivity [50], which allow for more
movement after ground contact and more time to dis-
tribute the impact forces, resulting in lowered ground
reaction forces [40,49–51]. Also, these landing forces may
change throughout the athlete’s conditioning as their pe-
riodization cycle changes [52]. Lastly, horizontal jumping
uses the hip, knee, ankle joint, and their musculature
differently than that of vertical jumping [53].

Quadriceps and hamstrings
Studies have reported the average angle of knee flexion
at the time of injury to be 22° [43,54]. At knee flexion,
angles from 0–45° quadriceps contractions strain the
ACL [13,16,55–59], particularly at heel strike [43]. Fo-
cusing on knee mechanics during muscle loading, the

Figure 1. Position of vulnerability

Females tend to demonstrate greater valgus angles at ground contact than
males.
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patella-tendon-tibia shift angle (the angle between the
patella tendon and the longitudinal axis of the tibia) in-
creases as knee flexion decreases, indicating that the
magnitude of the shear force on the tibia applied by the
patellar tendon increases [60,61]. Eccentric quadriceps
forces on the anterior tibia have been contented to reach
5000N when knee flexion is between 10–30° [55]. An-
other reason for increased quadriceps activity is small hip
flexion angles. Quadriceps activity decreases with in-
creased hip flexion [59,62]. This is seen in females most
often, who tend to activate their quadriceps more than
males [44], suggesting that the ACL can be torn in
a noncontact situation when the quadriceps eccen-
trically contract because of the shear force exceeding
the reported tensile strength of the ACL [63]. Injury to
the ACL may occur when small knee flexion angles
are coupled with an inappropriate amount of ham-
string counterforce to resist anterior translation [16,19,43,
60,64,65].

The hamstrings, considered agonists to the ACL because
of their protective mechanism of reducing anterior trans-
lation, are most influential when the knee is flexed to at
least 15–30° [16,66]. Within this range of flexed posi-
tions, the line of hamstring pull is more advantageous in
achieving a posterior pull of the tibia as opposed to the
line of pull when the knee is extended [16,43,66]. Con-
sidering the influence of quadriceps activity on anterior
tibial translation, it is important for the hamstrings to
counter this movement, particularly in the presence of an
abnormal quadriceps/hamstring strength ratio [67]. Thus,
the contraction of the quadriceps alone may be enough

to rupture the ACL, leaving the hamstrings to assume
the important role of maintaining joint stability [60].

In summary, females tend to activate their quadriceps
near full extension of the knee with little hamstring ac-
tivity and to land with smaller angles of hip flexion and
larger angles of valgus compared with males. The com-
bined effects from these findings suggest that women are
at an increased risk of ACL injury.

Future directions
Preventative programs
There is limited research regarding preseason strength
and flexibility measures in female athletes [68] and in-
conclusive evidence to support possible predictive fac-
tors contributing to ACL ruptures [69–71]. Likewise, to
date, one prevention program was studied that specifi-
cally addresses these neuromuscular issues in females
[72]. A jump-training program lasting for 6 weeks in-
cluded various plyometric exercises and emphasized
proper jumping techniques. The investigators found
lower mean landing forces (N), a significant decrease in
adduction or abduction forces, and a significant increase
in isokinetic hamstring strength and hamstring-
quadriceps peak torque ratios for the trained group,
which consisted of 11 female high school volleyball play-
ers, versus the control group comprising of nine untrained
matched males [72]. Because of these favorable results,
this program was implemented during soccer, volleyball,
and basketball preseasons among 1263 high school ath-
letes, who were monitored for knee injuries throughout
their respective seasons. There were 14 serious knee
injuries throughout the respective season. The authors

Figure 2. Pretest cutting position

Cutting position before the 8-week neuromuscular training program.

Figure 3. Post-test cutting position

Cutting position after the 8-week neuromuscular training program.
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claim that the reduction of serious knee injuries is most
likely because of their preseason preventative training
program [73].

To ensure the effectiveness of preventative training pro-
grams, many more variables need to be assessed. Knee
kinesthesia and joint position sense, postural control
variables, hip and thigh muscle strength, lower extremity
joint kinematic variables, muscle activation, and selected
vertical ground reaction forces during landing would ide-
ally be evaluated prospectively to determine which vari-
ables change as a result of a neuromuscular training pro-
gram. Proposed preventative studies would examine the
effects of a neuromuscular training program on mecha-
nisms deficient in female athletes (hip and leg muscle
strength, rate of muscular force generation, and landing
stability) and determine if induced changes in these vari-
ables result in adaptations to selected landing variables
(knee and hip flexion angles, sway on ground contact,
vGRF on ground contact).

A current 4-year study is examining the influence of an
8-week neuromuscular training program on the previ-
ously mentioned mechanisms and variables found to be
deficient in females [7–11]. The neuromuscular training
program is designed to improve hip abduction/adduction
strength, quadriceps and hamstring strength, joint kin-
esthesia and joint position sense, knee stability, improve-
ment of functional strategies, and absorption of landing
forces using plyometric landing techniques. It is be-
lieved that female athletes participating in the current
neuromuscular training program will reveal significant
muscular and biomechanical adaptations, resulting in
more efficient landing strategies. Figure 3 shows alter-
ations in cutting strategies after the 8 week neuromus-
cular training program.

Retraining motor patterns, landing strategies, and im-
proving specific leg muscle strength with a neuromuscu-
lar training program may result in more efficient landing
techniques for females, avoiding vulnerable knee exten-
sion angles on ground contact from jumping or cutting
activities. The elimination of awkward landing positions
and improvements in muscle activation patterns will
likely reduce the incidence of ACL injuries in females.
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