
MATLAB: Workshop 15 - Linear Regression in MATLAB page 1

MATLAB Workshop 15 - Linear Regression in MATLAB

Objectives: Learn how to obtain the coefficients of a “straight-line” fit to data, display the resulting

equation as a line on the data plot, and display the equation and goodness-of-fit statistic
on the graph.

MATLAB Features:

 data analysis

Command Action
polyfit(x,y,N) finds linear, least-squares coefficients for polynomial

equation of degree N that is best fit to the (x,y) data set.

 graphics commands

Command Action

plot(x,y,symbol)

creates a pop up window that displays the (x,y) data points
specified on linearly-scaled axes with the symbol (and color)
specified in the string variable symbol. The data points are
supplied as separate x and y vectors. MATLAB
automatically scales the axes to fit the data.

semilogy(x,y,symbol)

creates a pop up window that displays the (x,y) data points
specified on a graph with the y-axis scaled in powers of 10
and the x-axis scaled linearly with the symbol (and color)
specified in the string variable symbol. The data points are
supplied as separate x and y vectors. MATLAB
automatically scales the axes to fit the data.

loglog(x,y,symbol)

creates a pop up window that displays the (x,y) data points
specified on a graph with both the x- and y-axes scaled in
powers of 10 with the symbol (and color) specified in the
string variable symbol. The data points are supplied as
separate x and y vectors. MATLAB automatically scales the
axes to fit the data.

xlabel(xname) adds the text in the string variable xname below the x-axis.
ylabel(yname) adds the text in the string variable yname below the y-axis.

title(graphname) adds the text in the string variable graphname above the
plot.

axis('equal') forces equal-scaling on the x- and y-axes
hold on maintains current plot for additional plotting overlay
hold off turns off hold on
text(X,Y,'string') displays ‘string’ at (X,Y)-coordinates on current plot
gtext('string') displays ‘string’ at plot location designated by cross-hairs

MATLAB: Workshop 15 - Linear Regression in MATLAB page 2

 graph symbol options

Graph Symbol Options
Color Symbol Line

y yellow . point - solid line
m magenta o circle : dotted line
c cyan x x-mark -. dash-dot line
r red + plus -- dashed line
g green blue * star
b blue s square
w white d diamond
k black v triangle (down)
 ^ triangle (up)
 < triangle (left)
 > triangle (right)
 p pentagram
 h hexagram

MATLAB: Workshop 15 - Linear Regression in MATLAB page 3

• Textbook costs
 Concerned about the ever rising cost of textbooks, an engineering student decided to see whether
the cost of textbooks in a particular subject was related to the number of pages. He went to the
bookstore and found the following data for 10 mechanical engineering books:

Mechanical Engineering textbook cost versus number of pages
Number of

pages 166 195 200 260 265 335 370 450 517 552

Cost, $ 54.00 82.00 72.00 72.00 90.00 124.00 94.00 118.00 152.00 132.00

Using the MATLAB script developed in
Workshop 14, the engineer produced the plot
shown at the right. The data does look as if it fits
a linear relationship. Several questions arise. The
first is what are the appropriate values for the
coefficients a1 and a0 in the linear equation,
 01 aPaC +=
where C is the textbook cost, $, and P is the
number of pages, that best describes the data. A
second question is what does this line look like
when plotted with the data. A third question is
how well does the line actually represent the data.

 (1) Create a plot of cost versus number of pages.

 Create a data file containing the data. Use your script from Workshop 14 to create a figure

showing the data points as illustrated above.

 Check to see what variables are in the Workspace by typing who at the command prompt.

You should have at least xdat, ydat, symbol, xname, yname, and graphname. Why?

 (2) MATLAB connects the dots.

 Because the graph variable information is present in the Workspace, we can use the

Command Window to illustrate some more features of graphs and graph management in
MATLAB.

 What would happen if we let MATLAB “draw a line” for the data points? To observe this,

enter
» hold on
» plot(xdat,ydat,'r-')

MATLAB: Workshop 15 - Linear Regression in MATLAB page 4

 at the command prompt. The hold
command is used to manage figure
display. hold on says to keep the
current figure and superimpose any
additional plot commands on top of
it. hold off says to replace the
current figure with whatever the next
plot command dictates. In this case,
the plot command asks that the
same data be plotted, but this time
with a red line. The figure at the right
results.

 MATLAB by itself will “connect the

dots” - not very useful if we are trying
to find an equation that relates the
cost to the number of pages.

 Lets return to the original data plot. Unfortunately, there is no undo command that will

remove the line just added. You will have to replace the figure - but it can be done from
the Command Window by issuing the following commands (why?).

» hold off
» plot(xdat,ydat,symbol)
» xlabel(xname)
» ylabel(yname)
» title(graphname)

• Fitting a line to data
 Many methods exist for finding a “best fit” line or curve to some data. One of the most popular
is called least squares regression or linear regression. For a straight-line approximation, we are seeking
the line
 01 axay +=
that best approximates the data. If we knew the values for a1 and a0, we could estimate the y-values for
each of the data points by
 01)()(axdatayest ii +=
where i refers to an individual data point. The error associated with the estimate is defined as the
vertical distance between the data point and the proposed line, i.e.,
 iii yestydate)()(−=
were ei is the error. Linear regression finds values for a1 and a0 by a mathematical procedure that
minimizes the sum of the error-squared for all of the data points.

 (3) Least squares in MATLAB.

 Because fitting a line to data is such a common activity, MATLAB has a single command

that will find the estimates,

 coeff = polyfit(xdat,ydat,N)

MATLAB: Workshop 15 - Linear Regression in MATLAB page 5

 where coeff is a variable that will capture the coefficients for the best fit equation, xdat
is the x-data vector, ydat is the y-data vector, and N is the degree of the polynomial line
(or curve) that you want to fit the data to. A straight line is a 1st-degree polynomial, so the
value for N would be 1.

 Find the “best fit “ to the book data by entering

» coeff = polyfit(xdat,ydat,1)
coeff =

0.2048 31.2181

 MATLAB responds with the coefficient vector in the order [a1 a0]. (How would you

suppress display of coeff?) Thus, according to MATLAB and the least squares
procedure, the best fit equation for the line representing a linear relation between the cost
of a Mechanical Engineering text and the number of pages is

 2181.312048.0 += PC

 (4) Displaying the best fit on the data graph.

 Visual confirmation that the “best fit” equation is indeed representative of the data comes

next. There are two problems at the moment. The first is that we have the coefficients for
the equation, but not the x- and y- vectors that are required for the plot command. The x-
and y-vectors will need to be generated.

 This brings us to the second problem. Remember that MATLAB uses “connect the dots”

for creating a line. If the plot points for the data are far apart, the line might have angles
and corners and not appear smooth. In order to counter this, we need to use a large
number of points when plotting a line. This will make any point to point distance small and
make the resulting “connect the dots” picture look smooth. Generally 200 points are
sufficient, but you might want to use more.

 Thus, the steps that we need to follow to create a smooth line fit to the data are to
 1. define a vector of 200 x-points in the range of the data
 2. calculate the corresponding vector of y-points
 3. display the x- and y-points as a line in the figure.

 To see how this works, enter the following at the command prompt
 » xline = linspace(min(xdat), max(xdat), 200);
 What does the linspace command do? The min command? The max command? Why

does this work to create a vector of x-values that span the data domain? Note that the
variable name xline is being used to distinguish this vector from the data vector.

 Now enter
 » yline = coeff(1)*xline+coeff(2);
 This command creates a vector of y-values corresponding to the best fit equation. Why?

 We can now plot the best fit line

» hold on
» plot(xline,yline,'r-')

MATLAB: Workshop 15 - Linear Regression in MATLAB page 6

 The result, displayed at the right,
shows that the best-fit calculated by
the polyfit command is a reasonable
representation of the data. The next
question is: how good?

• Error and goodness-of-fit estimation
 As engineers, we should always be
interested in knowing how close our
approximations (in this case, the line) actually
come to the measured, physical reality. As can be
seen in the approximation at the right, only one
data point actually seems to fall on or near the
line!

 The first question we can ask is what is the absolute error associated with the fit. This can be
calculated as
 iii yestydate)()(−=
for each data point. Note that the absolute error treats positive and negative deviations of the data from
the line in the same manner. In MATLAB code, this becomes

» yest = coeff(1)*xdat+coeff(2);
» abs_error = abs(ydat-yest);

Given abs_error, we can extract the magnitude of the maximum absolute error and data point at which
it occurred by using a variation of the max command:

» [max_abs_error, maxpt] = max(abs_error);

max_abs_error will have the value of the maximum absolute error and maxpt will be the index
where it is found in abs_error. For the plot above,

max_abs_error =
24.1809

maxpt =
6

Thus the maximum error is found at the sixth data point (xdat = 335 where did this come from?).
How could you find the minimum absolute error?

 The absolute error provides the magnitude of the error. However, this does not tell us how
serious the error actually is. For example, which is better: an absolute error of 50 units relative to an
expected value of 100 units or an absolute error of 50 units relative to an expected value of 5000 units.
Both have the same absolute error. But the percentage error in the first case is 50% while it is only 1%
in the second case.

 Relative error is like a percentage error in that how large the error is compared with the expected
error. Relative error is sometimes referred to as the fractional error because it is obtained by dividing
the absolute error by the magnitude of the corresponding y-value. The MATLAB command to do
element by element division is

» rel_error = abs_error./ydat;
How would you find the greatest relative error and the location at which it occurs?

MATLAB: Workshop 15 - Linear Regression in MATLAB page 7

 A commonly used statistic that is related to the error, but is not the same as the error is the
goodness-of-fit r2 (r-squared) statistic. The r2 statistic ranges from a value of 0 for absolutely no
relation between the data and the line to a value of 1 which occurs only if all of the data fall exactly on
the line, i.e., no error. In some engineering disciplines, an equation fitted to data is acceptable only if r2
> 0.9. Other engineering disciplines might find an r2 as low as 0.7 acceptable for use.

 The r2 statistic is calculated from

SST
SSEr −= 12

where �
=

−=
n

i
ii yestydatSSE

1

2])()[(

and �
=

−=
n

i
avei yydatSST

1

2])[(

MATLAB implementation of these equations is straight forward. For example, what (single)
MATLAB command would you use to compute the average value of the y-data? The r2 statistic for the
text book cost versus number of pages fit is r2 = 0.8204.

 (5) Calculate the various error estimates.

 Implement the MATLAB commands (in the Command Window) to find the following
 1) Maximum absolute error
 2) Index of the value where the maximum absolute error was found.
 3) X-data point where maximum absolute error was found.
 4) Maximum relative error
 5) Index of the value where the maximum relative error was found.
 6) X-data point where maximum relative error was found.
 7) r2 statistic for the fit.

• Displaying equation and r2 statistic on the graph
 The final bell and whistle in displaying data and a best line fit to the data on a graph is to also
display the equation and r2 statistic as text. In order to do this, we need to build both the equation and
r2 as a string variables for display. The equation can be built from the following commands

» a1str = num2str(coeff(1));
» a0str = num2str(coeff(2));
» eqnstr = ['y = (', a1str, ')*x + (', a0str, ')'];

where the first two command convert the numbers for the equation coefficients to their equivalent
strings. The third command creates a string variable with the text and coefficients in order. The r2
statistic string can be built by the commands

» rsqstr = ['r^2 = (', num2str(rsq)];

This command used the num2str command internally to create the string rather than create another
variable to hold the conversion. The process of building the strings part by part is referred to as
concatenation.
 Both the equation and the r2 statistic can be displayed by using the text command:

text(X,Y,'text to display')
where X and Y are the (x,y)-coordinates on the current plot at which to start the text string. As always,
the text string can be a string variable name.
 An alternative is to use the gtext command

gtext({eqnstr,rsqstr})

MATLAB: Workshop 15 - Linear Regression in MATLAB page 8

This causes a “cross-hairs” to appear on the plot, as shown above and to the right, which can be moved
by moving the mouse. A left-click on the mouse will cause the requested strings to be placed at the
location of the cross-hairs as shown in the figure above and to the left. Note how the r2 equation string
is displayed with the number 2 showing as an exponent. Why?

 (6) Display equation on graph.

 1) Display the equation and r2 statistic on the current graph using text.
 2) Display the equation and r2 statistic on the current graph using gtext.

Exercises:

1. Modify your linearplot function from Workshop 14 so that it will now

a Display the data points (as previously);
b Calculate a best-fit line to the data;
c Display the best-fit line as a line only;
d Calculate the r2 statistic;
e Display the equation and r2 statistic on the plot;
 Note: you should tell the user what to do if you use gtext.
f Return the equation coefficients and r2 statistic to the calling function.

2. Test your modified function by running your script from Workshop 14 and reproducing the

graphs of this workshop.

Recap: You should have learned
• That MATLAB uses “connect-the-dots” to draw lines between points.
• How to use polyfit to find a best fit straight line to data.
• How to display a best fit straight line to data on the same plot as the data.

MATLAB: Workshop 15 - Linear Regression in MATLAB page 9

• That many points are required to have a smooth line displayed in MATLAB.
• The meaning of and how to calculate absolute error.
• How to find maximum and minimum absolute error and their x-location.
• The meaning of and how to calculate relative error.
• How to find maximum and minimum relative error and their x-location.
• How to calculate the r2 statistic.
• How to display text strings on the plot.

