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In reading research, morphological processing and monomorphemic word identifica-
tion have generally been treated separately. We describe a computational model that
brings both kinds of reading together within a single framework. This model assumes
that word knowledge—the orthography, phonology, and meaning of words—accu-
mulates with experiences with individual words and that this knowledge is reflected
in two functionally different aspects of word processing—familiarity and availabil-
ity. We report simulations that demonstrate that the model accounts both for classical
effects of frequency and consistency in simple word reading and for morphological
effects in the reading of complex words. The morphology simulations naturally cap-
ture a distinction between inflectional and derivational morphology without defining
this distinction a priori. We discuss the implications of our model for general issues in
reading, including individual differences in reading ability.

Word identification models have largely ignored the role of morphology in lexical
processing. In this article we demonstrate that a general model of word identifica-
tion—that is, one that can account for a variety of simple phenomena in word iden-
tification—can also handle phenomena related to morphology. In particular, we
demonstrate that the traditional distinction between derivational and inflectional
morphology and their associated frequency effects can be explained using a single
set of computational principles.
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Theories of morpheme processing can be classified according to how they ex-
plain the identification of polymorphemic words. Proponents of the compositional
accounts claim that the meanings of complex words are constructed from their
component morphemes (Jarvella & Meijers, 1983; MacKay, 1978). From this per-
spective, a complex word is first parsed into its components so that these individ-
ual units of meaning can be identified and then assembled into its overall meaning.
For instance, the meaning of cowboys would be ascertained by first parsing the
word into its components and then assembling its meaning from these components
(e.g., cow + boy + s).

In contrast, proponents of the full-listing theories maintain that complex words
are represented in their entirety (Bradley, 1980; Butterworth, 1983; Henderson,
Wallis, & Knight, 1994; Kempley & Morton, 1982; Manelis & Tharp, 1977; Ru-
bin, Becker, & Freeman, 1979). By this view, cowboys would be represented as a
single entity, with separate representations for words like cow and boy, and even
for the singular form of the word, cowboy. These two views are not mutually ex-
clusive, and theories that include both separated and compositional representa-
tions have been proposed (Caramazza, Laudanna, & Romani, 1988;
Marslen-Wilson, Tyler, Waksler, & Older, 1994; Niemi, Laine, & Tuominen,
1994; Taft, 1994). In these hybrid theories, complex words are identified via a
“race” between compositional and whole-word lookup processes. These theories
highlight that some words are more amenable to decomposition than others.

In this article we focus on a distinction related to this decomposition question:
the distinction between inflectional and derivational morphology. Inflected mor-
phology is generated through syntactic affixes that systematically control gram-
matical agreement while preserving the core meaning of the base form (the stem).
Thus, the English inflectional system adds s to form a plural of a noun (dog →
dogs) and to form the third-person singular of a verb (run → runs). The inflec-
tional system reflects a closed rule-based process, as demonstrated by the fact that
the plural forms of new nouns are readily generated; for example, the plural of tark
is tarks. Whether the psycholinguistic process that implements this formal system
also uses rules (Prasada & Pinker, 1993) or merely generalizes based on input
“similarity” (Hare, Elman, & Daugherty, 1995; Rumelhart & McClelland, 1986) is
a hotly disputed issue. However, people so consistently use the regular inflectional
rule as the default in the face of competing similarity factors (Berent, Pinker, &
Shimron, 1999) that this is a compelling reason to think that the human language
process uses a rule system to generate inflectional morphology.

In contrast to inflectional morphology, derivational morphology works across
grammatical categories, generating forms of a base morpheme in different gram-
matical categories. For example, beauty, beautiful, and beautify show a
derivational pattern from a single base morpheme. Creativity in derivational mor-
phology is possible to an extent not tolerated by the grammatical system in inflec-
tional morphology. Note, for example, that the derivational paradigm for beauty
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may also include beaut, beauteous, and beautician. In addition to its greater (but
still constrained) creativity, the derivational system can produce a marked change
in the underlying meanings of base forms. Whereas the inflectional system creates
only those meaning changes narrowly defined within the grammar (e.g., plural in-
fection means more than one), the derivational meaning changes are partly system-
atic—beauty and beautiful relate in the same ways as plenty and plentiful—and
partly not. For example, creative and creation do not seem to be related in quite the
same ways as are secretive and secret. And for a new noun (e.g., tark), generating
an adjectival form is a bit less obvious (tarkal? tarkish?).

More generally, derivational forms are subject to variations in meaning trans-
parency—the degree to which the meaning of a complex word is inferable from its
components. For some words, the meanings of complex forms are transparent; in
others, the meanings are opaque. In some cases, an opaque relation can be seen
once attention is drawn to it. For example, many readers will not be aware at first
that discord is related to concordance but will see the relationship when the two
words are shown together. Others are related only through a language history that
is unknown to ordinary users and remains opaque without serious study of Latin,
Greek, and early French and Germanic languages. For example, disdain relates to
dignity (disdain is the withholding of dignity) through the old French variant,
deignier (from the Latin dignus) and its derivational partner, desdegneir. But who
knew? The degree of transparency partially determines how readily one might ex-
trapolate the rules that govern the morphemic composition of complex words and
the likelihood that any compositional process can be used (Marslen-Wilson et al.,
1994).

We cannot address all of the many issues in morphology within our general
model. Instead, we focus on two very general and important variables that will ex-
plain aspects of morphology (identifying complex words) and traditional
(monomorphemic) word identification simultaneously. We want a single model
that is general across simple and morphologically complex words, not one for
which addition mechanisms are postulated for morphologically complex words.
The advantages of simplicity and generality are obvious as a starting point, and it is
conceivable that complexities will be forced eventually. Meanwhile, we have de-
veloped a model that can account for (a) frequency of occurrence and (b) the simi-
larity among the items (words and/or morphemes) in a highly general manner. We
focus on these variables because their effects have been well-documented and ex-
tensively studied in both the standard word-identification (Balota & Chumbley,
1984, 1985; Schilling, Rayner, & Chumbley, 1998; Seidenberg, 1985; Seidenberg,
Waters, Barnes, & Tanenhaus, 1984) and morphology (Bertram, Baayen, &
Schreuder, 2000; Hyönä & Pollatsek, 1998; Pollatsek, Hyönä, & Bertram, 2000;
Schreuder & Baayen, 1997) literatures.
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AN EPISODIC THEORY OF WORD IDENTIFICATION

Our central idea is that the processes that allow words meanings, pronunciations,
and spellings to be encoded, stored, and retrieved in episodic memory may be suffi-
cient to support word identification and may also explain how the morphological
composition of words affects this process. Our starting assumption is that the mech-
anisms of episodic memory, in conjunction with the statistical properties of the in-
formation being represented (i.e., a reader’s vocabulary), is sufficient to account
for the myriad effects that both linguistic (e.g., frequency of occurrence) and per-
ceptual (e.g., word length) variables have on the relative ease of using words. This
dynamic view of lexical processing is contrary to the abstractionist view that words
are represented by static representations (Tenpenny, 1995). Because this article fo-
cuses on morphology, our discussion is limited to several well-documented lin-
guistic variables. A more complete discussion of the model and its theoretical cov-
erage is forthcoming (Reichle, Landi, & Perfetti, 2002).

MINVERVA 2

Our model is implemented within the framework of an existing model of episodic
memory: MINERVA 2 (Hintzman, 1984). This model simulates a variety of mem-
ory processes (e.g., learning, categorization) and is amenable to our conceptualiza-
tions of word identification and the manner whereby readers acquire this skill. Like
other instance-based models (Logan, 1988; Medin & Schaffer, 1978; Nosofsky,
1992), the key assumption in MINERVA 2 is that episodic memory consists of
memory traces and the operations that encode and retrieve them.

Individual memory traces represent specific experiences (e.g., an encounter with
a new word) and include both focal information (e.g., the word’s spelling and mean-
ing) and contextual information (e.g., the physical setting in which the word is en-
countered). This information is represented as perceptual and/or semantic features.
Thus, each experience with the word provides an opportunity to encode its spelling,
pronunciation, and/or context-specific meaning. This happens whenever those fea-
tures of the word being attended to (in working memory) are encoded as a new trace
in long-term memory. Over one’s lifetime, these experiences produce a cornucopia
of such traces and a rich working knowledge of the words in one’s language.

The information in long-term memory can be used in two ways. The first corre-
sponds to the process of recognition. If a word that has been experienced before is
encountered again, then the person may recognize the word as having been previ-
ously experienced (i.e., it is familiar). In MINERVA 2, familiarity is used to simu-
late recognition (Hintzman, 1987, 1988). In our simulations, familiarity is an index
of how well a word is established in a reader’s vocabulary—words experienced of-
ten tend to be more familiar than new words or words experienced less often.
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The second way information in long-term memory can be used is through the
retrieval of features. For example, one might learn that a caracal (pronounced
\)kar-E-,kal\) is a medium-sized cat indigenous to Africa and parts of the Middle
East. Having learned this, if one sees the word again, it may be possible to both say
the word and describe what it refers to. This capacity depends on the ability to use
the word’s orthographic form as a cue to retrieve its pronunciation and meaning. In
MINERVA 2, this capacity is used to simulate recall (Hintzman, 1986). In our
simulations, it is used to simulate the retrieval of the orthographic, phonological,
and/or semantic features that compose words. The quality of this information and
the facility with which it is retrieved is quantified using the Pearson’s correlation
coefficient, r, between the retrieved features and the features that (in our simula-
tions) define a given word; this index provides a measure of a word’s availability.

Additional Assumptions

Each experience with a word is encoded as a memory trace partitioned into three
separate feature fields, which represent the word’s orthography, phonology, and
meaning. Similarity was instantiated by varying the amount of overlap among these
features. For example, the memory traces for the homophones bear and bare con-
tain partially overlapping orthographic features, identical phonological features,
and completely orthogonal semantic features. Although our definition of “similar-
ity” is completely arbitrary, the simulation results are robust and only depend on the
relative amounts of feature overlap (e.g., homophones share more phonological
features than nonhomophones).

Most existing models of word identification have been evaluated by teaching
the model small corpora of words (e.g., 2,987 words in Seidenberg & McClelland,
1989) and then examining how well the model can use this knowledge to perform
simulated tasks (e.g., pronunciation). In some cases this training is necessary to ad-
dress theoretical questions (Patterson, Seidenberg, & McClelland, 1989), but most
often it only intends to show that the model can retain information about a large
number of words. These demonstrations are necessary (in connectionist models)
because the benefits of early training are often eliminated or attenuated by subse-
quent training (Ratcliff, 1990).

With instance-based models, these precautions are unnecessary because indi-
vidual experiences are represented by separate memory traces. Our model is thus
capable of encoding, retaining, and retrieving any number of individual words. In
fact, it was necessary to degrade our model’s performance by adding a “noisy”
memory trace representing the cumulative interference that would result from a
lifetime’s worth of experiences (see Appendix).

Another reason for not using a large corpus is that it is prohibitively time-con-
suming, both in terms of generating the corpus (which, if it is to be representative,
must be much larger than existing corpora and contain complex, polymorphemic
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words) and in terms of running the simulations. Consequently, we opted to run a
series of “test case” simulations involving only a few words having very specific,
perfectly controlled characteristics. These simulations are existence proofs that the
assumptions of the model are sufficient to explain certain phenomena (e.g., word
frequency effects).

Our final assumption relates to the tasks that we simulated. Rather than attempt-
ing to simulate the mechanics of the various tasks that have been used to study
word identification (e.g., pronunciation, lexical decision), we simply compared
the model’s relative performance across experimental conditions using the two de-
pendent measures: familiarity and availability. To review, familiarity is an index
of how well a particular word is known, whereas availability (as measured by r) re-
fers to the quality of the word’s identity and the facility with which it is retrieved
from memory. Because availability captures both pronunciation and meaning, it is
a composite measure of word identity.

SIMULATION RESULTS

Our first goal was to demonstrate that the model handles some general, important
facts about word identification—specifically, word frequency and form similarity.
For this, our simulations use monomorphemic words. Our second goal was to ex-
tend the model to morphologically complex words, showing that the same basic as-
sumptions work for complex words.

Word Identification

The first set of simulations demonstrated the model’s ability to capture two impor-
tant word effects that are well established in the experimental literature.

Word frequency effects. The first simulation1 examined how variation in
frequency of occurrence affects a word’s familiarity and the availability of its pro-
nunciation and meaning. Six “words” covering the full range of frequency values
(as tabulated by Francis & Ku�era, 1982) were first encoded into the model’s “vo-
cabulary”; then the orthographic features of each word were successively presented
to the model (i.e., used to probe memory) to determine the word’s familiarity, pro-
nunciation, and meaning. The results of this simulation are presented in Panel A of
Figure 1, which shows the words’ availability and familiarity as a function of their
frequency.
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Panel A of Figure 1 shows that both familiarity and availability increase with
word frequency. These results are consistent with frequency effects in a variety of
tasks, including lexical decision (Balota & Chumbley, 1984) and pronunciation
(Balota & Chumbley, 1985; Frederiksen & Kroll, 1976; Stanovich & West, 1981,
1983). To account for performance in these tasks using our model, it is necessary to
assume only that lexical decisions can be made using a word’s familiarity or identity
(pronunciation and meaning), whereas reading aloud (and possibly other tasks; e.g.,
categorization)dependsonaword’s identity (i.e., itspronunciationandmeaning).

Our distinction between word familiarity and identity also provides a theoreti-
cal bridge to models that link word identification to eye-movement control during
reading (Engbert & Kliegl, 2001; Engbert, Longtin, & Kliegl, 2002; Kliegl &
Engbert, in press; Reichle, Pollatsek, Fisher, & Rayner,1998; Reichle, Rayner, &
Pollatsek, 1999, in press); namely, the distinction between a rapid familiarity as-
sessment (which indicates that access to the meaning of the word in question is im-
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minent) followed by the process of actually identifying the word. This is an
important step forward because it provides a basis for our model to explain word
frequency effects in natural, silent reading (Inhoff & Rayner, 1986; Rayner &
Duffy, 1986; Schilling et al., 1998). It also raises the prospect that we might even-
tually be able to evaluate predictions of our model using eye-tracking methods in
the context of natural reading experiments.

Consistency effects and their interaction with word frequency. The ef-
fects of word frequency interact with the word’s spelling–pronunciation consis-
tency. The typical finding is that low-frequency words having inconsistent corre-
spondences are processed less rapidly than low-frequency words having consistent
correspondences (Andrews, 1982; Seidenberg, 1985; Taraban & McClelland,
1987; Waters & Seidenberg, 1985). For example, it generally takes longer to say
the word pint, which is pronounced differently than other words ending in -int (e.g.,
mint, hint), that it does to say book, which has a pronunciation consistent with other
words ending in -ook (e.g., look, cook). This consistency effect is weaker or absent
with high-frequency words; frequent inconsistent words are named as rapidly as
frequent consistent words2.

We predicted that our model would simulate the interaction between frequency
and consistency because the information about a word reflects the global contents
of memory and is a weighted function of both the frequency with which it is repre-
sented and its similarity to other information in memory (see Appendix). We
therefore completed a second simulation in which we examined the model’s per-
formance in four conditions corresponding to the factorial manipulation of a tar-
get’s frequency and similarity to other, nontarget items. In all of these conditions,
one target and five nontargets words were encoded. The semantic features of all
six words were completely orthogonal, but their orthographic features were simi-
lar. On average, the words shared 85% of the same orthographic features. In the
two consistent conditions, the phonological features of all of the words were simi-
lar (i.e., 85% feature overlap), whereas in the two inconsistent conditions, the pho-
nological features of the target words were only moderately similar to those of the
nontargets (i.e., 50% feature overlap). Thus, the mappings between specific ortho-
graphic and phonological features were entirely consistent across the targets and
nontargets in the consistent conditions but consistent only among the nontargets
(and not between the targets and nontargets) in the inconsistent conditions.
Finally, in two of the conditions, the target words were low frequency (10 per mil-
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lion), whereas in the other two conditions, the target words were high frequency
(100 per million).

The simulation results are presented in Panel B of Figure 1. The horizontal bars
indicate that the model predicted an interaction between frequency and consis-
tency: Word identities (pronunciation and meanings) of low-frequency inconsis-
tent words are less available than those of both low-frequency consistent words
and high-frequency words. It is also interesting that the model does not predict this
interaction for word familiarity, which is a simple function of word frequency.
This suggests that the interaction between frequency and consistency may be ab-
sent—or at least attenuated—in tasks that can be performed on the basis of famil-
iarity alone (e.g., speeded lexical decision).

On the basis of these results, we conclude that the model promises to be a viable
alternative to existing word identification models. Indeed, an earlier version of the
model has already been used to explain the outcome of an experiment involving
both word form (orthographic and phonological) and semantic priming (Reichle &
Perfetti, 2001). Although these results will not be discussed here, the model han-
dles such effects by instantiating the compound-cue notion of priming (McKoon &
Ratcliff, 1992; Ratcliff & McKoon, 1988); to the extent that two words share over-
lapping features, the features of one word can provide a useful retrieval cue for fa-
cilitating the processing of the other.

Summary. The preceding simulations demonstrate the model’s capacity to
account for several basic phenomena in the word-identification literature. In the
next section of this article, we demonstrate how the model accounts for several
nonobvious effects related to morpheme frequency and similarity.

Morpheme Effects

The simulations reported here address questions about morphology related to fre-
quency, meaning, and compositionality. For example, if encounters with morpho-
logical variants of a word build up the representation of its base form, then the
model’s ability to capture this would simulate token frequency effects (Bertram et
al., 2002; Schreuder & Baayen, 1997).

Effects of token frequency of the inflected forms. The first simulation
examined the effect of the token frequency of a base word’s inflected forms on the
base word itself. For example, do experiences with run, running, and runs add to
the representational strength (familiarity or availability) of the stem run? Our simu-
lation involved two conditions: One in which a base word had a low-frequency (10
per million) inflection, and a second in which a base word had a high-frequency
(100 per million) inflection. The frequency of the base word was held constant
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across the conditions (10 per million), as was the similarity between the base words
and their inflected form, which shared 85% of their orthographic, phonological,
and semantic features. The orthographic features of the base words were used as
probes to determine their familiarity and the availability of their pronunciations and
meanings (i.e., their identities). The results of this simulation are presented in Panel
A of Figure 2.

Panel A of Figure 2 shows that both the familiarity and the availability of the
stems are affected by the token frequencies of their inflected forms. The base word
with a high-frequency inflection is more familiar than the base word with an infre-
quent inflection, and the pronunciation and meaning of the high-inflection base
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word are more available than those of the low-inflection base word. This pattern
has been reported in the experimental literature (Bertram et al., 2000; Schreuder &
Baayen, 1997).

Effects of token frequencies of derived forms. The second simulation
asks whether the base forms of words are affected by the token frequencies of their
derivations. This simulation was identical to the previous one, except that the simi-
larity between the base forms and their derivations was reduced because, on aver-
age, derived forms are less orthographically, phonologically, and semantically
similar to their base words than are inflected forms. Thus, the feature overlap be-
tween the base words and their derivations was reduced to 50%. The base words’
orthographic features were then used to probe memory to again determine their fa-
miliarity and availability.

The simulation results in Panel B of Figure 2 indicate that neither the familiarity
of the base words nor the availability of their pronunciations and meanings was af-
fected by the token frequencies of their derived forms. The base word with the in-
frequent derivation was just as familiar as the base word with the frequent
derivation, and the two base words’ pronunciations and meanings were equally
available. Again, this pattern has been reported in the experimental literature
(Bertram et al., 2000; Schreuder & Baayen, 1997).

Effects of derivational type frequency. Our final simulation addressed a
paradoxical finding that the type frequency, or family size (Schreuder & Baayen,
1997), of derivational forms—the number of different derivations that a word has,
rather than the token frequency across these derivations—affects processing of the
base word. Thus, words with many derivational forms (e.g., observe: observer, ob-
servation, observant, observance, observable, observatory) are typically identified
more rapidly than words with few derivational forms (e.g., poison: poisonous),
even when the token frequency across the forms is controlled. This simulation thus
contrasted two conditions. In the first, a base word (frequency = 10 per million) and
one derivation (frequency = 10 per million) were encoded. As in the previous simu-
lation, the derivation shared 50% feature overlap with its base form. In the second
condition, a base word (frequency = 10 per million) and five derivations (frequency
= 2 per million) were encoded. Notice that the token frequency across the deriva-
tions was equated so that any differences in the processing of the base forms can be
attributed to the type frequency of their derivations. The base words’ orthographic
features were then used as probes to determine their familiarity and their pronuncia-
tion/meaning availability.

The simulation results in Panel C of Figure 2 show a clear effect of family size:
The pronunciation and meaning of the base word with many derivations are more
available than those of the base word with a single derivation. Interestingly, how-
ever, the type frequency of the derivational forms did not affect the overall famil-
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iarity of the base words—both base words were equally familiar even though
derivational type frequency affected the availability of their identities. This result
suggests an interesting and nonobvious disassociation between identifiability and
familiarity that is not seen in monomorphemic words.

Summary. The morphology simulations suggest that our model can handle
at least some phenomena in morphology. The simulations show a separation of in-
flectional and derivational effects based not on their predefined status but as a func-
tion of differences in their orthographic, phonological, and semantic similarity. To-
ken frequency effects are restricted to morphological variations similar in form and
meaning, a condition that applies more often to inflectional than derivational fami-
lies. Type effects, however, are important for derivational families. Moreover, the
token frequency affected both familiarity and availability of the base form. In con-
trast, type frequency affected the availability of the base word’s identity but not its
familiarity.

DISCUSSION

Our simulations demonstrate that basic memory processes and a few assumptions
about the nature of word knowledge are sufficient to explain at least some impor-
tant aspects of word identification, including the effects of frequency of occurrence
and representational consistency. Our account of these variables connects two the-
oretical domains that—until now—have been largely disjoint: Those related to the
identification of simple (monomorphemic) words and those related to sublexical
(morphemic) processing in complex words. Our model suggests that these effects
may share a common mechanism: the basic computational principles that allow
knowledge about the spellings, pronunciations, and meanings of words to be en-
coded, represented, and retrieved from episodic memory. In what follows, we dis-
cuss some of the ramifications of these results for theories of morphology and mod-
els of word identification.

First, what can this approach add to the experimental research on morphology?
Although this research is substantial, inconsistencies raise many questions. One
problem is that many of the reported morpheme effects are quite subtle and fail to
replicate with minor variations in procedures or materials. Our simulations suggest
that variations in spelling, pronunciation, and meaning similarity are important
and will produce variable outcomes within the same experimental manipulation.
They also suggest that task differences are important because variation in word
similarity can affect its familiarity (which may play a larger role in lexical decision
than in other tasks) and the availability of its identity in different ways.

A second issue concerns the fact that theories of morphology have borrowed
linguistic distinctions (e.g., derivation vs. inflection) but have not explained the
cognitive mechanisms mediating these distinctions. In contrast, we have demon-
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strated how modeling can add to our understanding of how morphology is repre-
sented and used during reading. Our simulations address this question: How do the
operating principles of a word-experience model of reading (based on episodic
memory) influence the way morphemically complex words are represented and
made available during reading? We do not assume that the distinction between in-
flectional and derivational forms is lost on language users when production is in-
volved, or during tasks that tap people’s awareness of meaning and form. Rather,
we assume that a rapid process of skilled reading can take advantage of the form
and meaning relations that are shared among words, irrespective of the kind of
morphology that connects them.

A third issue concerns individual differences in reading ability. Our model
instantiates a theory (Perfetti & Hart, 2001) of these differences in terms of lexical
quality, or the degree to which the orthographic, phonological, and semantic fea-
tures that collectively define a given word are both well represented and well inter-
locked in the reader’s memory. This notion is captured by our model’s assumption
that word knowledge is acquired over time through repeated experiences with
words. According to this view, individual differences in reading skill arise from
differences in word knowledge, which in turn arise from differences in word expe-
riences.3 Thus, for skilled readers, word knowledge is well developed, with many
words being represented in memory, and with many of these words being well rep-
resented. A high-quality representation is one that allows the reader to retrieve a
word’s spelling, pronunciation, and/or meaning from any one of these three
sources of information. In addition, for many skilled readers, this information also
includes some tacit knowledge about morphology—spellings, pronunciations, and
meanings within both inflectional and derivational word families.

It is also important to note that word knowledge can be used in different ways.
For example, whatever information about a word happens to be available (e.g., its
spelling) can be used to evaluate its overall familiarity or to retrieve additional in-
formation (e.g., its pronunciation and meaning). Because this information is re-
trieved from long-term memory via a global-matching retrieval process, the exact
information retrieved will depend on the frequency with which the information be-
ing sought was encoded and its similarity (and relative consistency) to the overall
contents of long-term memory. By implementing a complete model (i.e., orthogra-
phy, phonology, and semantics), we have demonstrated how these basic princi-
ples, in conjunction with our assumptions about how words are represented, can
explain phenomena, like morphology, that have been ignored by existing models
of word identification (Coltheart, Curtis, Atkins, & Haller, 1993; Coltheart,
Rastle, Perry, Langdon, & Ziegler, 2001; Harm & Seidenberg, 1999; McClelland
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& Rumelhart, 1981; Paap, Newsome, McDonald, & Schvaneveldt, 1982; Plaut,
McClelland, Seidenberg, & Patterson, 1996).

Finally, although our model captures the results of prior experience on current
performance, it may have some implications for issues of development and read-
ing acquisition. The simple implication is that acquiring skill in reading requires
encounters with words that build up representations that reflect familiarity and
knowledge. This implication is in the spirit of models that emphasize the impor-
tance of reading practice for establishing the orthographic knowledge required for
word-specific representations (Perfetti, 1992; Stanovich & West, 1989). The role
of specific word experience is critical, of course, but important empirical questions
remain: Beyond phonological decoding (e.g., Share & Stanovich, 1995), what
learning experiences best promote the acquisition of form and meaning knowl-
edge? Is some level of morphological awareness important to take maximal advan-
tage of this experience? Our model emphasizes the importance of building up
orthographic, phonological, and semantic information shared across words but
also differentiates them. Experiences shape a reader’s knowledge about language
(e.g., phonology and morphology) and about printed word forms (orthography),
and both contribute to the skilled model of reading that has been our focus.
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APPENDIX

MINVERVA 2 (Hintzman, 1984) consists of working memory (a vector of features
representing the contents of consciousness) and memory traces (vectors represent-
ing the contents of memory). Features are perceptual and semantic primitives that
take on values of +1, 0, and –1 (zero indicates absence) and include both focal infor-
mation (e.g., a word’s spelling and meaning) and contextual information (e.g., the
physical setting in which the word is experienced).

Information is retrieved from memory via a global-matching process: Each fea-
ture j of a probe (i.e., the content of working memory) is compared in parallel to the
features of each trace i to give the similarity between the probe and trace (using
Equation 1, where N is the number of features and Nr is the total number of non-
zero features in either the probe or trace).

(1)

Similarity values range from +1 (perfect match) to –1 (perfect mismatch).
These values are then used to compute the activation generated by each trace i, us-
ing Equation 2. Traces very similar to the probe will generate disproportionately
more activation (and contribute more to the information that is retrieved from
memory) than those slightly less similar.

(2)  activationi = similarityi3

The activation values are summed across all of the traces in memory to produce
a signal, called the echo intensity, using Equation 3 (where M is the total number of
traces in memory).

(3)

The echo intensity indicates how similar the probe is to all of the traces in mem-
ory, and is used to simulate recognition and frequency judgments. In our simula-
tions, echo intensity is an index of a word’s familiarity, indicating how well the
word is established in a reader’s vocabulary.

To simulate recall (which is necessary to access a word’s spelling, sound,
and/or meaning), a pattern-completion process is used to generate a pattern of acti-
vated features, or echo content. Each feature j of the echo content is found using
Equation 4, which provides a basis of recall: If features of two “items” (e.g., a
word’s spelling and sound) are stored in the same trace, then probing with features
of one item will produce an echo content that resembles the other.
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similarity [ (probe * trace )]/ N

= ∑
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i

i = 1

intensity activation



(4)

Because the echo content is a composite of many memory traces, it will often be
degraded or noisy. In our simulations, the Pearson correlation coefficient, r, be-
tween the features of the echo content and those of the correct response was used as
an index of the how well the echo content matched a word’s spelling, pronuncia-
tion, or meaning (i.e., its availability).

Each trace of 2,400 features is divided into three equal-sized sets representing
orthography, phonology, and semantics. The value of each feature j of word n was
normalized (using Equation 5) to reflect its frequency of occurrence (Francis &
Ku�era, 1982) relative to other words. (This was done in lieu of encoding multiple
tokens of each word.) One is added to the numerator of Equation 5 so that active
features have nonzero values; one is added to the frequency of the most common
word (the, which occurs 69,975 times per million words of printed text) so that all
active feature values are in the –1 to +1 interval (excluding zero).

(5) featurej,n = ln(frequencyn + 1) / ln[max(frequency) + 1]

Finally, it was necessary to degrade the model’s performance so that it would
more closely resemble that of an adult reader with a vocabulary of tens of thou-
sands of words. This was done by adding a “noisy” memory trace having features
that were random deviates independently sampled from a Gaussian distribution
with µ = 0 and σ = 5. As expected, this precaution markedly reduced the model’s
overall performance.
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