
1

IS12 - Introduction to Programming

Lecture 5: Loops

Peter Brusilovsky
http://www2.sis.pitt.edu/~peterb/0012-051/

The iterate instruction

� How to repeat an action known number of
times?

iterate <positive-integer> times
<instruction>;

� Example:

iterate 5 times
move;

� Note indentation!



2

iterate instruction with a block

iterate <positive-integer> times begin
<instruction-1>;
<instruction-2>;
...
<instruction-k>;

end;
<next-instruction>;

� Semantics of execution
– A sequence of instructions from instruction-1
to instructionk will executed positive-
integer times. After that - next-instruction

Example 1: Square Dance

New way            Old way

beginning-of-program
beginning-of-execution

iterate 4 times begin
move;
turnleft;

end;
turnoff;

end-of-execution
end-of-program

beginning-of-program
beginning-of-execution

move;
turnleft;
move;
turnleft;
move;
turnleft;
move;
turnleft;
turnoff;

end-of-execution
end-of-program



3

Problem 3.10: Nested Loops

Explicit              Implicit

beginning-of-program
beginning-of-execution
   iterate 4 times begin
      iterate 3 times begin

     putbeeper;
     move;
  end;
  turnleft;

   end;
   turnoff;
end-of-execution

end-of-program

beginning-of-program
define-new-instruction plant-4
as
   iterate 3 times begin
      putbeeper;
      move;
   end;
beginning-of-execution

      iterate 4 times begin
         plant-4;
         turnleft;
      end;
      turnoff;
   end-of-execution
end-of-program

Old way: Cleaner Stairs

beginning-of-program
define-new-instruction
turnright as begin

turnleft;
turnleft;
turnleft;

end;
define-new-instruction
climb-stair as begin

turnleft;
move;
turnright;
move;

end;

define-new-instruction
pickbeeper-if-present as
if next-to-a-beeper then

pickbeeper;

beginning-of-execution
climb-stair;
pickbeeper-if-present;
climb-stair;
pickbeeper-if-present;
climb-stair;
pickbeeper-if-present;
turnoff;

end-of-execution
end-of-program



4

New Way: Cleaner Stairs 2

Is iterate always good?

beginning-of-program
define-new-instruction
turnright as
   iterate 3 times 

  turnleft;

define-new-instruction climb-
stair as begin

turnleft;
move;
turnright;
move;

end;

define-new-instruction
pickbeeper-if-present as
if next-to-a-beeper then

pickbeeper;

beginning-of-execution
iterate 3 times begin

climb-stair;
pickbeeper-if-present;

end;
turnoff;

end-of-execution
end-of-program

Old way: Carpet (problem 3.8)

beginning-of-program
define-new-instruction
laycarpet as begin

      move;
      putbeeper;
      move;
      putbeeper;
      move;
      putbeeper;
      move;
      putbeeper;
      move;
      putbeeper;
      move;
      putbeeper;
      move;
      putbeeper;
   end;

   beginning-of-execution
      laycarpet;
      turnleft;
      laycarpet;
      turnleft;
      laycarpet;
      turnleft;
      laycarpet;
      turnoff;
   end-of-execution
end-of-program



5

New way: Carpet (problem 3.8)

beginning-of-program
define-new-instruction
laycarpet as
iterate 7 times begin

move;
putbeeper;

      end;
beginning-of-execution
   iterate 4 times begin

      laycarpet;
       turnleft;

   end;
   turnoff;
end-of-execution

end-of-program

while loop

while <condition> do
   <instruction>;

<next-instruction>;

� Semantics of execution
– While condition is true - instruction is

executed over and over.

– After that - next-instruction
– What if it is wrong right away?



6

Flowchart of while

Condition ?

instruction

next-instruction

true

false

while instruction with a block

while <condition> do begin
<instruction-1>;
<instruction-2>;
...
<instruction-k>;

end;
<next-instruction>;

� Semantics of execution
– While condition is true - instruction-1 ...
instruction-k  repeated over and over

– after that - next-instruction



7

Examples

� Find beeper
define-new-instruction go-to-beeper as

while not-next-to-a-beeper do
move;

� Get all beepers
define-new-instruction clear-corner-of-beepers as

while next-to-a-beeper do
pickbeeper;

Case 1: Long Race to a Beeper

� Move Karel through a row of “hurdles”

� Each pair of Avenues may or may not have a
hurdle between them

� The race is arbitrary long

� There is a beeper at the end of the course



8

Solution: Long Race to a Beeper

Main program:
beginning-of-execution

while not-next-to-a-
beeper do

race-stride;
pickbeeper;
turnoff;

end-of-execution

Main subtask:

define-new-instruction
race-stride as
if front-is-clear then

move
else

jump-hurdle;

Solution 2: Race to a Beeper

Decomposing jump-hurdle:

define-new-instruction
jump-hurdle as begin
jump-up;
move;
jump-down;

end;

define-new-instruction
jump-up as begin
turnleft;
move;
turnright;

end;
define-new-instruction

jump-down as begin
turnright;
move;
turnleft;

end;



9

Case 2: Lay Any Carpet

beginning-of-program
define-new-instruction
lay-carpet-side as
  while front-is-clear do begin

move;
putbeeper;

      end;
beginning-of-execution
   iterate 4 times begin

      lay-carpet-side;
       turnleft;

   end;
   turnoff;
end-of-execution

end-of-program

Steps of Building a While loop

� What should be true when Karel has to
finish the loop?

� Use opposite condition for while test
� “Frame”  the while - do what you need

before/after to solve the problem

� Do the minimum what is needed to
ensure that the loop eventually stops



10

Loop Invariant and Changes

� At the beginning of every iteration:
– What is always the same - some condition

that is true when we need to execute the
loop body and false when we do not need
to do it anymore?

– What is different for each subsequent
iteration that makes the new situation
closer to the solution than previous?

Universal Harvest Program



11

Original Solution for Harvest

beginning-of-program
define-new-instruction turnright
as begin

turnleft;
turnleft;
turnleft;

end;
define-new-instruction
go-to-next-row as begin

turnleft;
move;
turnleft;

end;
define-new-instruction position-
for-next as begin

turnright;
move;
turnright;

end;

define-new-instruction harvest-1-row as
begin

pickbeeper; move;
pickbeeper; move;
pickbeeper; move;
pickbeeper; move;
pickbeeper;

end;
define-new-instruction harvest-2-rows
as begin

harvest-1-row;
go-to-next-row;
harvest-1-row;

end;
beginning-of-execution

move;
harvest-2-rows;
position-for-next;
harvest-2-rows;
position-for-next;
harvest-2-rows;
move;
turnoff;

end-of-execution
end-of-program

While Loops in Harvest

beginning-of-execution
move;
// at the beginning of every
// iteration Karel stands at
// the beginning of the next
//  double row facing east
while next-to-a-beeper do
begin

harvest-1-row;
go-to-next-row;
harvest-1-row;
position-for-next;

end;
position-for-next;
move;
turnoff;

end-of-execution

� What is true at the beginning of
every iteration?

– at the beginning of every iteration
Karel stands at

the beginning of the next

double row facing east

� What is different for each
subsequent iteration that
makes it closer to the solution?

� How we had to "frame" this
loop?



12

While Loops in Harvest

define-new-instruction harvest-
1-row as begin

while next-to-a-beeper
do begin
    pickbeeper;
    move;
end;
step-back;

end;
define-new-instruction step-

back as begin
turnleft;
turnleft;
move;
turnleft;
turnleft;

end;

� What is true at the
beginning of every
iteration?

� What is different for each
subsequent iteration that
makes it closer to the
solution?

� How we had to "frame"
this loop?

Before next lecture:

� Do reading assignment
– Pattis: Chapter 5

– Tutorial: lessons 8, 11

� Run Classroom Examples

� Check yourself by doing any 3 from
exercises 4-13 from Section 5.9

� HW3 is due on 9/23/04


