Web Document Modeling

Peter Brusilovsky

With slides from Jae-wook Ahn and Jumpol Polvichai

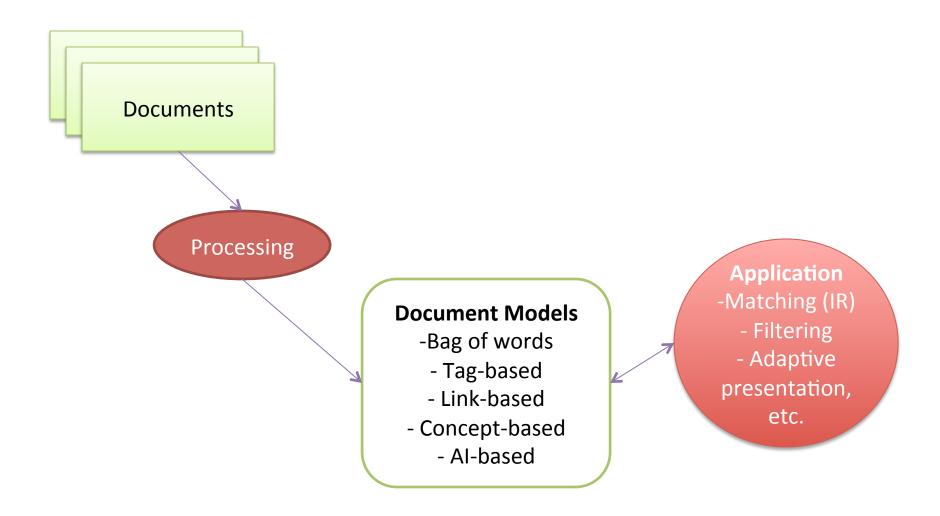
Where we are?

	Search	Navigation	Recommendation
Content-based			
Semantics / Metadata			
Social			

Introduction

- Modeling means "the construction of an abstract representation of the document"
 - Useful for all applications aimed at processing information automatically.
- Why build models of documents?
 - To guide the users to the right documents we need to know what they are about, what is their structure
 - Some adaptation techniques can operate with documents as "black boxes", but others are based on the ability to understand and model documents

Document modeling



Document model

Example

the death toll rises in the middle east as the worst violence in four years spreads beyond jerusalem. the stakes are high, the race is tight. prepping for what could be a decisive moment in the presidential battle.

how a tiny town in iowa became a booming melting pot and the image that will not soon fade. the man who captured it tells the story behind it.

×docid	*term	tfidf
ABC20001001.1830.0001	battle	3.21872
ABC20001001.1830.0001	boom	5.01961
ABC20001001.1830.0001	capture	4.03996
ABC20001001.1830.0001	death	2.6322
ABC20001001.1830.0001	decisive	4.50314
ABC20001001.1830.0001	east	2.14989
ABC20001001.1830.0001	fade	5.48334
ABC20001001.1830.0001	high	1.66849
ABC20001001.1830.0001	image	3.37131
ABC20001001.1830.0001	iowa	5.31571
ABC20001001.1830.0001	jerusalem	3.05699
ABC20001001.1830.0001	man	2.68728
ABC20001001.1830.0001	melt	5.96138
ABC20001001.1830.0001	middle	2.51962
ABC20001001.1830.0001	moment	3.21432
ABC20001001.1830.0001	pot	5.50355
ABC20001001.1830.0001	prep	7.48582
ABC20001001.1830.0001	presidential	2.62357
ABC20001001.1830.0001	race	3.06877
ABC20001001.1830.0001	rise	2.95104
ABC20001001 1020 0001	caroad	2 41222

Outline

- Classic IR based representation
 - Preprocessing
 - Boolean, Probabilistic, Vector Space models
- Web-IR document representation
 - Tag based document models
 - Link based document models HITS, Google Rank
- Concept-based document modeling
 - LSI
- Al-based document representation
 - ANN, Semantic Network, Bayesian Network

Markup Languages

A Markup Language is a text-based language that combines content with its metadata. ML support structure modeling

Presentational Markup

- Express document structure via the visual appearance of the whole text of a particular fragment.
- Exp. Word processor

Procedural Markup

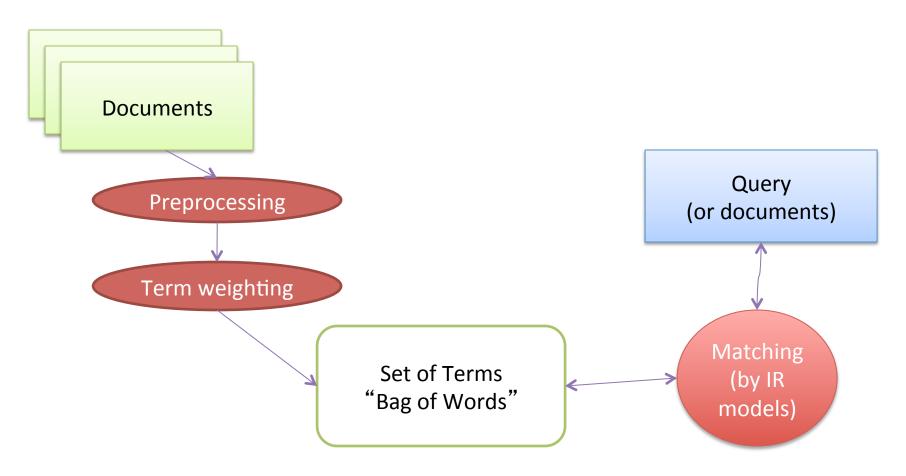
- Focuses on the presentation of text, but is usually visible to the user editing the text file, and is expected to be interpreted by software following the same procedural order in which it appears.
- Exp. Tex, PostScript

Descriptive Markup

- Applies labels to fragments of text without necessarily mandating any particular display or other processing semantics.
- Exp. SGML, XML

Classic IR model

Process



Motivation

- Extract document content itself to be processed (used)
- Remove control information
 - Tags, script, style sheet, etc
- Remove non-informative fragments
 - Stopwords, word-stems
- Possible extraction of semantic information (concepts, named entities)

HTML tag removal

 Removes <.*> parts from the HTML document (source)

```
untitled
 411
            DETROIT — With its access to a government lifeline in the
 412
       balance, <a
       href="http://topics.nytimes.com/top/news/business/companies/general_motors_co
       rporation/index.html?inline=nyt-org" title="More information about General
       Motors Corp">General Motors</a> was locked in intense negotiations on Monday
       with the <a
       href="http://topics.nytimes.com/top/reference/timestopics/organizations/u/uni
       ted_automobile_workers/index.html?inline=nyt-org" title="More articles about
       United Automobile Workers">United Automobile Workers</a> over ways to cut its
       bills for retiree health care.
  413 <a href="div id="articleInline" class="inlineLeft"></a>
 414 <a> <div id="inlineBox"><a href="#secondParagraph" class="jumpLink">Skip to next</a>
       paragraph</a>
  415
  416
                                      ‡ ③ ▼ Tab Size: 4 ‡ ID: inlineBox
Line: 414 Column: 44 D HTML
```

HTML tag removal

DETROIT — With its access to a government lifeline in the balance, General Motors was locked in intense negotiations on Monday with the United Automobile Workers over ways to cut its bills for retiree health care.

Tokenizing/case normalization

Extract term/feature tokens from the text

detroit with its access to a government lifeline in the balance general motors was locked in intense negotiations on monday with the united automobile workers over ways to cut its bills for retiree health care

Stopword removal

- Very common words
- Do not contribute to separate a document from another meaningfully
- Usually a standard set of words are matched/ removed

detroit with its access to a government lifeline in the balance general motors was locked in intense negotiations on monday with the united automobile workers over ways to cut its bills for retiree health care

Named Entities

 Named Entities and other concepts are typically extracted from full text

DETROIT — With its access to a government lifeline in the balance, General Motors was locked in intense negotiations on Monday with the United Automobile Workers over ways to cut its bills for retiree health care.

Extracting Semantic Information

Some times HTML tags are useful

```
untitled
 411
           DETROIT — With its access to a government lifeline in the
 412
       balance, <a
       href="http://topics.nytimes.com/top/news/business/companies/general_motors_co
       rporation/index.html?inline=nyt-org" title="More information about General
       Motors Corp">General Motors</a> was locked in intense negotiations on Monday
       with the <a
       href="http://topics.nytimes.com/top/reference/timestopics/organizations/u/uni
       ted_automobile_workers/index.html?inline=nyt-org" title="More articles about
       United Automobile Workers">United Automobile Workers</a> over ways to cut its
       bills for retiree health care.
 413 <a href="div id="articleInline" class="inlineLeft"></a>
 414 <a> <div id="inlineBox"><a href="#secondParagraph" class="jumpLink">Skip to next</a>
       paragraph</a>
 415
 416
                                    Line: 414 Column: 44  HTML
```

Stemming

- Extracts word "stems" only
- Avoid word variation that are not informative
 - apples, apple
 - Retrieval, retrieve, retrieving
 - Should they be distinguished? Maybe not.
- Porter
- Krovetz

Stemming (Porter)

- Martin Porter, 1979
- Cyclical recognition and removal of known suffixes and prefixes
- Try Demo at
- http://qaa.ath.cx/ porter_js_demo.html

```
http://tartarus.org/~martin/PorterStemmer/c.txt
                                                                      ↑ Q+ porter
                          fighttp://tartarus.org/~martin/PorterStemmer/c.txt
/* step4() takes off -ant, -ence etc., in context <c>vcvc<v>. */
static void step4()
  switch (b[k-1])
    { case 'a': if (ends("\02" "al")) break; return;
       case 'c': if (ends("\04" "ance")) break;
                 if (ends("\04" "ence")) break; return;
       case 'e': if (ends("\02" "er")) break; return;
       case 'i': if (ends("\02" "ic")) break; return;
       case 'l': if (ends("\04" "able")) break;
                 if (ends("\04" "ible")) break; return;
       case 'n': if (ends("\03" "ant")) break;
                 if (ends("\05" "ement")) break;
                 if (ends("\04" "ment")) break;
                 if (ends("\03" "ent")) break; return;
       case 'o': if (ends("\03" "ion") && (b[j] == 's'
                                                         || b[j] == 't')) break;
                 if (ends("\02" "ou")) break; return;
                 /* takes care of -ous */
       case 's': if (ends("\03" "ism")) break; return;
       case 't': if (ends("\03" "ate")) break;
                 if (ends("\03" "iti")) break; return;
       case 'u': if (ends("\03" "ous")) break; return;
       case 'v': if (ends("\03" "ive")) break; return;
       case 'z': if (ends("\03" "ize")) break; return;
       default: return:
    if (m() > 1) k = j;
/* step5() removes a final -e if m() > 1, and changes -ll to -l if
                                                                            17
```

Stemming (Krovetz)

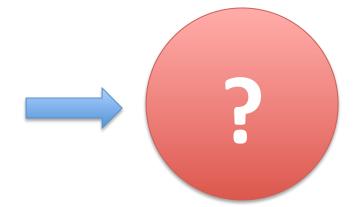
- Bob Krovetz, 1993
- Makes use of inflectional linguistic morphology
- Removes inflectional suffixes in three steps
 - single form (e.g. '-ies', '-es', '-s')
 - past to present tense (e.g. '-ed')
 - removal of '-ing'
- Checking in a dictionary
- More human-readable

Stemming

- Porter stemming example
 [detroit access govern lifelin balanc gener motor lock intens negoti mondai unit automobil worker wai cut bill retire health care]
- Krovetz stemming example
 [detroit access government lifeline balance general motor lock intense negotiation monday united automobile worker ways cut bill retiree health care]

 How should we represent the terms/features after the processes so far?

detroit access
government lifeline
balance general motor
lock intense negotiation
monday united
automobile worker ways
cut bill retiree health care



Document-term matrix

- Columns every term appeared in the corpus (not a single document)
- Rows every document in the collection
- Example
 - If a collection has N documents and M terms...

	T1	T2	T3	 TM
Doc 1	0	1	1	 0
Doc 2	1	0	0	 1
Doc N	0	0	0	 1

Document-term matrix

- Document-term matrix
 - Binary (if appears 1, otherwise 0)

	attract	benefit	book	 ZOO
Doc 1	0	1	1	 0
Doc 2	1	0	0	 1
Doc 3	0	0	0	 1

Every term is treated equivalently

Term frequency

- So, we need "weighting"
 - Give different "importance" to different terms
- TF
 - Term frequency
 - How many times a term appeared in a document?
 - − Higher frequency → higher relatedness

Term frequency

0	untitled 3	0 0	ountitled 3
1	document 342	26	springe 41
2	term 182	27	use 40
3	1 170	28	text 39
4	model 164	29	process 39
5	web 151	30	index 38
6	5 136	31	compute 38
7	0 128	32	2 38
8	represent 102	33	relevant 36
9	weight 85	34	method 36
10	system 78	35	<u>dj</u> 36
11	page 69	36	chapter 36
12	ti 68	37	tag 35
13	base 65	38	link 35
14	retrieval 63	39	rank 34
15	technique 61	40	calculate 34
16	network 61	41	node 33
L7	query 57	42	space 30
18	information 57	43	semantic 30
19	html 54	44	fig 30
20	ir 53	45	subsection 29
21	collect 48	46	concept 29
22	set 45	47	algorithm 29
23	3 44	48	trec 28
24	vector 43	49	read 28
25	illustrate 43	50	matrix 28
	LLLUSCIUCE TS	51	conference 28

Term weighting IDF

IDF

- Inverse Document Frequency
- Generality of a term → too general, not beneficial
- Example
 - "Information" (in ACM Digital Library)
 - 99.99% of articles will have it
 - TF will be very high in each document, IDF low
 - "Personalization"
 - Say, 1% of documents will have it
 - TF again will be very high, IDF high

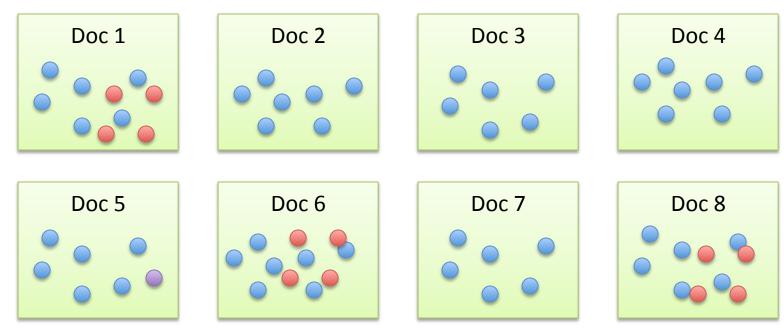
Term weighting IDF

IDF

$$\log(\frac{N}{DF})$$

- -N = number of documents in the coprus
- DF = document frequency = number of documents
 that have the term
- If ACM DL has 1M documents
 - IDF("information") = Log(1M/999900) = 0.0001
 - IDF("persoanlization") = Log(1M/50000) = 30.63

Term weighting IDF



- information, personalization, recommendation
- Can we say...
 - Doc 1, 2, 3... are about information?
 - Doc 1, 6, 8... are about personalization?
 - Doc 5 is about recommendation?

TF*IDF

- TF*IDF
 - TF multiplied by IDF
 - Considers TF and IDF at the same time
 - High frequency terms focused in smaller portion of documents gets higher scores

Document	benef	attract	sav	springer	book
d1	0.176	0.176	0.417	0.176	0.176
d2	0.000	0.350	0.000	0.528	0.000
d3	0.528	0.000	0.000	0.000	0.176

OKAPI BM25

- Okapi Best Match 25
- Probabilistic model calculates term relevance within a document
- Computes a term weight according to the probability of its appearance in a relevant document and to the probability of it appearing in a non-relevant document in a collection D

$$w_i = TF(t_i, d) \frac{\log \frac{(|D| - TF(t_i, d) + 0, 5)}{(|D| + 0, 5)}}{k_1 \cdot ((1 - b) + b \cdot \frac{|d|}{\overline{d}}) + TF(t_i, d)}$$

Entropy weighting

Entropy weighting

$$w_i = \log(TF(t_i, d) + 1)(1 + \frac{1}{\log(|D|)} \sum_{j=1}^{|D|} \left[\frac{TF(t_i, d_j)}{DF(t_i)} \log \frac{TF(t_i, d_j)}{DF(t_i)} \right]$$

- Entropy of term t_i
 - -1 : equal distribution of all documents
 - 0 : appearing only 1 document

IR models

- Boolean
- Probabilistic
- Vector Space

Boolean model

ITD	Terms	d_1	d_2	d_3
t_1	benefit	1	0	0
t_2	attract	1	1	0
t_3	save	1	1	0
t_4	springer	1	1	1
t_5	book	1	0	1
t_6	sign	0	0	1
t_7	email	1	1	0
t_8	titl	0	1	1
t_9	info	0	0	1
t_{10}	special	0	0	1
t_{11}	announc	0	0	1
t_{12}	alert	0	0	1
t_{13}	pai	0	1	0
t_{14}	inform	1	0	1
t_{15}	notif	0	1	1
t_{16}	servic	1	0	1

 Based on set theory and Boolean algebra

$$q = springer \wedge (inform \vee info)$$

• \rightarrow d1, d3

Boolean model

- Simple and easy to implement
- Shortcomings
 - Only retrieves exact matches
 - No partial match
 - No ranking
 - Depends on user query formulation

Probabilistic model

- Binary weight vector
- Query-document similarity function
- Probability that a certain document is relevant to a certain query
- Ranking according to the probability to be relevant

Probabilistic model

Similarity calculation

$$sim(d_j, q) = \frac{P(R/d_j)}{P(\overline{R}/d_j)}$$

$$sim(d_j,q) \sim rac{P(d_j/R)}{P(d_j/\overline{R})}$$
 Bayes Theorem and removing some constants

$$sim(d_j, q) \sim \sum_{i=1}^{n} log \frac{P(t_i/R)P(\overline{t_i}/\overline{R})}{P(t_i/\overline{R})P(\overline{t_i}/R)} \qquad P(d_j/R) = \prod_{t=1}^{n} P(t_i/R)$$

$$P(d_j/R) = \prod_{t=1}^{n} P(t_i/R)$$

Simplifying assumptions

$$P(t_i/R) = 0.5$$

No relevance information at startup

$$P(t_i/\overline{R}) = n_i/N$$

Probabilistic model

- Shortcomings
 - Division of the set of documents into relevant / non-relevant documents
 - Term independence assumption
 - Index terms binary weights

Vector space model

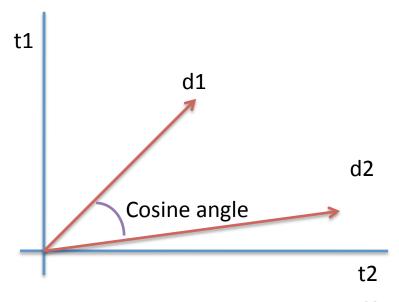
- Document = m dimensional space (m = index terms)
- Each term represents a dimension
- Query and documents are represented as vectors

Vector space model

- Document similarity
 - Cosine angle

$$sim(d_j, q) = cos(\overrightarrow{d_j}, \overrightarrow{q}) = \frac{\overrightarrow{d_j} \bullet \overrightarrow{q}}{|\overrightarrow{d_j}||\overrightarrow{q}|}$$

- Benefits
 - Term weighting
 - Partial matching
- Shortcomings
 - Term independency



Vector space model

Example

- Query = "springer book"
- q = (0, 0, 0, 1, 1)
- Sim(d1,q) = $(0.176+0.176)/(\sqrt{1} + \sqrt{0.176^2+0.176^2+0.176^2+0.176^2}) = 0.228$
- $Sim(d2,q) = (0.528) / (\sqrt{1} + \sqrt{(0.350^2 + 0.528^2)}) = 0.323$
- $Sim(d3,q) = (0.176) / (\sqrt{1} + \sqrt{(0.528^2 + 0.176^2)}) = 0.113$

Document	benef	attract	sav	springer	book
d1	0.176	0.176	0.417	0.176	0.176
d2	0.000	0.350	0.000	0.528	0.000
d3	0.528	0.000	0.000	0.000	0.176

Vector space model

- Document document similarity
- Sim(d1,d2) = 0.447
- Sim(d2,d3) = 0.0
- Sim(d1,d3) = 0.408

Document	benef	attract	sav	springer	book
d1	0.176	0.176	0.417	0.176	0.176
d2	0.000	0.350	0.000	0.528	0.000
d3	0.528	0.000	0.000	0.000	0.176

Curse of dimensionality

- TDT4
 - -|D| = 96,260
 - |ITD| = 118,205
- If linearly calculates sim(q, D)
 - 96,260 (per each document) * 118,205 (inner product) comparisons
- However, document matrices are very sparse
 - Mostly 0's
 - Space, calculation inefficient to store those 0's

Curse of dimensionality

- Inverted index
 - Index from term to document

② Query □		
	*term	tfidf
ABC20001001.1830.0001	battle	3.21872
ABC20001001.1830.0001	boom	5.01961
ABC20001001.1830.0001	capture	4.03996
ABC20001001.1830.0001	death	2.6322
ABC20001001.1830.0001	decisive	4.50314
ABC20001001.1830.0001	east	2.14989
ABC20001001.1830.0001	fade	5.48334
ABC20001001.1830.0001	high	1.66849
ABC20001001.1830.0001	image	3.37131
ABC20001001.1830.0001	iowa	5.31571
ABC20001001.1830.0001	jerusalem	3.05699
ABC20001001.1830.0001	man	2.68728
ABC20001001.1830.0001	melt	5.96138
ABC20001001.1830.0001	middle	2.51962
ABC20001001.1830.0001	moment	3.21432
ABC20001001.1830.0001	pot	5.50355
ABC20001001.1830.0001	prep	7.48582
ABC20001001.1830.0001	presidential	2.62357
ABC20001001.1830.0001	race	3.06877
ABC20001001.1830.0001	rise	2.95104
ARC20001001 1830 0001	enread	3 11332

Web-IR document representation

- Enhances the classic VSM
- Possibilities offered by HTML languages

- Tag-based
- Link-based
 - HITS
 - PageRank

Tag-based approaches

- Give different weights to different tags
 - Some text fragments within a tag may be more important than others
 - <body>, <title>, <h1>, <h2>, <h3>, <a> ...

Tag-based approaches

- WEBOR system
- Six classes of tags

Table 5.10. The tag class hierarchy used by the WEBOR system

Class Name	HTML Tags
Anchor	A
H1-H2	H1-H2
Н3-Н6	H3, H4, H5, H6
Strong	STRONG, B, EM, I, U, DL, OL, UL
Title	TITLE
Plain Text	None of the above

$$w_t = (\overrightarrow{CIV} \bullet \overrightarrow{TFV})idf$$

- CIV = class importance vector
- TFV = class frequency vector

Tag-based approaches

- Term weighting example
 - $-CIV = \{0.6, 1.0, 0.8, 0.5, 0.7, 0.8, 0.5\}$
 - $-TFV("personalization") = {0, 3, 3, 0, 0, 8, 10}$
 - W("personalization") = (0.0 + 3.0 + 2.4 + 0.0 + 0.0 + 6.4 + 5.0) * IDF

Table 5.10. The tag class hierarchy used by the WEBOR system

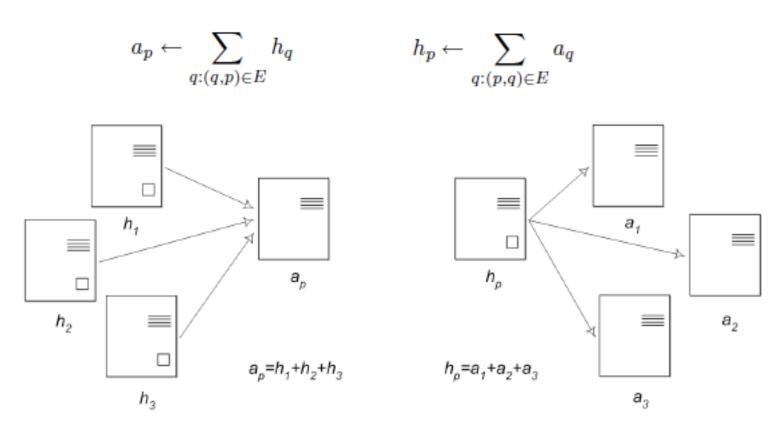
Class Name	HTML Tags
Anchor	A
H1-H2	H1-H2
Н3-Н6	H3, H4, H5, H6
Strong	STRONG, B, EM, I, U, DL, OL, UL
Title	TITLE
Plain Text	None of the above

HITS (Hyperlink-Induced Topic Search)

- Link-based approach
- Promote search performance by considering Web document links
- Works on an initial set of retrieved documents
- Hub and authorities
 - A good authority page is one that is pointed to by many good hub pages
 - A good hub page is one that is pointed to by many good authority pages
 - Circular definition → iterative computation

HITS (Hyperlink-Induced Topic Search)

Iterative update of authority & hub vectors

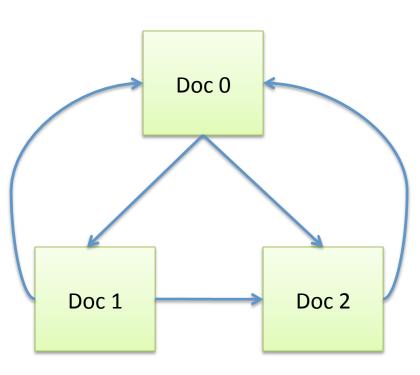


HITS (Hyperlink-Induced Topic Search)

Algorithm 1. Pseudo-code of the HITS algorithm, where authorities a_p and hubs h_p of the pages are stored in the vectors a and h.

```
V \leftarrow \text{collection of n pages}
N \leftarrow \text{number of iterations}
z \leftarrow (1, 1, ..., 1) \in \Re^{|V|}
a_0 \leftarrow z
h_0 \leftarrow z
for i = 0 to N do
{apply Eq. 5.27 to (a_{i-1}; h_{i-1}) and draw the new authority vector \hat{a}_i}
{apply Eq. 5.28 to (\hat{a}_i; h_{i-1}) and draw the new hub vector \hat{h}_i}
{normalize both \hat{a}_i and \hat{h}_i to 1}
a_i \leftarrow \hat{a}_i
h_i \leftarrow \hat{h}_i
end for
```

HITS (Hyperlink-Induced Topic Search)



$$-A = [0.371 \ 0.557 \ 0.743]$$

$$-H = [0.667 \ 0.667 \ 0.333]$$

$$-A = [0.344 \ 0.573 \ 0.744]$$

$$-H = [0.722 \ 0.619 \ 0.309]$$

$$-A = [0.328 \ 0.591 \ 0.737]$$

$$-H = [0.737 \ 0.591 \ 0.328]$$

PageRank

Α

GoogleUnlike HITS

Not limited to a specific initial retrieved set of documents

Single value

С

В

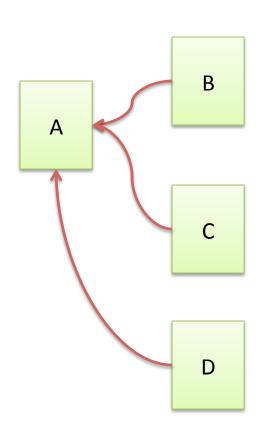
• Initial state = no link

 Evenly divide scores to 4 documents

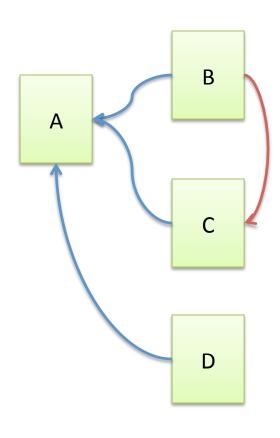
PR(A) = PR(B) = PR(C) =
 PRD(D) = 1 / 4 = 0.25

D

PageRank

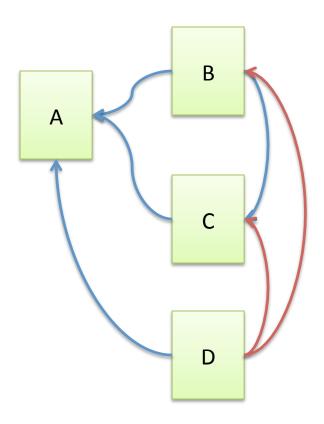


PageRank



- PR(B) to A = 0.25/2 = 0.125
- PR(B) to C = 0.25/2 = 0.125
- PR(A)
 = PR(B) + PR(C) + PR(D)
 = 0.125 + 0.25 + 0.25 = 0.625

PageRank

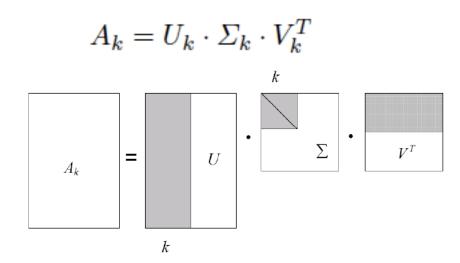


- PR(D) to A = 0.25/3 = 0.083
- PR(D) to B = 0.25/3 = 0.083
- PR(D) to C = 0.25/3 = 0.083
- PR(A) = PR(B) + PR(C) + PR(D) =
 0.125 + 0.25 + 0.083 = 0.458
- Recursively keep calculating to further documents linking to A, B, C, and D

LSI (Latent Semantic Indexing)

- Represents documents by concepts
 - Not by terms
- Reduce term space → concept space
 - Linear algebra technique : SVD (Singular Value Decomposition)
- Step (1): Matrix decomposition original document matrix A is factored into three matrices $A = U \cdot \Sigma \cdot V^T$

 Step (2): A rank k is selected from the original equation (k = reduced # of concept space)



 Step (3): The original term-document matrix A is converted to A_k

Document-term matrix A

ITD	d_1	d_2	d_3
new	1	1	0
benefit	1	1	0
attractive	0	1	0
service	1	0	0
springer	0	0	1
info	0	1	1
special	0	0	1

Decomposition

ITD	d_1	d_2	d_3
new	1	1	0
benefit	1	1	0
attractive	0	1	0
service	1	0	0
springer	0	0	1
info	0	1	1
special	0	0	1

$$A = U \cdot \Sigma \cdot V^T$$

```
-0.5566825 2.581989e-01 0.0662596

-0.5566825 2.581989e-01 0.0662596

-0.3243097 -1.110223e-16 -0.5686780

-0.2323728 2.581989e-01 0.6349376

-0.1161864 -5.163978e-01 0.3174688

-0.4404961 -5.163978e-01 -0.2512092

-0.1161864 -5.163978e-01 0.3174688

2.406509 0.000000 0.000000

0.000000 1.732051 0.000000

0.000000 0.000000 1.099414

-0.5592073 -7.804543e-01 -0.2796037

0.4472136 -1.387779e-16 -0.8944272

0.6980596 -6.252128e-01 0.3490298
```

Low rank approximation (k = 2)

ITD	d_1	d_2	d_3
new	1	1	0
benefit	1	1	0
attractive	0	1	0
service	1	0	0
springer	0	0	1
info	0	1	1
special	0	0	1

$$A = U \cdot \Sigma \cdot V^T$$

```
-0.5566825 2.581989e-01 0.0662596

-0.5566825 2.581989e-01 0.0662596

-0.3243097 -1.110223e-16 -0.5686780

-0.2323728 2.581989e-01 0.6349376

-0.1161864 -5.163978e-01 0.3174688

-0.4404961 -5.163978e-01 0.2512092

-0.1161864 -5.163978e-01 0.3174688

2.406509 0.000000 0.000000

0.000000 1.732051 0.000000

0.000000 0.0000000 1.099414

-0.5592073 -7.804543e-01 -0.2796037

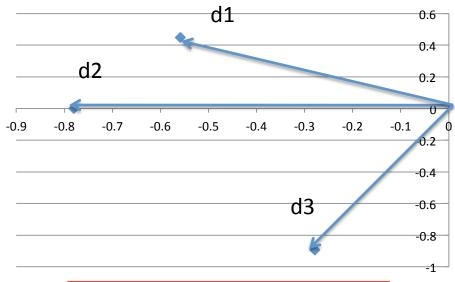
0.4472136 -1.387779e-16 -0.8944272

0.6980596 -6.252128e-01 0.3490298
```

- Final A_k
 - Columns : documents
 - Rows : concepts (k=2)

Table 5.12. The resulting Matrix A_k

-1.3457	1.0762	1.6799
-1.3518	-0.0000	-1.0829



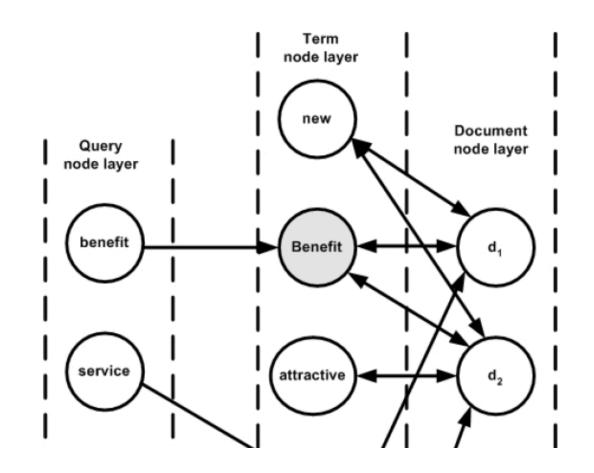
V^T = SVD Document Matrix

-0.5592073 -7.804543e-01 -0.2796037 0.4472136 -1.387779e-16 -0.8944272 0.6980596 -6.252128e-01 0.3490298

Al-based approaches

Artificial Neural Networks

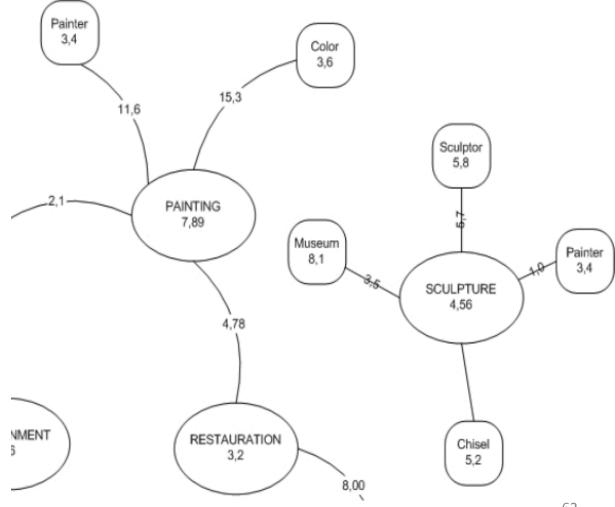
- Query, term, documents → separated into 3 layers
- Term-document weight = norm. TF-IDF
- Query → term
 activation → sum
 of the signals
 exceeds a
 threshold →
 document retrieval



AI-based approaches

Semantic Networks

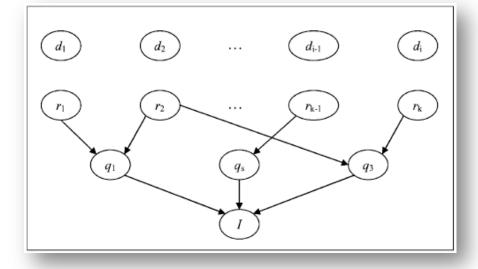
- Conceptual knowledge
- Relationship between concepts



AI-based approaches

Bayesian Networks

- Metzler and Croft (2004)
 - Indri search engine based on InQuery
- Inference network
 - Document
 - Representation (term, phrases)
 - Query
 - Information Need



Calculates probability of each document from the network