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Abstract
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Worked Example Authoring Tool: Code Explanation Generation with ChatGPT

by Mohammad HASSANY,
Arun-Balajiee LEKSHMI-NARAYANAN

Worked examples (solutions to typical programming problems presented as a
source code in a certain language and are used to explain the topics from a program-
ming class) are among the most popular types of learning content in programming
classes. Most approaches and tools for presenting these examples to students are
based on line-by-line explanations of the example code. However, instructors rarely
have time to provide line-by-line explanations for a large number of examples typi-
cally used in a programming class. In this paper, we explore and assess a human-Al
collaboration approach to authoring worked examples for Java programming. We
introduce an authoring system for creating Java worked examples that generates a
starting version of code explanations and presents it to the instructor to edit if neces-
sary. We also present a study that assesses the quality of explanations created with
this approach.
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Chapter 1

Introduction

Program code examples play a crucial role in learning how to program (Linn and
Clancy, 1992). Instructors use examples extensively to demonstrate the semantics of
the programming language being taught and to highlight the fundamental coding
patterns. Programming textbooks also pay a lot of attention to examples, with a con-
siderable textbook space allocated to program examples and associated comments.

Through this practice, worked code examples emerged as an important type of
learning content in programming classes. Following the tradition established by a
number of programming textbooks (Deitel and Deitel, 1994; Kelley and Pohl, 1995),
a typical worked example presents a code for solving a specific programming prob-
lem and explains the role and function of code lines or code chunks. In textbooks,
these explanations are usually presented as comments in the code or as explana-
tions on the margins. While informative, this approach focused on passive learning,
which is known for its low efficiency. Recognizing this problem, several research
teams developed learning tools that offered more interactive and engaging ways
to learn from examples (Brusilovsky, Yudelson, and Hsiao, 2009; Sharrock et al.,
2017; Khandwala and Guo, 2018; Park et al., 2018; Hosseini et al., 2020). These tools
demonstrated their effectiveness in classroom studies, but their practical impact, i.e.,
broader use by programming instructors was limited due to the authoring bottleneck.
Although the authors of example-focused learning tools usually provide a good set
of worked examples that can be presented through their tools, many instructors pre-
fer to use their own favorite code examples. The instructors are usually happy to
broadly share the code of examples they created (usually providing it on the course
Web page), but they rarely have time or patience to augment examples with expla-
nations and add their examples to an example-focused interactive system. Indeed,
producing a single explained example could take 30 minutes or more, since it re-
quires typing an explanation for each code line (Brusilovsky, Yudelson, and Hsiao,
2009; Hosseini et al., 2020) or creating a screencast in a specific format (Sharrock et
al., 2017; Park et al., 2018).

The authoring bottleneck has been recognized by several research teams, which
have offered several ways to address it. Among the approaches explored are learner-
sourcing, that is, engaging students in creating and reviewing explanations for instructor-
provided code (Hsiao and Brusilovsky, 2011) and automatic extraction of informa-
tion content from available sources, such as lecture recordings (Khandwala and Guo,
2018). In this work, we present an alternative approach to address the authoring
bottleneck based on human-Al collaboration. With this approach, the instructor
provides the code of one of their favorite examples along with the statement of
the programming problem it is solving. The Al engine based on large language
models (LLM) examines the code and generates explanations for each code line.
The explanations could be reviewed and edited by the instructor. To support and
explore this authoring approach, we created an authoring system, which radically
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decreases the time to create a new interactive worked example. The examples cre-
ated by the system could be uploaded to an example-exploration system such as
WebEx (Brusilovsky, Yudelson, and Hsiao, 2009) or PCEX (Hosseini et al., 2020) or
exported in a reusable format. To assess the quality of the resulting examples, we
performed a user study in which TAs and students compared code explanations
created by experts through a traditional process with examples created by Al to con-
tribute to the human-AlI collaborative process.

The remainder of the work is structured as follows. We start by reviewing related
work, introduce the example authoring system that implements the proposed col-
laborative approach, and explain how specific design decisions were made through
several rounds of internal evaluation. Next, we explain the design of our user study
and review its results. We conclude with a summary of the work and plans for future
research.
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Worked Examples

Code examples are important pedagogical tools for learning programming. Not sur-
prisingly, considerable efforts have been devoted to the development of learning ma-
terials and tools to support students in studying code examples. Hosseini (Hosseini
et al., 2020) classified program examples that have been used in teaching and learn-
ing to program into two groups, according to their primary instructional goal: pro-
gram behavior examples and program construction examples. Program behavior exam-
ples demonstrate the semantics (i.e., behavior) of various programming constructs
(i.e., what is happening inside a program or an algorithm when it is executed). Pro-
gram construction examples attempt to communicate important programming pat-
terns and practices by demonstrating the construction of a program that achieves
various meaningful purposes. (e.g., summing an array). This distinction might not
be clear-cut for code-only examples, since the same code could be used for both
purposes. However, attempts to augment examples with learning technologies to
increase their instructional value (i.e., adding code animation or explanations) usu-
ally focus on one of these goals.

Program behavior examples have been extensively studied. While textbooks still
explain program behavior by using textual comments attached to lines of program
code, a more advanced method for this purpose — program visualization, which vi-
sually illustrates the runtime behavior of computer programs — is now considered
state-of-the-art. Over the past three decades, several specialized educational tools
for observing and exploring program execution in a visual form have been built and
assessed (Sorva, Karavirta, and Malmi, 2013).

Computer-based technologies for presenting program construction examples are
less explored. For many years, the state-of-the-art approach for presenting worked
code examples in online tools was simply code text with comments (Linn and Clancy,
1992; Davidovic, Warren, and Trichina, 2003; Morrison et al., 2016). More recently,
this approach has been enhanced with multimedia by adding audio narrations to
explain the code (Ericson, Guzdial, and Morrison, 2015) or by showing video frag-
ments of code screencasts with the instructor’s narration being heard while watching
code in slides or an editor window (Sharrock et al., 2017; Khandwala and Guo, 2018).
Both ways, however, support passive learning, which is the least efficient approach
from the prospect of the ICAP framework (Chi et al., 2018)!

An attempt to make learning from program construction examples active was
made in the WebEx system, which allowed students to interactively explore instructor-
provided line-by-line comments for program examples via a web-based interface
(Brusilovsky, Yudelson, and Hsiao, 2009). More recently, several projects (Khand-
wala and Guo, 2018; Park et al., 2018; Hosseini et al., 2020) augmented examples
with simple problems and other constructive activities to elevate the example study

IThe ICAP framework differentiates four modes of engagement, behaviorally exhibited by learners:
passive, active, constructive and interactive.
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‘ Example: STDUENT: PointTester >

Challenge
Construct a class that represents a point in the Euclidean plane. The class should contain data that represents the point's integer Me!
coerdinates (xy). The class should also include getter and setter methods for accessing and changing the point's coordinates
and a method to translate the peint, i.e,, shift the point's location by the specified amount. Iz'

The class PointTester] instantiates an object from this class, sets the (x,y) coordinates of the point, and translates the point by
the specified amount.

1 public class PointTester { 2
public static void main(String[] args) { ™ PREVIOUS NEXT »~d

z

3 Point point = new Point();

4 point.setX(7); 0

n point.sety(2); (7] This line translates the point's location
6 point.translate(1l, 6); o by shifting the x-coordinate by 11 and

. . . . the y-coordinate by 6.
System.out.println("The point's coordinates: (7 + point.getX() + ",

" + point.gety() + ")") ;

8 ¥ PREVIOUS ADDITIONAL DETAILS
g}

10 class Point {
11 private int x;
1z private int y;
[ 13 public void translatefint dx. int dv) ¢ 5%

FIGURE 2.1: Studying a code example in the PCEX system: 1) title and

program description, 2) program source code with lines annotated

with explanations, 3) explanations for the highlighted line, 4) link to
a “challenge” - a small problem related to the example.

process to the interactive and constructive levels of the ICAP framework, known as
the most pedagogically efficient.

A good example of a modern interactive tool for studying code examples is the
PCEX system Hosseini et al., 2020. PCEX (Program Construction EXamples) was
created in the context of an NSF Infrastructure project (https://cssplice.org) with
a focus on broad reuse and has been used by several universities in the US and
Europe in the context of Java, Python, and SQL courses. PCEX interface (Figure 2.1)
provides interactive access to traditionally organized worked examples, i.e., code
lines augmented with instructor’s explanations. Separating explanations (Figure 2.1-
3) from the code (Figure 2.1-2), allows students to study explanations for code lines
they want selectively. Explanations are provided on several levels of detail, so more
details could be requested if the brief explanation is insufficient (Figure 2.1-3).

Since line-by-line multi-level example explanations offered by PCEX is currently
the most detailed approach for explaining worked examples, we selected the code
example structure implemented by PCEX as the target model for our authoring tool
introduced in the next section. The tool produces code augmented with line-by-line
explanations on several levels of detail. The resulting example could be directly
uploaded to PCEX or exported in a system-independent format to be uploaded to
other example exploration systems like WebEx(Brusilovsky, Yudelson, and Hsiao,
2009).
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Worked Example Authoring Tool

Although PCEX proved to be beneficial for students, it suffers from authoring bottle-
neck. Previously, the author should have annotated a source file using special tags.
The author should add the required metadata to the source file and lines of code
in the form language-specific comments. Not only these tags have their learning
curve, they are prone to errors. There was no tool support, no highlighting, auto-
completion, syntax error highlighting, or any other type of support. This made the
authoring process cumbersome. Instructors with limited time would not spend time
learning the PCEX annotation language, and create worked example with it. There
should be a solution to this.

Worked Example Authoring Tool - WEAT (Figure 3.1) is a graphical user inter-
face to address authoring bottleneck in PCEX. WEAT provide a GUI so that author -
anyone including an instructor could create their worked examples and challenges,
bundle them up as an activity and share them with others.

PCEX Authoring: Printing Tz X +

c /A NotSecure  adapt2.sis.pitt.edu/pcex-examples/#/editor/64b83c6cbe16da08fbbd5668

< » PCEX Authoring > Printing Table of Medal Winner Counts with Row ... ® Preview < Cancel

Printing Table of Medal Winner Counts with Row Totals

Assume that we have an array of countries that stores the names of the seven countries that participated in the Skating competitions at the Winter
Olympic. We also have a 7x3 matrix that stores the number of medals that these seven countries won. This matrix locks like as follows:

Annotations Distractors Program Input | JPrintMedalsRowTotal.java
. . y RUK™,
[] Itis a blank line 0 “IpN",
1 "RUS",
We need to create the matrix of medal counts. To do 2 nysA"
this, we use a two-dimensional array (an array of arrays) 13 i
where each row corresponds to the gold, silver, and 14 //Step 2: Define a 7x3 matrix that stores the number of medals the count
bronze medals won by one country. This statement 15 int[][] medalCounts = I
creates a 7x3 two-dimensional array called 6 { m
medalCounts. Each row of the matrix corresponds to the 7 {1,901},
medal counts for the corresponding country in the array 18 {1,1,01%,
of countries. The first, second, and third numbers within 19 {e,0 1%,
a row represent the number of Gold, Silver, and Bronze 20 {1,001},
medals won by the corresponding country in that row. 21 {0,111
Note that arrays can naturally span multiple lines if we 22 {0, 1,11,
want them to because they are contained by braces. ii } i1, 1,8}
25 //Step 3: Print the header of the output table
26 System.out.printf("%4s%3s%3s%3s%4s\n", " "Name", "G", "S", "B", "ALl");
27 //Step 4: Iterate through the rows in the medal counts matrix
28 for (int i = @; i < countries.length; i++) {
29 //5tep 4.1: Print the name of the country at row i
20 Sustem. aut.nrintfl"%ds" conntrieslill:

e ——————————

FIGURE 3.1: WEAT: A GUI authoring tool for PCEX.
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In the PCEX, there are two important type of resources: Activities and Sources
(Figure 3.2). A source is a worked example - an annotated Python or Java program.
Each worked example has a title, problem statement, and a source code with its line
being annotated with explanations. PCEX also has program challenges, allowing
students to test their understanding of the concept being presented in the worked
example. In the PCEX, a program challenge is created by annotating a line of code
as a "blank line" and then providing "distractors" for them. Distractors are possible
solutions for the marked empty line. Student will be able to drag these distractors
into the blank line as the solution, and check if they were correct. An activity is the
way to bundle multiple sources to create a learning activity. In the context of PCEX,
a learning activity is a number of worked examples and program challenges, that
students can use to learn the presented concepts and test their understanding of
those concepts.

PCEX Hub x +

C A NotSecure adapt2.sis.pitt.edu/pcex-examples/#/sources

< > PCEX Authoring > Hi, Mohammad Hassany

Activities

Sources

Actions  Name & Description

Printing Table of Medal Winner Counts with Row Totals

Assume that we have an array of countries that stores the names of the seven countries that participated in the Skating competitions at the Winter Olympic. We

= also have a 7x3 matrix that stores the number of medals that these seven countries won. This matrix locks like as follows: {{1,0, 1} {1,1, 0}, ...} The first,

® second, and third numbers within a row i represent the number of Gold, Silver, and Bronze medals won by the country that is at the index i of the array of

- countries. Construct a program that takes this matrix and the array of countries, and prints a table of medal counts with row total that shows the number of Gold,
Silver, Bronze, and Total medals for each of the countries that participated in the competition. The output table should look like as follows: Country Gold Silver
Bronze Total Canada 1012 China1102 ...

e~

FIGURE 3.2: WEAT Home Page: List of sources authored by instruc-
tor.

Figure 3.1 shows the authoring window for a worked example. Title is an iden-
tifier given by the author. It is suggested that this title be informative, so that author
and student can identify its purpose. Problem statement comes after the title. It de-
scribes the intent of the example. In the bottom right, the source for this example
should be added. It is important to note that the filename of the source code should
match the class name if the example is in Java. In the bottom left, the "Annotations"
tab house the explanations provided for a line. To provide explanation for a line, au-
thor must put the cursor in the interested line, then click the add button on the left
to create a explanation placeholder which explanation should be typed into. Every
line can be annotated with multiple explanations. By checking the "It is a blank line"
option, the selected line will be marked as a blank line which in the "Distractors" tab,
author should provide possible solutions for these blank lines. Distractors are one-
line code snippets that students can place into the blank line when using the PCEX
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challenges. At anytime, author can click on the "Preview" on the top-right to view
the current example as a PCEX example. Later, author can bundle these sources as a
single activity - in the "Activities" page.

After authoring their examples, authors have the option to share their activities
with others. WEAT features a Hub (Figure 3.3), where the publicly shared activities
by authors are available. Everyone can search through them and use them.

PCEX Hub X +

A\ Not Secure  adapt2.sis.pitt.edu/pcex-examples/#/hub

< > Program Construction Examples

Simple Pragramming [}

Hello World!
print "Hello World!" to console

Print 110 10
use a for-loop to print from 1to 10

Printing Table of Medal Winner Counts with Row Totals [}

Printing Table of Medal Winner Counts with Row Totals
Assume that we have an array of countries that stores the names of the seven countries that participated in the Skating competitions at the Winter
Olympic. We also have a 7x3 matrix that stores the number of medals that these seven countries won. This matrix looks like as follows: {{1,0, 1}, {1, 1,
0}, ...} The first, second, and third numbers within a row i represent the number of Gold, Silver, and Bronze medals won by the country that is at the
index i of the array of countries. Construct a program ...

e

FIGURE 3.3: WEAT Hub: Publicly shared activities are accessible by
the public.
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ChatGPT Generated Explanations

4.1 Use of LLMs for Code Explanations

Multiple researchers have explored code summarization (Phillips et al., 2022) and
explanations using transformer models (Choi et al., 2023; Peng et al., 2022), abstract
syntax trees (Shi et al., 2022), and Tree-LSTM (Tian et al., 2023). With the announce-
ment of ChatGPT, several research teams explored the use of LLMs for code expla-
nations using GPT 3 (Zamfirescu-Pereira et al., 2023; MacNeil et al., 2023; Leinonen
etal., 2023), GPT 3.5 (MacNeil et al., 2023; Li et al., 2023; Chen et al., 2023), GPT 4 (Li
et al.,, 2023), OpenAl Codex (Sarsa et al., 2022; Tian et al., 2023; MacNeil et al., 2023),
and GitHub Copilot (Chen et al., 2023). Table 4.1 presents a brief summary of the
most important prior work.

In the prior work, LLMs were used to generate explanations at different levels of
abstraction (line-by-line, step-by-step, and high-level summary). Sarsa et al. Sarsa et
al., 2022 observed that ChatGPT can generate better explanations at low-level (lines).
Li et al. (2023) used the result of specific-to-general generated explanations as one
of the inputs to their LLM solver, trying to solve competitive-level programming
problems more efficiently. A novel research tried to understand how non-experts
approach LLMs (Zamfirescu-Pereira et al., 2023). They have identified common mis-
takes and provided advice for tool designers.

Explanations and summaries generated by these LLMs were mostly evaluated
by authors (Sarsa et al., 2022), students (MacNeil et al., 2023; Leinonen et al., 2023),
and tool users (Chen et al., 2023). Sarsa et al. (2022) reported a high correct ratio for
generated explanations with minor mistakes that can be resolved by the instructor
or teaching assistant. Students rated LLM-generated explanations as being useful,
easier, and more accurate than learner-sourced explanations (Leinonen et al., 2023).

Prompt, as an essential part of communication, directly influences the LLM’s
performance. A verbose prompt will limit the LLM’s ability to utilize its knowl-
edge (Tian et al., 2023). Iterative prompts are proven to perform well (Zamfirescu-
Pereira et al., 2023). In terms of code explanation, providing the source code and
expected outcome is essential. Adding input/output examples can help generate
better explanations. Although LLMs like ChatGPT can understand the natural lan-
guage very well, researchers suggested writing the prompt as writing a code: fol-
lowing a structure and marking different parts of the prompt (Zamfirescu-Pereira
etal., 2023). If possible, it is better to control the randomness of LLMs responses (for
instance, adjusting the temperature to a lower value, perhaps 0). A temptation to
allow non-expert form input prompts will not be any good, as Zamfirescu-Pereira et
al. (2023) observed non-experts have misconceptions about LLMs and will struggle
to come up with a well-formed prompt. Researchers believe that LLMs can be ben-
eficial in environments where humans and Al can work together, where the human



Chapter 4. ChatGPT Generated Explanations

‘suoryeue[dxs apod aje1auss 03 (XapoD) / LdDIeYD) SINTT Sulsn Ul SYIOM IO :1'F A1dV]

uondrosap suoneu
paurerdxa | pPas-ySry  “uondruos -eydxe apod pue ‘sased 359} +
3uraq apod jo adejuad | -9p INI[-JUSUID}E)S sasoiIaxa Jurwwrerdord Jume
-19d oy Suumsesw | -wapqoxd ‘uotryeu -o10 Aq s19yded) 9sIno0d Junu
‘uonyenyeAs rewrojuy | -erdxa doys-£g-dags xopo)) | -urerdord Arojonpoxur dppg 7207 ““Te 10 es1eg
9pod 3y} Jo Arewrwins
Junod /owmn AN | (oA9-ySy  ‘sydeduod XapoD joddrus apod uaaId e 1053
oy} pue ‘suoneue[d | jueprodur jo jsif ‘suon | pue ¢ | spdeduod pue ‘Arewrwuns “uon
-xd jo s3uner syuopnyg | -euejdxa  dur-Ag-aury 1dO | -euerdxa oywads ojerousn) | €707 “Te 19 [IONEIN
uonnyos
,O[PrIO0, 9y} paroyne 230 “Ayxarduwod
oym 11adxe Sururwerd | swm ‘uondrosap uon suorjeue[dxa ayerousd
-oxd uewny oy Aq | -njos days-£g-dags 0} paydword st [ IOIEYD
pajen[eas a1mm suorn | ‘unpriode pasn | § IJOsA | ‘uonnjos 3dxa pue uon
-euerdxa pajeraudn) | ‘Arewrwuns werdor] | ¢'¢ IdD | -duosap wajqord ay3 usaID) €707 “Te P 11
suon
-euerdxe 199d/3uspnys
Uym suorjeue[dxa uoruny e jo asodind apod ure[dxs pue puejsiopun
LdoreyDd aredwo)) | papusyur oyy urerdxyg € 1LdO | 01 Ayiqe sjuapnis plojgeds | £zZ0z “Te 39 usuoure]
s10jn3 duredjooq adi
pue ‘siayoes) ‘syudp apod 3y} uI Pajda[as juswiderj 9pod
-MIS UM MIIAINUL | pajddes oyl urefdxg | G'¢ LD | B 10§ suoneue[dxs apraoig €707 “Te 3 uayD
uonenyeAg suoryeuerdxyg jo odAL | (S)INTT [eoo 90IN0g




Chapter 4. ChatGPT Generated Explanations 10

can perform the expert evaluation and tune the responses generated by the Al while
the Al performs the time-consuming manual tasks (White et al., 2023).

4.2 Human-AI Collaborative Authoring

Creating a new worked example for an interactive example-focused system such as
PCEX is a time-consuming task even in systems that provide some authoring sup-
port. Practical instructors who need to create code examples rarely have this time,
which results in the authoring bottleneck mentioned earlier. Our Worked Example
Authoring Tool (WEAT) attempts to reduce this bottleneck by engaging ChatGPT in
the human-AI collaborative authoring process. In this collaboration, the main task
of a human author is to provide the code of the example and the statement of the
problem that the code solves. The main task of ChatGPT is to generate the bulk of
code line explanations on several levels of detail. As an option, a human author
could edit and refine the text produced by ChatGPT to adapt it to the class goals
and target students. As in any productive collaboration, each side does what it is
best suited to do, leaving the challenging work to the partner. In the main part of
the WEAT interface the problem (Figure 4.1-1) and the code (Figure 4.1-2) have to
be provided by the instructor, while the explanations (Figure 4.1-3) are generated by
ChatGPT. All generated explanations could be edited by the instructor, who could
also turn a regular example into a challenge by marking some lines as blank (within
a challenge, these lines can be replaced with distractors, one-line code snippets, by
the student). Note that the WEAT interface allows the author to completely replace
generated explanations or even create the whole example from scratch, without the
help of Al, however, we do not expect that this option will be used frequently.

<'» PointTester ® Preview < Cancel
PointTester

Construct a class that represents a point in the Euclidean plane. The class should contain data that represents the point’s integer coordinates (xy). The
class should also include getter and setter methods for accessing and changing the point's coordinates and a method to translate the point, i.e., shift the
point's location by the specified amount.

The class PointTester1 instantiates an object from this class, sets the (x,y) coordinates of the point, and translates the point by the specified amount.

Annotations Distractors Program Input | PointTester java

[ Itis a blank line 1 public class PointTester {
2 public static void main(String[] args) { 2
This line sets the x-coordinate of the point to 7. 3 Point point = new Point();
4 pamt.lset)((?):
It directly contributes to the program objective of 5 point.setY(2);
setting the coordinates of the point. 6 point.translate(1ll, 6);
7 System.out.println("The point's coordinates: (" + point.getX() + ",
8 ]
9}
10 class Point {
11 private int x;
12 private int y;
13 public void translate(int dx, int dy) {
14 X #= dx;

15 woam e

FIGURE 4.1: WEAT Authoring, 1) program title and description, 2)
program source code (lines with explanations are marked with purple
border), 3) explanations for the selected line (line 7 in the screenshot).

To generate ChatGPT explanations for the provided example code and problem
description, the author has to click the small-yellow-bolt icon to open the ChatGPT
dialog (Figure 4.2). In this dialog, the author should click "Generate" to generate the
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Identify and Explain Lines

Given the following program description and accompanying source code, identify and explain
lines of the code that contributes directly to the program objectives and goals. Also include
lines that handles inputfouput.  But ignore main class and method definitions, common

import statements and java comments. E

When considering each identified line, ensure explanations provide the reasons that led to the
line inclusion, prioritizing them based on their relative importance while also preventing any
unnecessary duplication or repetition of information.

~” Use the Explanations
public class PointTester {
public static void main(String[] args) @ Exclude Line

Point point = new Point(};
P ‘! +* This line creates a new instance

of the Point class and assigns it to
the variable 'point’.

point.setx(7);

point.translate(11, 6);
System.out.printin("The point's coordinates: (" + p

~ It contributes directly to the
program abjective of creating a

) point object.
class Point { E E

private int x;

1
2
3
4
5 point.setY(2);
6
7
8

private int y;
| public void translate{int dx, int dy) {
X 4= dx;

FIGURE 4.2: Human-AI Collaborative Worked Example Authoring,

1) open dialog button (small-yellow-bolt icon), 2) default prompt (au-

thor can tune the prompt - optional), 3) program source preview (lines

with explanations are marked with a purple border), 4) generated ex-
planations for the selected line.

explanations, and then click "Use the Explanations” to add them to the example. The
WEAT provides the human author several opportunities to control the outcome of
the explanation generation process: 1) the author can tune the prompt to their needs,
2) the author can decide whether to include or exclude a generated explanation and
3) the author can edit or remove the explanation after it is edited.
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Chapter 5

Evaluation

5.1 Internal Evaluation: Prompt Tuning

Following the majority of recent work on generating code explanations, we chose
ChatGPT as the target LLM to generate code explanations. ChatGPT provides an
easy-to-use APl and an affordable pricing model. Adding ChatGPT to an application
is not a straightforward process and requires careful planning. The key part of this
process is crafting a prompt, which requires multiple iterative trials. Following the
suggestions in the previous work (Zhou et al., 2022; Chen et al., 2023), the authors
used an internal evaluation process to engineer a prompt that produces high-quality
explanations.

To shorten the prompt design process, we adopted several design decisions that
were shown to be effective in previous work: assigning a role to ChatGPT (White
et al., 2023), avoiding verbosity (Tian et al., 2023), repetition (Zamfirescu-Pereira et
al., 2023), prompt that looks like code (Zamfirescu-Pereira et al., 2023), and defining
the expected output format (Zamfirescu-Pereira et al., 2023). However, a few design
decisions not evaluated previously were not evident, so we had to use an internal
evaluation process to select the best-performing option. The questions answered
through the evaluation included the following: 1) Does the presence of a program
description in the prompt result in better explanations? 2) Does iterative prompt-
ing perform better than a single prompt, and if so, how many iterations are suffi-
cient to have a good explanation? 3) Does adding line inclusion/exclusion criteria
in the prompt help ChatGPT to select or ignore lines in generating an explanation?
To answer these questions, we formally compared ChatGPT-generated explanations
through an independent rating performed by the authors of this work and a col-
league.

Since we started from previously explored prompting techniques, the first ver-
sion of our prompt was reasonably close to our final prompt. At the first stage of the
process, we made a few small corrections of the prompt based on observations. First,
we observed that ChatGPT cannot associate the line number with the line correctly.
To address this issue, we marked each line with its line number. We also observed
that sometimes with iterative prompting ChatGPT generates duplicate explanations.
Hence in our iterative prompts, we asked ChatGPT to generate explanations that are
new. Figure 5.1 shows the final version of the prompt that we used with ChatGPT
gpt-3.5-turbo/16k model (temperature=0) through OpenAl API for our internal and
external evaluations.

Selecting Examples for Evaluation: We randomly selected eight Java examples with
different difficulty levels (string operation, array, loop, and object-oriented program-
ming) from the PCEX repository for the study. Selected examples include:

e [nitials: Extracting initials from full name.
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Role (System):

You are a professor who teaches computer programming.

Role (User) - Iteration #1:

Given the following program description and accompanying source
code, identify and explain lines of the code that contributes directly to

the program objectives and goals. [inclusion criteria][exclusion criteria]

When considering each identified line, ensure explanations provide the
reasons that led to the line inclusion, prioritizing them based on their
relative importance while also preventing any unnecessary duplication

or repetition of information.

Program Description:

[program description]

Program Source Code:

The line number is defined as /*line_num®* at the start of each line.

llljava

[¥1*[program lines]

Output format:
Reply ONLY with a JSON array where each element, representing a "line
of code," includes "line_num" and an "explanations" array. For example:

Illjson

m.m

[{"line_num": "2", "explanations": [ "explanation ...", "explanation ...", ...

1% .1

Role (User) - Iteration #2:

Update your explanations with more insightful and
complementary YET COMPLETELY new explanations. If you

missed a line, this is the time to include them.

Role (User) - Iteration #nth:

Please repeat that once more.

FIGURE 5.1: ChatGPT Prompt Template. ChatGPT (is given the "pro-
fessor" role) is prompted iteratively.
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* JAdjacentDuplicates: Checks whether a sequence of numbers contains adjacent
duplicates.

* JArrayIncrementElements: Increments all elements of the array by 1.
* JArrayMax: Finds the maximum value in an array.

e |PrintDigitsReverse: Prints the digits of an integer from right to left.
* JSearchArrayValues: Search for values from one array in another.

* [SmallestDivisor: Smallest divisor of a positive number.

* PointTester: Translate 2-dimensional coordinates.

Including/Excluding Program Description: We hypothesized that adding a program
description for the prompt adds information for ChatGPT to produce better expla-
nations, but we were also concerned that it could confuse ChatGPT. To compare the
quality of the explanation with and without description, the evaluators checked the
explanations for the following: 1) correctness, 2) relevance to the given program de-
scription (when present), 3) presence of new information in the 2" round compared
to the 1% round, 4) presence of hallucinations when the program description is not
present, 5) whether the 2" round with program description in the prompt had more
information than without description. Both Correctness and Relevance were binary
ratings. For example, given an explanation This line initializes a variable "fullName” and
assigns it the value "John Smith’. The 'fullName’ variable stores the full name of the person
whose initials are to be printed. for the line of code String fullName = “John Smith”; was
rated as “correct” and “relevant” by one rater.

We, as internal evaluators, rated higher correctness in explanations for both rounds
1 and 2 of generation by ChatGPT (R; = 99.23%, Ry, = 98.77%) as summarized in
the Table 5.1. As an interesting example, when observing the ratings that we used
to compare the amount of new information generated in round 2 from round 1, we
observed that more information is generated without program description (48.24%)
than with description ((35.80%) as summarized in Table 5.2. The generated expla-
nations when the program description is not present had additional information
compared to when it is present as shown in Figure 5.2. This validates prior work
that comprehensive prompts limit LLMs’ ability to utilize their knowledge Tian et
al., 2023. Additionally, when the program description is present, the authors se-
lected the 2" round of explanations for the external evaluation because students
relate better with the program and it is also rated higher for correctness. In the
conditions that we did not include the program description in prompts, we were
interested to know to what extent ChatGPT may hallucinate. We observed halluci-
nations 2.94% on average when considering prompts without program description,
which could be attributed to greater information generation in round 2. Given this
tendency to hallucinate when generating explanations with prompts that exclude
problem descriptions, we considered using the explanations that are generated with
prompts that include program descriptions.

Assessing Multi-Round Prompting: In this step, we assessed whether iterative
prompting ChatGPT to explain (see Figure 5.1), results in additional explanations.
When the program description was present in the prompt, only 3 out of 9 exam-
ples had additional explanations compared to none when not included (Table 5.3).
Explanations generated in the 3" round were either minor wording changes (high
cosine similarity) or included explanations for unnecessary lines (closing bracket for
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Round 1 Round 2
*C >(->(-R >(-C >(->(-R >(->(->(-A
Min 98.46% 44.62% 97.53% 37.04% 32.10%

Max 100.00% 70.77% 100.00% 68.75% 39.51%
Average* 99.23% 55.38% 98.77% 46.91% 35.80%

TABLE 5.1: Internal evaluators rating, when program description is
present in the prompt, *Correctness, **Relevance to program descrip-
tion, **Additional information compared to 1st round.

Round 1 Round 2
*C **H *C **H ***A
Min 93.98% 0.00% 92.94% 0.00% 41.18%

Max 100.00% 4.82% 100.00% 5.88%  55.29%
Average*  96.99% 241% 96.47% 2.94% 48.24%

TABLE 5.2: Internal evaluators rating, when program description is
not present in the prompt, *Correctness, **Explanation contains hal-
lucinations, ***Additional information compared to 1st round.

main method and class). Qualitatively assessing explanations generated in the 2"
round, they included additional explanations or improved wordings. The number
of additional explanations or improvements was not consistent among the examples
in the 2" round, but on average, in 35.80% of lines (Figure 5.1) when the program
description is present in the prompt, and in 48.24% of lines (Figure 5.2) when not,
additional information was reported by the evaluators. Based on these findings, we
decided to adopt a two-round prompting option for WEAT and used this option in
the external evaluation process. We summarize our results in Table 5.3.

with desc without desc

Examples R, Rj R>

Initials 88.8% 96.0% 90.7%
JAdjacentDuplicates 93.6% 99.0% 86.7%
JArrayIncrementElements 40.0% - 93.3%
JArrayMax 85.7% - 83.8%
JPrintDigitsReverse 57.1% - -

JSearchArrayValues 90.0% 71.4% 93.0%
JSmallestDivisor 46.3% - 86.3%
PointTester 91.6% - 73.3%

TABLE 5.3: Cosine similarity between rounds of explanations
(Ry=2 = cosine_sim(Ry, R,,—1)) with and without including program
description.

Assessing Inclusion/Exclusion Criteria: A program description can provide a rich
context for identifying and explaining lines of code. However, ChatGPT may some-
times include an unnecessary line or exclude a necessary one from the explanation.
Initially, we assumed that directly adding inclusion/exclusion criteria in the Chat-
GPT prompt can address this issue. However, evaluating this option internally, the
authors observed that it resulted in less than 1% new lines inclusion and around
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Program description: Write a program that finds the maximum value in an array.

Line # Line Content With Description Without Description
2nd Round 2nd Round
This line initializes an array called
This line initializes an array called “values" with the given values.
. - . The array ‘values' holds the numbers
values' with the given values. to be evaluated to find the maximum
3 int] values = { 5, -4, 78, 95, 12 }; The array 'values' represents the set

value.

The values in the array can be
modified or expanded to include
any set of numbers.

of numbers from which the maximum
value needs to be found.

FIGURE 5.2: Example of line explanations in which the 2% round of
explanation when the program description is not present had addi-
tional information compared to when present.

4 — 6% of lines exclusion. When these criteria are present in the prompt, ChatGPT
ends up having unnecessary rounds of explanations. Sometimes ChatGPT falls into
a loop where it flips wordings between each round. Since the author can review and
ignore the explanations for a specific line in the authoring interface, we decided not
to use Inclusion/Exclusion criteria in the prompt.

5.2 External Evaluation: ChatGPT vs Expert Explanation

To assess the quality of the explanations generated by ChatGPT using the best-
performing prompt with options tuned through the internal evaluation, we per-
formed a user study. In this study, we compared the explanations generated by
ChatGPT with explanations created by experts for the same PCEX examples. Unlike
some earlier studies that used beginner students to evaluate ChatGPT explanations,
we used more experienced users — advanced undergraduate and graduate students.
The reason for this difference is that in our authoring system, the direct users of the
ChatGPT explanation are not consumers of explanations, but prospective authors. In
the implemented human-AlI collaborative authoring approach, authors have the op-
tion to edit the generated explanation. Thus, it is up to the prospective authors to
decide how good the explanations are since their perception of quality impacts the
amount of their work: poor explanations will require a lot of editing, while good
explanations could be accepted as-is or with minimal changes.

To support these evaluation needs, we recruited 15 evaluators, of which 6 were
graduate students researching computing education and 9 were undergraduate stu-
dents who just completed an advanced Java programming class. Graduate students
selected for the study usually serve as assistants or instructors in programming
classes where supplementary content development is their major responsibility. For
brevity, we refer to them as authors in our analysis. Advanced undergraduate stu-
dents are frequently involved in learning content production through “learnersourc-
ing” (Hsiao and Brusilovsky, 2011; Williams et al., 2016). To distinguish them from
the true authors, we refer to them as students. Participants had to provide their re-
sponses through an evaluation form. The evaluation was estimated to take one hour
to complete. Participants received a gift card of US $20 as compensation.

The evaluation form included 8 examples introduced above. For each example,
the form included a program description and the example code. For each line of
each code example, it listed an explanation generated for this line by ChatGPT and
by an expert. The participants had to rate both explanations for a given line of code
and compare them. The order of ChatGPT and expert explanations for a given line
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of code was randomized, and the evaluators did not know which explanation was
generated by ChatGPT or the expert. “Expert” explanations were extracted from real
worked examples in PCEX system (Hosseini et al., 2018). These explanations were
authored by instructors and TAs and polished through several years of classroom
use.

To evaluate the explanations, the participants had to rate to what extent each ex-
planation is complete and which is better. We defined a better explanation as “provid-
ing more information, going deeper, better connecting to programming concepts”.
However, we did not provide the definition to a complete explanation.

More specifically, participants had to rate the two explanations with the follow-
ing metrics:

1. Explanation 1 is sufficiently complete: Not complete (0), Complete (1), Very com-
plete (2)

2. Explanation 2 is sufficiently complete: Not complete (0), Complete (1), Very com-
plete (2)

3. Which explanation is better? Both are the same (0), Explanation 1 is better (1),
Explanation 2 is better (2)

From the collected responses, we excluded lines that had either ChatGPT or ex-
pert explanations but not both. In these cases, the evaluators generally rated the
explanations as better without comparison with a missing counterpart explanation.
Altogether, 18 lines were explained by ChatGPT but not by the expert, and 5 lines
were explained by the expert but not ChatGPT. Looking closer at these lines, we
observed that 4 out of 5 missing lines by ChatGPT were in the PointTester exam-
ple, which included class definition, object instantiation, and instance variable def-
inition. We are not aware of the reason why the expert didn’t explain these lines,
but we assume these lines are either mentioned in explanations generated for other
lines or they don’t provide important information toward understanding the pro-
gram. Although the program description had related wordings, there were missed
by ChatGPT: “Construct a class that represents... The class should contain data that
represents the point’s integer coordinates(x, y). ... The class PointTester instantiates an
object from this class, sets the (X, y) coordinates of the ...”. Conversely, in 14 out of 18
of these lines, ChatGPT unnecessarily explained class, main method definition, and
closing brackets (class, method, loop, and condition). The other 4 lines were infor-
mative and useful. This can support the importance of having inclusion criteria in
the prompt.

For the remaining 45 lines of code, we observed from the evaluators’ ratings for
the question “Explanation 1 is sufficiently complete?” or “Explanation 2 is suffi-
ciently complete?” that ChatGPT explanations were rated as 0.59% (not complete),
21.04% (complete) and 78.37% (very complete) compared to Expert explanations as
6.96% (not complete), 56.44% (complete), and 36.59% (very complete). In response
to the question “Which explanation is better?”, evaluators selected ChatGPT as the
better explanation in 53.93% of lines, compared to experts (20.59%); and in the rest
of the lines (25.48%) both were rated as the same. Our calculations of the inter-rater
reliability for the ratings of the question “Which explanation is better?” using Fleiss-
Kappa gave us 0.182, p < 0.01 score of agreement. This can be interpreted as "slight
agreement" based on the 2-raters/2-categories table. Given that Fleiss-Kappa is a
chance-corrected coefficient, it can be interpreted as a better agreement due to the
high number of subjects (45 lines of code by 15 evaluators) Sim and Wright, 2005.
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We observe that the students did not rate ChatGPT explanations incomplete at all
with their 13.33% and 86.67% ratings being that ChatGPT explanations are complete
and very complete respectively. Authors also rated ChatGPT explanations as com-
plete (32.59%) or very complete (65.93%). Hence, a majority of authors and students
find ChatGPT explanations complete, as shown in Table 5.4. In terms of compar-
ing the explanations for which is better, 51.11% and 58.15% of students and authors,
respectively, find that the explanations of ChatGPT are better for the given lines of
code. On average, the authors rated the ChatGPT explanations more complete than
students and students preferred ChatGPT explanations more than the authors, as
summarized in Table 5.6. A direct comparison of two options, based on the question
"Which explanation is better (ChatGPT vs Expert)?", is presented in Table 5.5. Given
that the assessment was performed using blind rating, this is an encouraging result
for the use of generative Al for authoring tools.

Not complete=0 Complete=1 Very complete=2

ChatGPT
Students 0.00% 13.33% 86.67%
Authors 1.48% 32.59% 65.93%
Overall 0.59% 21.04% 78.37%
Expert
Students 2.22% 55.56% 42.22%
Authors 14.07% 57.78% 28.15%
Overall 6.96% 56.44% 36.59%

TABLE 5.4: Percentage of Ratings for different items on the scale for
“Explanation 1 / 2 is sufficiently complete?”

Explanation

Rating Students Authors Overall
Both are the same=0  32.84%  14.44% 25.48%
Expert is better = 1 16.05%  27.41%  20.59%
ChatGPT is better=2  51.11%  58.15%  53.93%

TABLE 5.5: Percentage of Ratings for the different items on the scale
for “Which explanation is better?”

All Students Authors
ChatGPT* 1.867 (0.133) 1.644 (0.258) 1.778 (0.163)
Expert* 1.400 (0.388) 1.141 (0.465) 1.296 (0.408)

Which is better? 1.183 (0.510) 1.437 (0.373) 1.284 (0.427)

TABLE 5.6: Average (Stdev) Ratings - *Completeness
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Chapter 6

Conclusion and Future Work

In this paper, we introduce a worked example authoring tool that utilizes ChatGPT
for the automatic generation of line-by-line code explanations. The tool is designed
to allow human and Al to collaborate in the process of authoring such examples.
To the best of our knowledge, this is the first attempt to produce worked example
through human-AlI collaboration. Our work supports findings by other researchers
and provides empirical evidence on the value of using ChatGPT for generating line-
by-line code explanations. Through an external evaluation, this work also compared
the generated explanations and human expert explanations.

As the first step towards this important goal, our work has several limitations.
First, the scale of our evaluation was relatively small. Since we targeted prospective
authors as users in our evaluation process, we were able to recruit only 15 qualified
subjects. Furthermore, within the time allocated for the study, the subjects were able
to process only eight worked examples. Although we attempted to broadly vary
the topics and difficulty of selected examples to achieve sufficient generalizability of
results, a larger-scale study with a broader variety of examples might be necessary
to obtain deeper insights. We plan to carry out such a study in our future work.

Although the use of the same best-performing prompt to generate explanations
for examples of different difficulties was an important design decision to explore
the generalizability of the approach, it might be possible that different prompts will
perform best for examples of different difficulties. We will explore this opportunity
in the next round of our work.

We also observed that for some lines of code in our dataset, experts, ChatGPT,
or both choose to provide no explanations. In the current study, these lines were ex-
cluded from the evaluation since a meaningful comparison was not possible. How-
ever, choosing whether to explain a specific line or not is an important decision and
the current study did not assess who is making better decisions about skipping lines,
ChatGPT or experts. This aspect requires further investigation. In our next study,
we plan to ask participant evaluators to specify whether each line of code needs an
explanation or not.

Another potential limitation of the study was the lack of a formal definition of
what a “complete” explanation means during external evaluation. We let the partic-
ipants decide how to rate completeness since it is a personal decision, which editors
should make when deciding whether to update generated explanation or not. While
it was a natural thing to do, it might have decreased the agreement between evalu-
ators. In our future work, we will see whether the agreement could be increased by
defending correctness and completeness ratings more formally.

Finally, one aspect of human-AI collaboration not explored in this study is the
value of keeping our engineered prompt open to the authors to change. Existing
research reviewed above demonstrates that users unfamiliar with LLM are not able
to produce well-performing prompts Zamfirescu-Pereira et al., 2023. However, most
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instructors and TAs in programming courses are computer scientists with graduate-
level training. We expected that some fraction of these users could benefit from the
ability to change the prompt and leave this option open. This assumption, however,
has to be explored. We hope that a study that engages real instructors or TAs in
producing worked examples for their course might provide interesting data on end-
user work with a prompt. The ultimate way to address these limitations and collect
valuable information is to run a multi-semester-long study engaging instructors to
use the tool to produce explanations. Such a study will also enable us to assess the
quality of explanations produced through human-AlI collaboration and their value
for students in introductory programming classes.
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