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Abstract

The increasing popularity of digital textbooks as a new learning media
resulted in a growing interest in developing a new generation of intelligent
textbooks that can help readers to learn better, adapting to their learning goals
and current state of knowledge. These intelligent textbooks are most fre-
quently powered by internal knowledge models, which associate a list of
unique domain knowledge concepts with each section of the textbook. With
this kind of concept-level knowledge representations, a number of intelli-
gent operations could be performed; e.g., student modeling, content linking
or content recommendation. However, manual indexing of each textbook
section with concepts is challenging, time-consuming and inconsistent. Au-
tomatic keyphrase extraction methods have been being developed over the
last twenty years; however, few of the known approaches have been focusing
on textbooks and evaluated on a full-scale textbook corpus. In this paper,
we present a supervised machine learning method with a list of rich, care-
fully hand-crafted features. We evaluate our proposed approach using sev-
eral state-of-the-art keyphrase extraction methods as a baseline on a newly
constructed full-scale dataset. The results show that the proposed model out-
performs all the baseline methods.

1 Introduction

More and more educational content today is found on the web — some of it on edu-
cational platforms such as Coursera or EdX, and a growing number of it in online
textbooks, personal websites and blogs (a simple Google search for “LSTM tuto-
rial”, for example, returns 320,000 results). This content is diverse in its intended
audience. Some of it may assume deep expertise in the subject; some may be intro-
ductory for people new to the field. Some may be aimed towards people in finance,
and other for people in the medical field. When presented as part of a search result
ranking, these textbook chapters, lessons and tutorials, lack the necessary context,
such as the required prerequisites needed to grasp the material presented in them.
To address this problem, recent work (Labutov and Lipson, 2016; Yang et al., 2015)
had started to look towards automatically creating learning paths, complete with
necessary prerequisites, from such unstructured educational content on the web. A



key input to such systems is the domain-specific terminology extracted from these
educational documents. By understanding what domain-specific keywords (e.g.,
“gradient descent” in an article about “LLSTMs”) that are presented in the educa-
tional documents, and their distribution, these documents can then be “connected”
together into sequences that progress from simpler to the more complex, and ulti-
mately towards the learner’s educational goal.

In this work, we focus on this fundamental task of concept keyword extraction
from educational texts. Terminology, or keywords are used as proxies for the un-
derlying concepts present in the documents, and their distribution in turn acts as
a proxy for the degree to which these concepts are either assumed or explained in
a given document. Both precision and recall at the task of concept keyword ex-
traction are therefore critical for this downstream task of connecting educational
content based on the degree to which one document is a prerequisite for another.
This paper presents a thorough and systematic analysis of supervised learning ap-
plied to the task of concept extraction from educational content. Previous work
at this task had either focused on non-educational keyword extraction, or had not
analyzed and experimented with concept-extraction in educational context to the
same level of coverage and depth as we do in this paper. The key contributions of
this work are as follows:

e Concept annotation: We perform a rigorous and systematic annotation of
concept keywords in a technical textbook. Improving our annotation pro-
tocol over multiple iterations, we achieve a relatively high inter-annotator
agreement and ensure that the annotated keywords closely align to the un-
derlying concepts.

e Concept extraction: We engineer and experiment with a highly encom-
passing feature set for learning to extract the annotated concepts. Our fea-
ture set spans both linguistic features and features encoding relative corpus
statistics (i.e., summarizing relative word frequencies between technical and
non-technical corpora).

e Evaluation: We perform systematic ablation studies of the proposed su-
pervised model, as well perform extensive comparative evaluation with a
number of keyword-extraction models proposed in literature.

2 Related Work

Automatic keyphrase extraction has been extensively studied and examined using
different approaches such as rule-based, supervised learning, unsupervised learn-
ing or deep neural networks. Typically, automatic keyphrase extraction systems
consist of two parts (Augenstein et al., 2017): (1) preprocessing data and extract-
ing a list of candidate keyphrases using lexical patterns and heuristics; and then
(2) determining which of these candidates are correct keyphrases based on some
ranking scores.



The goal of extracting the candidate keyphrase list is to obtain all potential
candidates while keeping the number of candidates as small as possible. Several
studies extract candidates from words with certain part-of-speech (POS) tags (e.g.,
nouns or noun-nouns) (Mihalcea and Tarau, 2004; Bougouin et al., 2013; Liu et al.,
2009a; Wan and Xiao, 2008). Others extract n-grams with simple filtering rules
(Witten et al., 1999; Medelyan et al., 2009) or only allow those matching Wikipedia
article titles (Wang et al., 2015; Grineva et al., 2009). More complex approaches
extract noun phrases and apply predefined lexico-syntatic patterns (Florescu and
Caragea, 2017; Le et al., 2016).

The next step is to score each candidate based on some properties that indicate
how likely that candidate is a keyphrase in the given document. Machine learning
approaches to this task can be grouped into those that are supervised or unsuper-
vised. Among unsupervised learning approaches, graph-based approaches (Mi-
halcea and Tarau, 2004; Bougouin et al., 2013) consider a candidate keyphrase as
important if it is related to a large number of candidates and those candidates are
also important in the document. Candidates and the relations between them form a
graph for the input document. A graph-based ranking (e.g., PageRank) is applied
to give a score to each node. Finally, the top-ranked candidates are selected as
keyphrases for the input document. Unsupervised fopic-based clustering methods
(Liu et al., 2009b, 2010; Grineva et al., 2009) attempt to group semantically simi-
lar candidates in a document as fopics. Keyphrases are then selected based on the
centroid of each cluster or the importance of each topic.

The supervised learning approaches typically frame this task as a binary clas-
sification problem (Witten et al., 1999; Hulth, 2003; Jiang et al., 2009). A variety of
features have been used for training supervised models including statistics-based
features fitle-based features, linguistics-based features or external resources (Ham-
mouda et al., 2005; Witten et al., 1999; Rose et al., 2010; Hulth, 2003; Wang et al.,
2015; Yih et al., 2006; Nguyen and Kan, 2007).

Deep learning approaches sharing features of both supervised and unsuper-
vised learning, have been successfully applied to many NPL-related tasks including
named entity recognition (NER) and sequence tagging. However, few studies fo-
cused on keyphrase extraction problem. (Meng et al., 2017) built a deep keyphrase
generation with an encoder-decoder framework. They applied an RNN-based gen-
erative model to predict keyphrases.

While many general concept-extraction approaches exists, few focused on an
educational domain and almost none on a textbook corpus. There are a number of
projects that apply book concepts to achieve a specific target; for example, build-
ing concept hierarchies for textbooks (Wang et al., 2015) or separating prerequi-
site and outcome concepts (Labutov et al., 2017). However, they do not focus on
the advanced concept extraction and use existing data (Labutov et al., 2017) or
lightweight extraction approaches (Wang et al., 2015).

The work presented in this paper applies the state-of-the art extraction ap-
proaches to the under-explored textbook context. We use a supervised method
for concept extraction from textbooks with an extensive list of carefully selected



features. We evaluate the approach on a brand new dataset and compare it with
several state-of-art baselines. We made the code and data available on Github !.

3 The Dataset

One of the challenges of keyphrase extraction is obtaining a good dataset for train-
ing and testing models. Especially, there are very few datasets with labeled data
for educational resources such as textbooks, course descriptions, slides, e.t.c. An
added challenge for the educational context is its focus on knowledge transfer.
As a result, educational applications usually refer to concepts associated with text
rather than keywords or keyphrases. In this context, we define domain concepts
as keyphrases (single words or short phrases of two to four words) that represents
most essential knowledge elements presented in a text fragment (e.g., a sentence, a
paragraph, a section) in respect to its target domain (e.g., Computer Science (CS))
or related domain (e.g. Statistics). Those concepts should have specific meanings
in the CS domain and be important in Information Retrieval (IR) sub-domain, but
may have different meanings in other domains. Without understanding the concep-
tual meaning, readers could not understand the content. For example, considering
the sentences/paragraphs below:

“Tokenization is the task of chopping it up into pieces, called tokens, perhaps
at the same time throwing away certain characters, such as punctuation.” In this
example, Tokenization and tokens are domain concepts, but characters and punc-
tuation are not.

To support our work on automatic concept extraction, we built a dataset with
a section-level concept index for the first 16 chapters of Introduction to Informa-
tion Retrieval (IIR) textbook?. For each section (the lowest-level TOC unit) of the
textbook, the dataset provides a list of essential concepts mentioned in the section.
The statistics of the dataset are shown in Table 1.

To build this dataset, we engaged three paid experts - one PhD student working
in the IR domain and two Masters students who completed the IR course with high
scores. Before the start of the process, the annotators received training and passed
a test focused on the understanding of the task, the “codebook’ of annotation rules,
and the annotation interface. Every week three experts focused on completing
annotations for one chapter (i.e., all sections belonging to the chapter). After fin-
ishing an annotation session, they discussed the cases in which their annotation
disagreed, made the final decision for the concept list, and, if necessary, added
new ‘“codebook” rules to help increase the agreement in the future. Throughout
this process, the inter-annotator proportion agreement among the three annotators
before discussion had gradually increased from 0.25 to 0.68 at week 3 and 0.9 at
the end (see Figure 1).

"https://github.com/ANONYMOUS/Concept-Extraction/
Zhttps://nlp.stanford.edu/IR-book/



Characteristic

Number of chapters 16

Number of sections 86

Number of all concepts 3175

Number of 1-grams 1121 (35.31%)
Number of 2-grams 1565 (49.29%)
Number of 3-grams 422 (13.29%)
Number of 4-grams 58 (1.83%)
Number of 5+6-grams 9 (0.28%)

1543

Number of all unique concepts
Number of unique 1-grams
Number of unique 2-grams
Number of unique 3-grams
Number of unique 4-grams
Number of unique 5+6-grams

278 (18.02%)
871 (56.45%)
330 (21.39%)
55 (3.56%)

9 (0.58%)

Table 1: Statistics of the IIR dataset
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Figure 1: Inter-annotator proportion agreement results (week by week). Average
agreements are the proportion agreements among three annotators. Average pair
agreements are the average proportion agreements of three annotator pairs.



4 Automatic Concept Extraction

4.1 The Task Formulation

We formulated the concept extraction task in the following way: given a textbook
which has multiple chapters and each chapter includes several sections, extract a
list of concepts appearing in each of the sections.

Concept extraction task is similar to the tasks of keyphrase extraction and
named entity recognition. However, it is more challenging because (1) concepts
vary significantly across domains, (2) it is hard to define the boundary between the
domains, and (3) there is a lack of clear signifiers and context. In order to per-
form this task, we recast it as a binary classification problem for a list of extracted
candidates. We train a supervised learning model to classify a term or phrase can-
didate to be a concept or not. The details of our framework is described in the next
section.

4.2 The Framework

Preprocessing: We preprocess the textbook to extract section names, titles, and the
text content of each section.

Data preparation: We use Stanford’s POS tagger> (Toutanova et al., 2003) to
annotate each word in the text with its linguistic part-of-speech. Defining that a
concept is a noun or noun phrase, we apply linguistic rules (e.g., ’noun + noun’ or
‘adjective + noun’) using regular expression to extract all possible nouns and noun
phrases in the text. We only consider unigrams, bigrams, trigrams and four-grams,
which account for 99.42% of all the unique concepts (shown in Table 1).

After extracting all noun phrases, we used a stop-list to filter non-descriptive
words (mostly determiners) that add no additional meaning to the concept (e.g.,
such, same, many, little, few, or certain). For instance, though “many searching
algorithms” and “searching algorithms” both are noun phrases extracted from the
text, it is very easy to recognize that “many searching algorithms” should not be
considered as a concept.

Let take a look at the example below:

“The general strategy for determining a stop list is to sort the terms by collec-
tion frequency.’

After tagging: “The_DT general _JJ strategy_NN for_IN determining_VBG a_DT
stop_NN list_NN is_VBZ to_TO sort_VB the_DT terms_NNS by_IN collection NN
frequency NN ..”

Final candidate list: {general strategy, strategy, stop list, stop, list, terms, col-
lection frequency, collection, frequency}

Feature extraction: After obtaining the final candidate list, we extract all fea-
tures for each of the candidates. The feature set includes linguistic features (e.g.,
POS, two tokens before, two tokens after), statistics features (e.g., term frequency,

3https://nlp.stanford.edu/software/tagger.shtml



tf-idf), its match to external resources (i.e., wikipedia titles and ACM keyword
repository) and its presence in the section title. The details of the feature set are
described in the next section.

Model training: We trained a logistic regression model on the feature vectors
of candidate keyphrases. All non-binary features in our model are binned and dis-
cretized as binary features. In this way, our logistic model is capable of learning
non-linear relationships with those features. For the cross evaluation purpose, we
split data into 5 folds; each fold consists of 80% for training and 20% for test-
ing. Aware of the cases that multiple candidates could be from the same phrase
(e.g., ‘postings list’ appearing in multiple sections of the book), we force those
candidates to be only in the train set or only in the test set when splitting the data.

4.3 Features

To train our concept extractor, we use 25 types of features listed in Table 2. In total,
we have 7661 features for this specific dataset. We categorize the features into four
subsets — those which are linguistic, statistics-based, use external resources or use
a section title. Each subset represents different identifiers and cues that could help
recognize concepts.

4.3.1 Linguistic features

Linguistic features provide the most informative and significant cues to identify
concepts. These features capture both internal (i.e., constituent words) and external
(i.e., context) characteristics of the concept candidate.

e POS(features 1-5): encode the part-of-speech structure of the candidate.
This set of features helps to recognize common patterns that concepts may
have (e.g., noun + noun, or adjective + noun). In addition, we included sep-
arate POS features for specific tokens of the candidate, which could provide
more fine-grained patterns for the extractor.

o Context (features 6-17): describes the surrounding context of the candidate
(e.g., the first word to left and the POS of the first word to left of the candi-
date).

o Length of candidate: number of tokens the candidate has. As we can see
from Table 1, the distribution of different n-grams varies significantly.

4.3.2 Statistic features

In this section, we present several statistics-based features, which are inspired by
work in information retrieval. These methods (also known as term-scoring meth-
ods) give a specific value to a candidate based on how it is distributed in the text-
book. The central component of term scoring is term frequency.



% loss % loss

ID  Feature Value Description of of AUC F| AUC
1
- Concatenation of the POS of each of
* [ =
1 pos|all] {jj<jj-nn_nn,...} the tokens in the candidate 1.32 0.00 039 0.78
2 pos[0] {nnp, nn, ...} POS of the first token of the candidate 0.00 0.00 0.00 0.66
3 pos[1] {nnp, nn, ...} POS of the 2nd token of the candidate if exists 0.00 0.00 0.00 0.63
4 pos[2] {nnp, nn, ...} POS of the 3rd token of the candidate if exists 0.00 0.00 0.00 0.60
5 pos[3] {nnp, nn, ...} POS of the 4th token of the candidate if exists 0.00 0.00 0.00 0.56
6+  word[lleft]  <string> }:fl?;:t’;’r(‘i ng th;?"’ left of the candidate 395 106 040 075
7% word[lright] <string> ?:}S;l:‘t’sor(‘i g ";;)the right of the candidate 263 106 034 073
8¢ word[2left]  <string> lste;‘:l‘:i"(?;d Vlvh‘e’)" the left of the candidate 395 106 039 073
9*  word[2right] <string> isfe:)‘:i:i"(v:;d VZVY)O“ the right of the candidate 132 000 031 0.6
10 word3left]  <string> inl:i?S::‘zgdi o ;he left of the candidate 000 000 000 051
11 word[3right] <string> in}:i‘ijstV:‘zzdgw :’;)1 the right of the candidate 000 000 000 051
12 pos[llefd  {nnp,nn, ..} fﬁiﬁg;g?g;‘s‘l’;‘”d w on the left of the 000 000 026 0.66
13 pos[lright]  {nnp,nn, ..} fﬁii‘;;‘geiff:;:zord w on the right of the 000 000 028 0.69
14 posi2lefi]  {mp.n,.} oo orthe secondwordwonthe feft of the 000 000 026 067
. POS of the second word w on the right of
15 pos[2_right] {nnp, nn, ...} the candidate if exists & 0.00 0.00 026 0.65
16 posi3lef]  {nnp,nn, ..} fﬁzi‘égtt:eif‘}e‘;‘:t‘ford won the left of the 000 000 000 051
17 pos[3xight]  {nnp,nn, ..} f ﬁzi‘c’ég‘;‘gz‘:gord w on the right of the 000 000 000 051
18 length {1,2,3,4} Number of tokens in the candidate 0.00 0.00 0.00 0.59
19%  fre <numeric> Frequency of the candidate in a section 0.00 0.00 036  0.65
20%  cf <numeric> Frequency of the candidate in the textbook 2.63 1.06 044 0.76
21%  tf*idf <numeric> tf*idf score of the candidate in the textbook 1.32 00 026 0.69
2 lang {true, false} Statistical testmg 1f-the 'candldate comes 0.00 000 000 051
from the same distribution
23 wrTitle {true, false} The candidate appearing in a Wikipedia title 0.00 0.00 0.00 0.59
. - The candidate appearing in the ACM
24 acm {true, false} keyword repository or not 2.63 1.06 0.00 0.72
25%  sTitle {true, false} ~ Lne candidate appearing in a section 132 106 047 067

title of the textbook or not

Table 2: Features used in our concept extractor.

Frequency (fre): how many times a candidate occurs in a particular section.
We created binary features where the frequency is less than or equal to 1,
2,3,4,5, or 6. The intuition is that if a candidate appears many times in a
section, it may be a less informative but generic term.

Collection frequency (cf): how many times a candidate occurs in the entire
textbook. We also created a set of ¢f-related binary features where the fre-
quency is considered up to a heuristic threshold of 50.

Term frequency-inversed document frequency (tf-idf): idf is a measure of the
informativeness of the candidate. A set of binary features were created for
the log of tf-idf score (at various thresholds).

Language model (lang): this feature is evaluated based on the probability
distribution of a foreground corpus (i.e., Information Retrieval) and a back-



ground corpus (i.e., a large corpus encoding the knowledge about the world).
We use the content of the textbook as the foreground corpus and calculate
the distribution for each of the candidates. For the background, we obtained
the distribution of n-grams from Bing Web Language Model API. We hy-
pothesize that a candidate is more likely to be a concept if it’s probability
distribution in the foreground corpus is significantly higher than in the back-
ground corpus.

4.3.3 External resources

These features attempt to improve the performance of the model by exploiting ex-
isting lexical knowledge bases which are usually built by domain experts. These
resources are independent from the training data. They can be computed directly
without the need of labeling the training data. In this work, we leverage the fol-
lowing resources:

e Wikipedia: based on the observation that a candidate is likely to be a concept
if there is an article discussing it or some of its aspects. We collected all IR-
related article titles. This collection is used to check if a candidate appears
in any of these Wikipedia titles. This feature is called Wikipedia title-based
feature (or wTitle for short).

e ACM Computer Science keyphrase repository: We assume that if a candi-
date appears in the the collection of keywords in Computer Science domain
published by ACM, it is very likely to be a concept.

4.3.4 Section titles

Book authors use section titles to inform readers of the topics, ideas or problems
they are going to present. It is intuitive to assume that if a candidate appears in a
section title, it should have a significant meaning contributing to the topic. There-
fore, we add one more feature to the model called section title-based feature (or
sTitle for short).

5 The Evaluation

5.1 The Evaluation Approach

To evaluate our model and compare it with the baselines, we use several metrics:
AUC, micro precision, micro recall, micro F', macro precision, macro recall and
macro F;. We compute the scores using exact matching. While we are aware of
the limitation of exact matching for keyphrase extraction evaluation, it is still the
best solution for comparing models’ performance without humans in the loop.



5.2

Baselines

We compare our model with the following baselines.

1.

10.

Random model: The random model mimics the process of building a lo-
gistic regressor without training any model; it randomly assign probabilities
from O to 1 to candidates and use the cutoff of 0.35 (i.e., the same as the
main model) to classify concepts.

. Linguistics model: The logistic regression model only uses the linguistic-

based features (i.e., features 1-18), also used in (Yih et al., 2006; Nguyen
and Kan, 2007)

. Statistics model: The logistic regression model, which uses only the statistics-

based features (i.e., features 19-22), also used in (Hammouda et al., 2005;
Witten et al., 1999; Rose et al., 2010; Nguyen and Kan, 2007; Yih et al.,
2006).

. External resource baseline: The logistic regression model, which uses

only the External resource-based features (i.e., features 23-24), also used
in (Wang et al., 2015).

. Title baseline: The logistic regression model, which uses only the title-

based features (i.e., 24), also used in (Wang et al., 2015; Yih et al., 2006)
for extracting concepts and (Labutov et al., 2017) for predicting prerequisite
and outcome concepts.

TextRank baseline: a well-known graph-based approache for keyphrase ex-
traction (Mihalcea and Tarau, 2004).

. TopicRank baseline: a graph-based ranking method to discover topical rep-

resentations for documents from which keyphrases are generated (Bougouin
et al., 2013).

Rapid automatic keyword extraction (RAKE) baseline: an unsupervised,
domain independent and language independent approach for extracting key-
words from individual documents (Rose et al., 2010).

IBM Natural Language Understanding API baseline: the client library
watson_developer_cloud provided for Python*. Given a text document, the
API will return a list of keywords or entities.

CopyRNN baseline: a RNN-based model using encoder-decoder architec-
ture to predict keyphrases (Meng et al., 2017).

*https://github.com/watson-developer-cloud/python-sdk

10



System AUC Microp Micror Micro Iy Macrop Macror Macro Fy

Baseline 1: Random (*) 0.50 0.20 0.67 0.31 0.14 0.50 0.21
Baseline 2: Linguistics (*) 0.90 0.66 0.63 0.65 0.47 0.57 0.51
Baseline 3: Statistics (*) 0.80 0.55 0.58 0.56 0.50 0.25 0.34
Baseline 4: External resources (*)  0.72 0.36 0.47 0.41 0.29 0.44 0.35
Baseline 5: Titles (*) 0.67 0.55 0.42 0.47 0.43 0.14 0.21
Baseline 6: TextRank - 0.17 0.10 0.17 0.11 0.10 0.10
Baseline 7: TopicRank - 0.16 0.16 0.16 0.11 0.28 0.16
Baseline 8: RAKE - 0.15 0.13 0.14 0.07 0.63 0.12
Baseline 9: IMB API - 0.25 0.19 0.22 0.16 0.26 0.20
Baseline 10: CopyRNN - 0.23 0.22 0.23 0.26 0.20 0.23
Baseline 11: Humans (AMT) - 0.40 0.38 0.39 0.29 0.55 0.38
Our system 0.94 0.75 0.77 0.76 0.61 0.58 0.60

* p<<0.01 (paired nonparametric McNemar test), p: precision, r: recall

Table 3: AUC, micro F} and macro F; of our model compared to the baselines.
Significance testing only performed on the random and partial models.

11. Humans/AMT baseline: We recruited three annotators from Amazon Me-
chanical Turk®. The annotators were assigned to chapter 6 and 8 of IIR
book, including 13 sections (i.e., we chose these two chapters based on the
reasonable amount of text for the annotation assignments).

5.3 Results

With this set of features, the logistic regression model with 5-fold cross validation
achieved an AUC score of 0.94 and a micro [} score of 0.76 (see Table 3) for the
concept classification task. It is significantly better than all of the partial models
(i.e., with different subsets of features). Among the partial models, the linguistic
model performs best. It means that for the task of concept classification from text-
books, language-based features taking advantage of the syntactic structure and the
context of candidates provide the most important signifiers. The statistics model
also achieves a significant result.

Table 3 shows that our model outperforms all the baselines. Although RAKE
achieves the highest macro recall of 63%), its precision is the lowest (and a lower
F score as a result). Again, linguistic model is the best among the partial models,
achieving the F} of 0.51. It is also significantly better than the other baselines
including human (i.e., Mechanical Turk).

CopyRNN, deep neural net-based model, do not perform well for this task as
expected. This is likely due to the fact that we directly use the original model which
was trained on a different dataset (the paper abstract-keyword datasets) to predict
concepts in the textbook.

Our model can achieve a precision as high as 98% (at 19% recall) or recall as
high as 97% (at 37% precision), depending on the preference of the user (see Fig-
ure 2). Since concept extraction still remains a very challenging task, it is difficult
to accomplish a high recall and a high precision at the same time. The availability

Shttps://www.mturk.com
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Figure 2: ROC curve from the main concept classifier.

to choose between a high recall or high precision could help to improve down-
stream tasks depending on what is more important. In document linking task, for
instance, we may want to achieve a high recall (i.e., identify many concepts) to
distinguish documents. On the other hand, a high precision could result in bet-
ter performance for student modeling and prediction tasks, which requires more
precise and accurate concepts.

5.4 Error Analysis

Errors propogate to the final prediction stage from multiple sources. Some come
from the preprocessing step due to noisy text; others are from the model itself.
After a very careful data preprocessing and preparation, we were be able to obtain
97.72% of all the expert-annotated concepts; most of missing concepts come from
special characters (e.g., (pseudo-)relevance feedback) or errors of POS tagging.

As we can see from Table 4, the model failed to identify most of the 4-gram
concepts. 57% of unigrams were not recognized, accounting for more than half
of false negative cases. On the other hand, there are predicted concepts from the
model that could be considered as concepts but were not annotated by the experts;
for example, optimization, bayesian network, frequency-based feature selection,
multinomial unigram language model.

Some of errors come from partial matching; for instance, maximum likelihood
estimates is an actual concept, and the model predicts maximum likelihood esti-

12



Number of % of ground truth

concepts concepts
1-grams 639 57%
2-grams 367 23%
3-grams 162 38%
4-grams 43 89%
Total 1211 38%

Table 4: Concepts annotated by experts but not predicted by the model (false neg-
ative).

mates as a concept.

For the candidates predicted by the model but not annotated by the experts
(i.e., false positive), we had an expert to additionally evaluate them. There are
13%, 30% and 30% of unigrams, bigrams and trigrams respectively which could
be considered as concepts based on the expert’s judgement. Those cases come from
either the experts missing them during the annotation process or partial matching.

For both the false negative or false positive cases, we can see that unigram
candidates and concepts contribute to most of the failed cases, meaning that it’s
harder to deal with unigram concepts compared to bigrams or trigrams. Moreover,
as can be seen in Table 4, there are only 23% of actual bigram concepts that are not
identified by the model. Thought bigram concepts account for 56.45% of all the
concepts, they are much easier to recognize.

6 Conclusions and Future Work

In this paper, we present a thorough, rigorous and systematic analysis of a super-
vised learning approach for the task of concept extraction from educational content.
We evaluate the proposed model with a newly constructed dataset by comparing
with an extensive number of keyphrase extraction models.

This work is a step towards the ultimate goal of developing a new generation
of intelligent textbooks. There is still room to improve the model, for example by
focusing on tackling uni-gram concepts which currently have the highest error rate.
Another direction for work is utilizing deep neural networks to enhance the highly
engineered feature sets presented in this work. Our priority is to investigate how
the outcomes of the current model could help improve downstream educational
tasks such as content recommendation, and to investigate the sensitivities of these
downstream tasks to the different levels of precision and recall of concept keyword
extraction. We believe that the work presented in this paper will help the research
community towards building the next generation learning platforms for the web.

13



References

Isabelle Augenstein, Mrinal Das, Sebastian Riedel, Lakshmi Vikraman, and An-
drew McCallum. 2017. https://doi.org/10.18653/v1/S17-2091 Semeval 2017
task 10: Scienceie - extracting keyphrases and relations from scientific publi-
cations. In Proceedings of the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 546—555. Association for Computational Linguis-
tics.

Adrien  Bougouin, Florian Boudin, and Béatrice Daille. 2013.
http://aclweb.org/anthology/I13-1062 Topicrank: Graph-based topic rank-
ing for keyphrase extraction. In Proceedings of the Sixth International Joint
Conference on Natural Language Processing, pages 543-551, Nagoya, Japan.
Asian Federation of Natural Language Processing.

Corina Florescu and Cornelia Caragea. 2017. https://doi.org/10.18653/v1/P17-
1102 Positionrank: An unsupervised approach to keyphrase extraction from
scholarly documents. In Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 1105-1115.
Association for Computational Linguistics.

Maria  Grineva, Maxim  Grinev, and Dmitry Lizorkin.  2009.
https://doi.org/10.1145/1526709.1526798 Extracting key terms from noisy
and multitheme documents. In Proceedings of the 18th International Confer-
ence on World Wide Web, WWW ’09, pages 661-670, New York, NY, USA.
ACM.

Khaled M. Hammouda, Diego N. Matute, and Mohamed S. Kamel. 2005.
Corephrase: Keyphrase extraction for document clustering. In Machine Learn-
ing and Data Mining in Pattern Recognition, pages 265-274, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Anette Hulth. 2003. https://doi.org/10.3115/1119355.1119383 Improved auto-
matic keyword extraction given more linguistic knowledge. In Proceedings of
the 2003 Conference on Empirical Methods in Natural Language Processing,
EMNLP 03, pages 216-223, Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Xin Jiang, Yunhua Hu, and Hang Li. 2009.
https://doi.org/10.1145/1571941.1572113 A ranking approach to keyphrase
extraction. In Proceedings of the 32Nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR 09, pages
756757, New York, NY, USA. ACM.

Igor Labutov, Yun Huang, Peter Brusilovsky, and Daqing He. 2017.
https://doi.org/10.1145/3097983.3098187 Semi-supervised techniques for min-
ing learning outcomes and prerequisites. In Proceedings of the 23rd ACM

14



SIGKDD lInternational Conference on Knowledge Discovery and Data Mining,
KDD ’17, pages 907-915, New York, NY, USA. ACM.

Igor Labutov and Hod Lipson. 2016. Web as a textbook: Curating targeted learning
paths through the heterogeneous learning resources on the web. In Proceedings
of the 9th International Conference on Educational Data Mining, EDM ’16,
pages 110-118.

Tho Thi Ngoc Le, Minh Le Nguyen, and Akira Shimazu. 2016. Unsupervised
keyphrase extraction: Introducing new kinds of words to keyphrases. In Al
2016: Advances in Artificial Intelligence, pages 665—-671, Cham. Springer Inter-
national Publishing.

Feifan Liu, Deana Pennell, Fei Liu, and Yang Liu. 2009a.
http://dl.acm.org/citation.cfm?id=1620754.1620845 Unsupervised approaches
for automatic keyword extraction using meeting transcripts. In Proceedings
of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, NAACL
’09, pages 620-628, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Zhiyuan Liu, Wenyi Huang, Yabin Zheng, and Maosong Sun. 2010.
http://dl.acm.org/citation.cfm?id=1870658.1870694 Automatic keyphrase ex-
traction via topic decomposition. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, EMNLP ’10, pages 366—
376, Stroudsburg, PA, USA. Association for Computational Linguistics.

Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong Sun. 2009b.
http://dl.acm.org/citation.cfm?id=1699510.1699544 Clustering to find ex-
emplar terms for keyphrase extraction. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing: Volume 1 - Volume
1, EMNLP °09, pages 257-266, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Olena  Medelyan, Eibe  Frank, and JTan H. Witten. 2009.
http://dl.acm.org/citation.cfm?id=1699648.1699678 Human-competitive
tagging using automatic keyphrase extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing: Volume 3 -
Volume 3, EMNLP °09, pages 1318-1327, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Rui Meng, Sanqgiang Zhao, Shuguang Han, Daqing He, Peter Brusilovsky, and
Yu Chi. 2017. http://arxiv.org/abs/1704.06879 Deep keyphrase generation.
CoRR, abs/1704.06879.

15



Rada. Mihalcea and Paul Tarau. 2004. TextRank: Bringing order into texts. In
Proceedings of the 2004 Conference on Empirical Methods in Natural Language
Processing, Barcelonaand Spain.

Thuy Dung Nguyen and Min-Yen Kan. 2007. Keyphrase extraction in scientific
publications. In Asian Digital Libraries. Looking Back 10 Years and Forging
New Frontiers, pages 317-326, Berlin, Heidelberg. Springer Berlin Heidelberg.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy Cowley. 2010. Automatic
keyword extraction from individual documents. In Text Mining: Applications
and Theory, pages 1-20. John Wiley and Sons, Ltd.

Kristina Toutanova, Dan Klein, Christopher D. Manning, and Yoram Singer. 2003.
https://doi.org/10.3115/1073445.1073478 Feature-rich part-of-speech tagging
with a cyclic dependency network. In Proceedings of the 2003 Conference of
the North American Chapter of the Association for Computational Linguistics on
Human Language Technology - Volume 1, NAACL *03, pages 173—-180, Strouds-
burg, PA, USA. Association for Computational Linguistics.

Xiaojun Wan and Jianguo Xiao. 2008. http://aclweb.org/anthology/C08-1122 Col-
labrank: Towards a collaborative approach to single-document keyphrase extrac-
tion. In Proceedings of the 22nd International Conference on Computational
Linguistics (Coling 2008), pages 969-976. Coling 2008 Organizing Committee.

Shuting Wang, Chen Liang, Zhaohui Wu, Kyle Williams, Bart Pursel, Benjamin
Brautigam, Sherwyn Saul, Hannah Williams, Kyle Bowen, and C. Lee Giles.
2015. https://doi.org/10.1145/2682571.2797062 Concept hierarchy extraction
from textbooks. In Proceedings of the 2015 ACM Symposium on Document
Engineering, DocEng ’ 15, pages 147-156, New York, NY, USA. ACM.

Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl Gutwin, and Craig G. Nevill-
Manning. 1999. https://doi.org/10.1145/313238.313437 Kea: Practical auto-

matic keyphrase extraction. In Proceedings of the Fourth ACM Conference on
Digital Libraries, DL *99, pages 254-255, New York, NY, USA. ACM.

Yiming Yang, Hanxiao Liu, Jaime Carbonell, and Wanli Ma. 2015.
https://doi.org/10.1145/2684822.2685292 Concept graph learning from educa-
tional data. In Proceedings of the Eighth ACM International Conference on Web
Search and Data Mining, WSDM ’15, pages 159-168, New York, NY, USA.
ACM.

Wen-tau Yih, Joshua Goodman, and Vitor R. Carvalho. 2006.
https://doi.org/10.1145/1135777.1135813  Finding advertising keywords

on web pages. In Proceedings of the 15th International Conference on World
Wide Web, WWW 06, pages 213-222, New York, NY, USA. ACM.

16



