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Abstract 
 
The multi-concept nature of problems in the programming 
language domain requires fine-grained indexing which is 
critical for sequencing purposes. In this paper, we propose 
an approach for extracting this set of concepts in a reliable 
automated way using the JavaParser tool. To demonstrate 
the importance of fine-grained sequencing, we provide an 
example of how this information can be used for problem 
sequencing during exam preparation.  
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1 Introduction 

One of the oldest functions of adaptive educational systems is guiding students to the 
most appropriate educational problems at any time during their learning process. In 
classic ICAI and ITS systems, this function was known as task sequencing [1; 6]. In 
modern hypermedia-based systems, it is more often referred to as navigation support. 
The intelligent decision mechanism behind these approaches is typically based on a 
domain model that deconstructs the domain into a set of knowledge units. This do-
main model serves as the basis of a student overlay model and as a dictionary to index 
educational problems or tasks. Considering the learning goal and the current state of 
student knowledge reflected by the student model, various sequencing approaches are 
able to determine which task is currently the most appropriate. 

An important aspect of this decision process is the granularity of the domain model 
and the task indexing. In general, the sequencing algorithm can better determine the 
appropriate task if the granularity of the domain model and the task indexing is finer. 
However, fine-grained domain models that dissect a domain into dozens or hundreds 
of knowledge units are much harder to develop and to use for indexing. As a result, 
many adaptive educational systems use relatively coarse-grained models where a 
knowledge unit corresponds to a sizable topic of learning material, sometimes even a 
whole lecture. With these coarse-grained models, each task is usually indexed with 
only 1-3 topics. In particular, this approach is used by the majority of adaptive sys-
tems in the area of programming [2; 4; 5; 7].  

Our prior experience with adaptive hypermedia systems for programming [2; 4] 
demonstrated that adaptive navigation support based on coarse-grained problem in-
dexing is a surprisingly effective way to guide students through their coursework, yet 
it doesn’t work well in specific cases such as remediation or exam preparation. In 
these special situations, students might have a reasonable overall understanding of the 
content (i.e., coarse-grained student model registers good level of knowledge), while 
still suffering some knowledge gaps and misconceptions that could only be registered 
using a finer-grained student model. In this situation, only a fine-grained indexing and 
sequencing tool is able to suggest learning tasks that can address these gaps and mis-
conceptions.  

To demonstrate the importance of fine-grained indexing, we look to a system 
called Knowledge Zoom (KZ). The goal of KZ is to help the students identify their 
course knowledge gaps and provide tools to bridge these gaps in an effective way. 
The first part of this dual goal is supported by the KE component, a concept-based 
hierarchical zoomable open student model. 

The second goal is supported by the KM, a concept-based adaptive problem se-
quencing tool. The interface of KZ (Fig.1) provides direct access to the Knowledge 
Explorer (KE) model and a button to launch the Knowledge Maximizer (KM).  KZ is 
based on a concept-level model of knowledge about Java and OOP. This model is 
formed by a subset of concepts from the Java ontology-
http://www.sis.pitt.edu/~paws/ont/java.owl built by the PAWs lab. The Java ontology 
includes 344 concepts organized into an 8-level tree. The learning content in KZ is 
formed by 103 parameterized self-assessment questions that were developed in our 



team as a part of an earlier project [4]. Each question is indexed with ontology con-
cepts. The indexing classifies the prerequisite concepts that should be known before 
approaching the question and the outcome concepts to be mastered by working with 
the question. The number of concepts associated with a single question ranges from 5 
to 52 (0 to 41 prerequisites, 1 to 12 outcomes). These questions cover the 188 most 
important concepts of Java which form the KZ domain model. 
 
The Knowledge Explorer (KE) 
KE is a multi-level open student model visualized with a zoomable Treemap. The 
information presented by KE is an overlay model of Java Knowledge based on the KZ 
ontological domain model. The overlay student model in KZ is maintained by a user 
modeling service, PERSEUS [8], which updates the model after every attempt to 
answer a question and changes the knowledge level of concepts related to the ques-
tion. 
 

 
Fig. 1.  The KnowledgeZoom interface showing the top level of the Knowledge Explorer map and a button 

to launch Knowledge Maximizer. 

 
Fig. 2. Zooming on the node Expressions (top left corner in Fig. 1) reveals next level of the concept 
hierarchy. Now the user can see that the node LogicExpression that has intermediate knowledge as a whole 
(shown as yellow) consists of several well learned and several unknown concepts. 



A zoomable Treemap was selected to present the student model due to its relatively 
large size and hierarchical nature. The Treemap layout shows only four levels of con-
cept hierarchy starting from the current top node and hiding lower-level nodes behind 
its ancestor node. The user, however, can zoom in any node. After zooming in, the 
node expands becoming the top node and occupying the whole view. Zooming-in 
immediately exposes previously hidden levels of hierarchy. For example, Fig. 2 
shows the results of zooming into a second level concept, Expression shown in the top 
left quadrant of Fig. 1. 

In the Treemap layout, each node (a concept in the Java ontology) is shown as a 
colored rectangle. A leaf concept of the ontology corresponds to a terminal node of 
the Treemap. The size of a node represents the importance of a concept in the context 
of Java language and its chance to be checked as part of the exam. We measure it by 
counting how many questions are related to the leaf concept corresponding to this leaf 
node in the Treemap. Since the number of exercises related to nodes can be quite 
different, which leads to a large difference in the node sizes, we use the log2(size) to 
moderate the differences. The color of a node represents the level of concept 
knowledge demonstrated by a student. We use 10 colors from red to green to repre-
sent the progression from weaker to stronger knowledge. 

 In a hierarchical zoomable layout, a leaf node directly represents the importance 
and knowledge level of a concept with its size and color respectively, while each in-
termediate node accumulatively aggregates importance and concept knowledge from 
its child nodes. As a result of the aggregation, the upper-level views show overviews 
of students’ state of knowledge on higher levels (Fig. 1), while being able to explore 
detailed knowledge of every concept as zooming into lower levels of the ontology 
(Fig. 2). The calculation of the aggregated size and color is important to bridge the 
gaps between lower and higher levels of views. In KE, the size aggregation is provid-
ed by Treemap. For the color aggregation, the color of an intermediate node is the 
average color of its direct child nodes weighted with their sizes in order to reflect the 
importance of the associated concepts. 
 
The Knowledge Maximizer (KM) 
Knowledge Maximizer [3] that uses fine-grained concept-level problem indexing to 
identify gaps in user knowledge for exam preparation. This system assumes a student 
already completed a considerable amount of work: thus, the goal is to help her define 
gaps in knowledge and try to redress them as soon as possible. Fig. 3 represents the 
Knowledge Maximizer interface. The question with the highest rank is shown first. 
The user can navigate the ranked list of questions using navigation buttons at the top. 
The right-hand side of the panel shows the list of fine-grained concepts covered by 
the question. The color next to each concept visualizes the student’s current 
knowledge level (from red to green). Evaluation results confirm that using fine-
grained indexing in Knowledge Maximizer has a positive effect on students’ perfor-
mance and also shortens the time for exam preparation.  



 
Fig. 3. The Knowledge Maximizer interface. 

The problem with finer-grained indexing, such as that used by the Knowledge 
Maximizer, is the high cost of indexing. While a fine-grained domain model has to be 
developed just once, the indexing process has to be repeated for any new question. 
Given that most complex questions in our domain involve more than 50 concepts 
each, the high cost of indexing effectively prevents an increase in the number of prob-
lems represented in the system. To resolve this problem, we developed an automatic 
approach to fine-grained indexing for programming problems in Java based on pro-
gram parsing. This approach is presented in the following section. 
 

2 Java Parser 

Java parser is a tool that we developed to index Java programs according to concepts 
in a Java ontology developed by our group (http://www.sis.pitt.edu/~paws/ont/java.owl). 
This tool provides the user with semi-automated indexing support during the devel-
opment of new learning materials for a Java Programming Language course. This 
parser was developed using the Eclipse Abstract Syntax Tree framework. This 
framework generates an Abstract Syntax Tree (AST) that completely represents the 
program source. AST consists of several nodes, each containing sets of information 
known as structural properties. For example, Fig. 4 shows the structural properties for 
the following method declaration: 
 
public void start(BundleContext context) throws Exception { 
 super.start(context); 
}   

 

 
Navigation Buttons 

 Knowledge Level 
 Question Concept 

 Question Area 

http://www.sis.pitt.edu/%7Epaws/ont/java.owl


 
Fig. 4. Structural properties of a method declaration 

Table 1. Sample of JavaParser output 

Source Output 

public void start(BundleContext context)   throws Exception { 
       super.start(context); 
} 

PublicAccessSpecifier,  
MethodDefinition, VoidDataType, 
FormalMethodParameter, 
ThrowsSpecification, ExceptionClass,  
SuperReference, 
SuperclassMethodCall, ExpressionStatement 

 
After building the tree using Eclipse AST API, the parser performs a semantic 

analysis using the information in each node. This information is used to identify fine-
grained indexes for the source program. Table 1 shows the output concepts of Ja-
vaParser for the code fragment mentioned above. Note that the goal of the parser is to 
detect the lowest level ontological concepts behind the code as the upper level con-
cepts can be deduced using ontology link propagation. For example, parser detects 
“PublicAccessSpecifier” ignoring the upper-level concept of “Modifier”.  

We compared the accuracy of JavaParser with manual indexing for 103 Java prob-
lems and determined that our parser was able to index 93% of the manually indexed 
concepts. Therefore, an automatic parser can replace the time-consuming process of 
manual indexing with a high precision and open the way to community-driven prob-
lem authoring and targeted expansion in the size of the body of problems.  

3 Conclusion 

Having fine-grained indexing for programming problems is necessary for better se-
quencing of learning materials for students; however, the cost of manual fine-grained 
indexing is prohibitively high. In this paper, we presented a fine-grained indexing 
approach and tool for the automatic indexing of Java problems. We also explored an 



application of fine-grained problem indexing during exam preparation, where smaller 
grain size of knowledge units is critical to finding the sequence of problems which 
will fill the gaps in student knowledge. Results show that the proposed automatic 
indexing tool can offer the quality of indexing that is comparable with manual index-
ing by an expert at a fraction of the cost. 
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