UNIVERSITY OF PITTSBURGH

ISSP 2990

INDEPENDENT STUDY
SUMMER 2022

Augmenting Digital Textbooks with Smart
Content

Author: Supervisor:
Arun-Balajiee Dr. Peter BRUSILOVSKY
LEKSHMI-NARAYANAN

A report submitted in fulfillment of the requirements
for Independent study

in the

PAWS Lab
Intelligent Systems Program
School of Computing and Information

December 28, 2023

https://pitt.edu
https://sites.pitt.edu/~moh70
https://sites.pitt.edu/~moh70
https://sites.pitt.edu/~peterb/
http://adapt2.sis.pitt.edu/wiki/PAWS
https://www.sci.pitt.edu/
https://www.sci.pitt.edu/

UNIVERSITY OF PITTSBURGH

Abstract

Intelligent Systems Program
School of Computing and Information

Augmenting Digital Textbooks with Smart Content

by Arun-Balajiee LEKSHMI-NARAYANAN

A powerful set of educational tools has emerged over the last decade with the
rise in the adoption of online adaptive learning content. An increasingly popular
tool in this space is the “intelligent textbook” as a platform to support and dis-
tribute content for e-learning, given its resemblance with real-life physical books.
Existing efforts in this direction include the development of digital textbooks where
both textual content and interactive learning activities (i.e., examples, problems, etc.)
are carefully handcrafted by the authors so that they are perfectly placed to fol-
low the knowledge acquisition-practice flow. However, this approach is very time-
consuming, and it requires the work of high-expertise authors. In this work, we
suggest and discuss a scalable solution: we take existing digital textbooks and aug-
ment them by using repositories of existing online learning material associated with
the subject matter. We present our current work in this direction and discuss chal-
lenges and opportunities for the future work. This work was done in collaboration
with Jordan Barria-Pineda.

HTTPS://PITT.EDU
https://www.sci.pitt.edu/
https://www.sci.pitt.edu/

Contents

Abstract
1 Introduction
2 Related Work

3 Augmenting Reusable Smart Learning Content
3.1 Proof-of-Concept Implementations
3.1.1 A Python Programming Textbook with Smart Content

4 Discussion & Future Work
401 Challenges. o
41 Conclusions e e
Acknowledgements 0L

Bibliography

ii

10
10
11
11

12

List of Figures

3.1

3.2

3.3

34

Smart Content (green tab) along with the Video Recommendations
(red tab) in an information retrieval textbook
List of smart exercises displayed to practice Python programming.
These are links to the different programming exercises hosted on ex-
ternal repositories, to support Level 4 smart learning content
Smart Content Modal with a Programming Exercise in Python. In this
example, the student has to type the correct output to the program in
the textbox below for system toevaluate
Smart Content Modal with a programming exercise in Python. In this
figure, the student is asked to explain the different lines in a given
program, broked down into smaller steps and compare them with the
standard explanations that the system expects to be appropriate at
thoselines

iii

List of Tables

3.1 Types of Systems for Integrated Python Programming Exercises

v

Chapter 1

Introduction

A gradual switch from paper-based to “electronic” textbooks (e-textbooks) opened
an exciting opportunity to extend these classic learning tools with functionalities not
previously available in paper format. Among the most appealing and popular ways
to extend textbooks with new functionalities is converting examples and problems,
a traditional component of textbooks in many domains, into interactive learning
activities. This approach makes textbooks truly interactive and augments learning
by reading with learning by doing.

One of the first domains to embrace this kind of interactive textbook was com-
puter science education (CSE) where the development of interactive learning activ-
ities from algorithm animations to automatically-assessed programming problems
was a popular research direction. The need to integrate interactive learning activities
with online textbooks has been extensively discussed by the computer science edu-
cation community for many years Roflling et al., 2006 and some best examples of in-
teractive textbooks have been produced for computer science subjects. Among these
examples are ELM-ART Brusilovsky, Schwarz, and Weber, 1997, the first adaptive
textbook with interactive problems and examples for learning LISP, OpenDSA Fouh
et al., 2014, the first open-source infrastructure for collaborative construction of e-
textbooks with interactive animations and problems (originally developed for Data
Structures and Algorithms course), and RuneStone books Ericson and Miller, 2020 a
popular infrastructure for presenting online textbooks for programming augmented
with interactive learning activities. These and other interactive textbooks have been
extensively evaluated in various learning contexts and their effectiveness was con-
vincingly demonstrated Weber and Brusilovsky, 2001; Ericson, Guzdial, and Morri-
son, 2015; Pollari-Malmi et al., 2017.

However, the current platforms for the development and delivery of interactive
textbooks for CSE share the same problem: the “custom” nature of their production.
These textbooks are expected to be developed “as a whole” for a specific purpose,
with text and interactive problems developed and integrated together as a part of
the authoring process. This approach allows developing excellent examples of inter-
active textbooks but doesn’t support scaling up this process. For each “holistically
developed” interactive textbook, there are dozens of professionally authored text-
books on the same subject that are not augmented with interactive content because
this option has not been considered at the time of their creation. At the same, there
are large repositories of interactive learning content of different types that could be
used to augment these books. A missing piece in the infrastructure is the integration
of an arbitrary textbook with its corresponding interactive content.

An important step towards building this infrastructure was done in OpenDSA
project Fouh et al., 2014, which offered an opportunity to connect any LTI-compatible
interactive content to OpenDSA textbooks. However, it is still focused on custom-
built textbooks and doesn’t support existing textbook. The project presented in this

Chapter 1. Introduction 2

paper attempts to take the next step in this direction and make both textbooks and
integrative learning content reusable. Our goal is to build an infrastructure that
allows turning any textbook available in electronic format (such as PDF) into an in-
teractive textbook by augmenting it with interactive learning content from existing
repositories. This paper presents an important component of this infrastructure -
and interface that support augmentation of existing books with interactive content
without breaking the structure of these textbooks. In the following sections, we
present our current implementation of this interface, demonstrate the approach for
integrating smart content into textbook structure, and discuss future work in this
direction.

Chapter 2

Related Work

Multiple research efforts have been carried out during the last decade in order to
develop technology-enhanced textbooks. Electronic Textbooks (e-textbooks) sup-
port content distribution at scale in different formats and for different purposes. In
recent years, there have been many discussions that project what technological en-
hancements could surround the use of intelligent e-textbooks in education Ritter et
al., 2019. Among these discussions, a few noteworthy contributions such as the use
of intelligent question-asking Koc-Januchta et al., 2020, intelligent tutoring Walker
et al., 2017, and augmentation of assessment questions Dresscher, Chacon, and Sos-
novsky, 2021 bring to the light the possibilities of interesting enhancements in smart
digital textbooks. On the one hand, these technological enhancements could be im-
plemented as artificially intelligent agents or systems in e-textbooks that deliver, rec-
ommend or scaffold the learner’s needs while reading Xu and Warschauer, 2020. On
the other hand, it could be possible to integrate reusable smart content that are adap-
tive to the needs of the user, without necessarily adapting or personalizing the sys-
tem behaviour to the learner. In general, the main idea has been to maintain the af-
fordances of physical textbooks combined with the capabilities of web pages. How-
ever, some efforts have been made to incorporate the design of the novel functional-
ities for students that could expand the potentialities of intelligent textbooks Walker
et al., 2018.

In our work, we take this second route of augmentation of intelligent textbooks
with adaptive, personalized learning material presented as Smart Learning Content
(SLC) Brusilovsky et al., 2014. Typically, there are 5 different levels of SLCs Brusilovsky
et al.,, 2014, namely,

1. Level 1 SLCs are independent of the delivery platform for learning. In this
setup, the variables used by the SLC to personalize content do not persist, once
the session is closed and is stateless.

2. Level 2 The SLC and the delivery platform for learning are integrated into
a single system and the delivery platform saves the data produced by the
SLC, which is used across several user sessions. A limitation of this setup
is that the SLC would need to be developed specifically for the delivery plat-
form and cannot exist outside of the system. For example, CodeAcademy !,
KhanAcademy 2, Brilliant °

3. Level 3 All content in the SLCs is internal to the platform, but the delivery
platform supports multiple SLCs. For example, OpenDSA Fouh et al., 2014

http:/ /codeacademy.com
Zhttps:/ /khanacademy.org
Shttps:/ /brilliant.org

Chapter 2. Related Work 4

4. Level 4 The platform supports multiple SLCs and allows the use of external
content, using proprietary protocols to retrieve the external content. For ex-
ample, Blue] or Moodle with plug-in support, TestMyCode Vihavainen et al.,
2013, A+ Karavirta, Ihantola, and Koskinen, 2013 and JavaGuide Hsiao, Sos-
novsky, and Brusilovsky, 2010.

5. Level 5 The platform supports multiple SLCs that use standard protocols, such
as Learning Tools Interoperability (LTI), allowing for maximum flexibility. For
example, LTT with Moodle 4,

Among these levels, our earlier discussions cover implementations that could
be considered as level 2 SLCs Chacon et al., 2021. We also discussed implementa-
tions that utilize the benefits of Learning Tools Interoperability (LTI) Barria-Pineda,
Akhuseyinoglu, and Brusilovsky, 2019 to integrate early implementations of level 5
SLCs in the intelligent textbooks. In this work, we explore possibilities for an im-
plementation that could meet the gold standards discussed as levels 3 and 4 in our
prior work, that is, to support multiple SLCs that are both native and external re-
source recommendations to the delivery platform. In this case, we set the platform
content delivery to be the intelligent textbook.

4https:/ /docs.moodle.org/400/en/LTI_and_Moodle

Chapter 3

Augmenting Reusable Smart
Learning Content

We set the goals for level 3 and 4 SLCs, which we describe again here,

1. Level 3 Integrate Multiple SLCs that are native to the platform such as OpenDSA Fouh
etal., 2014

2. Level 4 Support multiple SLCs on the platform such that external content can
be integrated into the system.

Currently, we implemented two ways to integrate SLC into a textbook: a list of
recommended videos (see the red tab in Fig. 3.1) and a list of statically attached inter-
active exercises (see the green tab in Fig. 3.1). The video interface was developed for
an information retrieval textbook. It shows recommended videos using thumbnails,
which work as links to related content on YouTube! and multimedia sharing web-
sites. These implementations could consider a ranking and rating-based approach
to listing the content to allow the factor of “human-in-the-loop” recommendations
to support and enhance intelligent recommendations to the users of these systems
and their students in these courses.

The second way (a list of interactive programming exercises) was developed for
e-textbooks on introductory programming. The list of available exercise types with
descriptions is provided in Table 3.1. These exercises range from simple problems
that test the student’s understanding of the inputs or outputs of a given program
to puzzles that can be solved in several steps. Interactive and animated examples
could make the process of reading and understanding the code more engaging for
the reader. This could scaffold a student’s learning in their process of understanding
a course on introductory concepts in programming. Such an SLC integration could
possibly turn the mundane process of reading a textbook into a rich, interactive ex-
perience that offers possibilities for hands-on content experimentation. Further, stu-
dents who are curious learners can explore the concepts discussed on a page with a
related live, interactive examples to keep them engaged.

3.1 Proof-of-Concept Implementations

We collected a set of SLCs from various sources, in order, to offer a wide range of on-
line learning activities to students. The available content ranges from a low level of
interactivity (i.e., educational videos and worked-out examples) to more interactive
activities (i.e., parsons problems and coding-from-scratch problems). In this paper,
we will focus on two courses as study cases:

Thttps:/ /www.youtube.com

Chapter 3. Augmenting Reusable Smart Learning Content 6

4 Index construction

» Table 41 Typical system parameters in 2007. The seek time is the time needed
to position the disk head in a new position. The transfer time per byte is the rate of
transfer from disk to memory when the head is in the right position.

Wlew annotatlons E -

Symbol Statistic Value
H average seek time S5ms=5x10" s
b transfer time per byte 0.02us =2x10"8s
processor’s clock rate 107 5!
il lowlevel operation
(e.g., compare & swap a word) 001 us = 107%s
size of main memory several GB
size of disk space 1 TB or more

41 Hardware basics

Smart Content @

When building an information retrieval (IR) system, many decisions are based
on the characteristics of the computer hardware on which the system runs.
We therefore begin this chapter with a brief review of computer hardware.
Performance characteristics typical of systems in 2007 are shown in Table 4.1.
A list of hardware basics that we need in this book to motivate IR system
design follows.

* Access to data in memory is much faster than access to data on disk. It
takes a few clock cycles (perhaps 5 x 10—* seconds) to access a byte in
memaory, but much longer to transfer it from disk (about 2 » 10-% sec-
onds). Consequently, we want to keep as much data as possible in mem-
ory, especially those data that we need to access frequently. We call the

HING technique of keeping fl'equentl}' used disk data in main memory caching.

Recommended videos (&)

FIGURE 3.1: Smart Content (green tab) along with the Video Recom-
mendations (red tab) in an information retrieval textbook

1. A Graduate course on Information Retrieval based on an open source textbook

2. An Undergraduate course on Programming in Python with the main textbook
72

for reference, “Python for Everybody”~.
In this Independent Study, we only focus on integrating Python textbook with
smart content.

3.1.1 A Python Programming Textbook with Smart Content

To support a Python Programming course we augmented a popular textbook “Python
for Everybody” with smart content. This textbook is available in several formats, in-
cluding as a PDF°. It consists of several chapters that cover the basics of Python
programming. The textbook starts with delivering the course content from scratch,
going into sequential topics, and keeping the target audience as novice or beginner-
level programmers in Python. We use this setup to experiment with SLC implemen-
tations to help practise programming in Python with a set of worked out examples
and programming problems. We target SLCs that cannot be directly covered within
the text. We think that the programming exercises could be presented as a list of

short problems related to the material being read in a given page, section or chapter
of the book.

thtps: / /www.py4e.com
Shttps:/ /www.py4e.com/book

Chapter 3. Augmenting Reusable Smart Learning Content 7

TABLE 3.1: Types of Systems for Integrated Python Programming Ex-
ercises

System Types of Exercises

QuizPET Brusilovsky et al., 2018 Parameterized code tracing

PCEX Hosseini et al., 2020 Program construction examples in
an engaging, interactive form
in order to increase motivation

& other languages

PCRS Zingaro et al., 2013 Programming problems that provide
incomplete skeleton code

Jsvee Sirkid, 2018 Animated programming examples to
visualize the program steps

problems for Python with automatic assessment

WebEX Brusilovsky, 2001 Web-based programming examples in Python

2D Parsons Ihantola and Karavirta, 2011 | A 2D version of Parson’s puzzles for Python

and checks the answers using a set of tests

To test our current infrastructure, we attached a range of smart learning content
for Python to various sections of the textbook as shown in Fig. 3.2. When a link
to an SLC item from the list of entries for smart content is clicked, it launches a
dialog instance with the specific programming example or problem. For example,
Fig. 3.3 shows a code tracing problem from QuizPET system (Quizzes for Python Ed-
ucational Testing) Brusilovsky et al., 2018. Another kind of programming exercises
for Python that we made available in the book are interactive worked examples of
program construction from PCEX system with step-wise program explanations and
walk-through (Fig. 3.4. These exercises allow for the student to focus on specifics of
a given program).

In total, we demonstrated the ability to connect six types of SLC worked exam-
ples and problems listed in Table 3.1. A more detailed description of these SLC types
could be found in Hosseini et al., 2020. When augmenting the book with SLC, we
considered Python programming activities that are related to the topics covered in
the text of a particular page of section in a chapter. These programming activities
use the knowledge or concepts covered in the textbook up to that point and avoid
the concepts that will be covered later in the textbook.

In the future version, we hope to provide a smart textbook authoring system for
course instructors, which will allow them to augment the same textbook with SLC
that they want to use in their classes. A prototype of this authoring system with
learning analytics support can be found in Alb¢ et al., 2022. We also plan to support
the authoring process with instructor-focused content recommender system Chau,
Barria-Pineda, and Brusilovsky, 2018. This could be considered as our long term goal
for smart content, but in the current work of smart content design for programming
exercises, we only focus on the interface for delivering SLC to students through a
textbook.

Chapter 3. Augmenting Reusable Smart Learning Content

Zuser Manual (€ Previous 2.6 expressions (1/1) 555 (Next> Go

2.6. EXPRESSIONS

>>> minute = 59
>>> minute//60
0

M@ rarsons A
EAPCEX_set
In Python 3.0 integer division functions much more as you would ¢ ®rCRs

entered the expression on a calculator. M animatedexamples

B webex
qmzpet
2.6 Expressmns smart_learning_content 0

smart learning_content 1

An eapression is a combination of values, variables, and operators, A|Smart learing_content 2

itself is considered an expression, and so is a variable, so the following| Smart_learning_content 3
expressions (assuming that the variable x has been assigned a value): smart learning._t
learning_content 5

content 4

learning_content 6

o] smart_learning_content 7
X

smart_learning_content 8
x + 17

learning_content 9

- learning_content 10

If you type an expression in interactive mode, the interpreter
displays the result:

learning_content 11

learning_content 12

learnina rantent 13

>>1+1
2

But in a seript, an expression all by itself doesn’t do anything! This is a common
source of confusion for beginners.

FIGURE 3.2: List of smart exercises displayed to practice Python pro-

gramming. These are links to the different programming exercises

hosted on external repositories, to support Level 4 smart learning
content

Smart Content 8

Tester.py

a=1
for i in range(0,4):
print(a + i)

What is the output?
Be careful of the whitespace(space,newline) in your answer.

/| submit|

FIGURE 3.3: Smart Content Modal with a Programming Exercise in
Python. In this example, the student has to type the correct output to
the program in the textbox below for system to evaluate

Chapter 3. Augmenting Reusable Smart Learning Content 9

Smart Content 5
‘ Example: Calculating the Employee's Wage Based on the Hours That the Employee Has Worked and an Hourly Pay Rate >

Chall
Construct a program for the payment department of a company to calculate the wage of an employee based on the number of hours that the employee has worked. If an employee works over aMZ:'ge
40 hours in a week, the payment amount should take into account the overtime hours. The overtime hours are paid at a rate one and a half times the regular pay rate.

#5tep 1: Assign initial values to the variables which we need for this program .
Explanations M~ PREVIOUS NEXT
rate = 8.25 ()

1
2

3 standard = 40 @

Sisscepl2 Tnsadichelnumbeniofihoonsithacichaliaployeslnasinocked We need to read and process the input value that the user enters. To
5 text = input("Enter the number of hours that the employee has worked: ") ® read the input value from the user, we need to use the inpul()
5 hours = int(text) (2) function. This statement prompts the user to enter the number of
7 #Step 3: Pay overtime at "time and a half" of the regular rate of pay hours that the employee has worked, then reads the text entered by
o 16 hours > standara : () the user and places it in the variable text. The value that will be
9 wage = standard * rate + (hours - standard) * (rate * 1.5)@ stored in variable text is a string.

10 else : @

1 wage = hours * rate (2)

12 #Step 4: Print the calculated wage

print("Wage:", wage) ®

FIGURE 3.4: Smart Content Modal with a programming exercise in

Python. In this figure, the student is asked to explain the different

lines in a given program, broked down into smaller steps and com-

pare them with the standard explanations that the system expects to
be appropriate at those lines

10

Chapter 4

Discussion & Future Work

With our implementation, we show that it is possible to integrate and augment e-
textbooks with multiple SLCs. They are available as non-intrusive sidebars for the
reader to explore material relevant, without losing focus on the main text content of
the intelligent textbook. Dynamic SLC recommendations provided at different lev-
els of granularity by relevance (given section, chapter, page or paragraph) is our next
step to explore. Determining the most appropriate granularity and difficulty level
of the programming exercises in the smart content to act as useful recommenda-
tions that scaffold students’ learning. Further, adaptations could model the patterns
of user or student interactions with the system to fine-tune the recommended SLC,
further governed by the reader’s control on the (“human-in-the-loop”) curation of
the SLCs listed with rating and ranking features. SLC of other types could take
no inputs from the user, but present as passive recommendations in relation to the
concepts covered at a page or section. Learner-sourced approaches to recommend
questions Ni et al., 2021; Huang et al., 2020 is another interesting research opportu-
nity to explore and address the challenge of dynamic content allocation. Questions
that are most relevant to a page, section or chapter could be dynamically curated
in the side panel. The learner-sourced SLC could be generated by peers taking the
course or students who took the course. This material could be rated and ranked
by the current users to improve the recommendations provided. Reusing resources
in this manner could potentially open the doors to exemplary SLCs integrated into
intelligent textbooks for other learner content delivery systems. These opportunities
can be realized by overcoming a few challenges discussed below.

4.0.1 Challenges

In our implementation towards integrating multiple SLCs, we find that allocating
the right content could be a potential challenge. While it is possible to support per-
sonalized, integrable and adaptive SLCs for specific chapters or sections within in-
telligent textbooks on different topics, it is a challenge to make it scale up to different
topics and courses in these system implementations. Another challenge is that for
instructors teaching these programming courses, as discussed by Chau et. al. Chau,
Barria-Pineda, and Brusilovsky, 2018, the content allocation for all the intended con-
cepts in the course may not be possible and this makes this implementation poten-
tially static. Further, a scope to explore would be smart content allocation that adapts
to the teachers” understanding of the course topics Sosnovsky and Brusilovsky, 2015
as another challenge. It would especially be interesting to include a smart content
that is modeled by the topic and the knowledge levels of the course instructors.
Hence, the presented content would then augment their understanding of the topics
covered in the course. All these three challenges consider a “human-in-the-loop”
implementation. A final challenge is to integrate an SLC to augment the content

Chapter 4. Discussion & Future Work 11

presented in the digital textbook as a recommender system that involves less human
intervention to improve its personalization. An example to support such an inte-
gration would be recommendations to external web resources like Wikipedia with
additional information is not native to the content available within the text, but aug-
ments the information provided without much scope for the user to rate or rank
these recommendations to match their personal choices. An implementation in this
direction Rahdari et al., 2020 sets possible paths for us to explore as augmented SLC
in our future work and as a means to overcome this challenge. In the light of under-
standing and overcoming these challenges, we will be able to explore and support
more types of dynamic SLCs in our future iterations of intelligent textbooks.

4.1 Conclusions

In this work, we present an interesting perspective on integrating smart learning
content (SLCs) in intelligent textbooks as the delivery platform. Along with the pos-
sibility of supporting multiple SLCs, they could be native and external resources
using open, proprietary protocols (levels 3 and 4 SLCs) for retrieval. This meets our
goal that we set forth of building an infrastructure that could turn any ordinary e-
textbook into an intelligent, adaptive and interactive textbook. Although not our
goal to begin with, since our implementation uses the resources that are not native,
but external to the intelligent textbooks framework (we benefit from using the SLC
repositories developed by others), we present a system that is flexible, suggesting
that the learning content delivery platform can be interchangeable (level 5). The
seamless integration of the SLCs into intelligent textbooks, allows for the possibility
of interactive and engaging learning content delivery platforms for curious learners.
In the long term, this allows for better adoption of enhanced intelligent e-textbooks.
Finally, we discuss the challenges encountered while making scalable integration of
SLCs into the deliver platform. We discuss existing solutions that could allow us
to overcome these challenges. Technical advancements in the not so distant future
could help address these challenges with efficient protocols for seamless augmenta-
tion of smart learning content without breaking the structure of the e-textbooks.

Acknowledgements

We acknowledge the help offered by our colleagues in the implementation of parser
and smart learning content allocation in our intelligent textbook implementation.
Also, the work of one of the authors was funded by CONICYT PFCHA / Doctorado
Becas Chile/ 2018 - 72190680.

12

Bibliography

Albo, Laia et al. (2022). “Knowledge-Based Design Analytics for Authoring Courses
with Smart Learning Content”. In: International Journal of Artificial Intelligence in
Education 32, pp. 4-27.

Barria-Pineda, Jordan, Kamil Akhuseyinoglu, and Peter Brusilovsky (2019). “Learn-
ing Content Integration into an Electronic Textbook for Introductory Program-
ming”. In.

Brusilovsky, Peter (2001). “WebEx: Learning from Examples in a Programming Course”.
In: WebNet.

Brusilovsky, Peter, Elmar Schwarz, and Gerhard Weber (1997). “Electronic textbooks
on WWW: from static hypertext to interactivity and adaptivity”. In: Web Based
Instruction. Ed. by Badrul H. Khan. Englewood Cliffs, New Jersey: Educational
Technology Publications, pp. 255-261.

Brusilovsky, Peter et al. (2014). “Increasing Adoption of Smart Learning Content
for Computer Science Education”. In: Proceedings of the Working Group Reports
of the 2014 on Innovation amp; Technology in Computer Science Education Confer-
ence. ITICSE-WGR "14. Uppsala, Sweden: Association for Computing Machinery,
31-57. 1SBN: 9781450334068. DOI: 10.1145/2713609.2713611.

Brusilovsky, Peter et al. (2018). “An integrated practice system for learning program-
ming in Python: design and evaluation”. In: Research and Practice in Technology
Enhanced Learning 13.

Chacon, Isaac Alpizar et al. (2021). “Integrating Textbooks with Smart Interactive
Content for Learning Programming”. In: iTextbooks@AIED.

Chau, Hung, Jordan Barria-Pineda, and Peter Brusilovsky (2018). “Learning Content
Recommender System for Instructors of Programming Courses”. In: AIED.

Dresscher, Lucas, Isaac Alpizar Chacon, and Sergey A. Sosnovsky (2021). “Genera-
tion of Assessment Questions from Textbooks Enriched with Knowledge Mod-
els”. In: iTextbooks@AIED.

Ericson, Barbara J., Mark J. Guzdial, and Briana B. Morrison (2015). “Analysis of
Interactive Features Designed to Enhance Learning in an Ebook”. In: Proceedings
of the 11th International Conference on International Computing Education Research.
ACM. DOI: 10 . 1145 /2787622 . 2787731. URL: https: //doi . org/10.1145Y%
2F2787622.2787731.

Ericson, Barbara J. and Bradley N. Miller (2020). “Runestone: A Platform for Free,
On-Line, and Interactive Ebooks”. In: Proceedings of the 51st ACM Technical Sym-
posium on Computer Science Education. New York, NY, USA: Association for Com-
puting Machinery, 1012-1018. 1SBN: 9781450367936. URL: https://doi.org/10.
1145/3328778.3366950.

Foubh, Eric et al. (2014). “Design and architecture of an interactive eTextbook — The
OpenDSA system”. In: Science of Computer Programming 88, pp. 22—40. ISSN: 0167-
6423. DOIL: https://doi.org/10.1016/j.scico.2013.11.040.

Hosseini, Roya et al. (2020). “Improving Engagement in Program Construction Ex-
amples for Learning Python Programming”. In: International Journal of Artificial
Intelligence in Education 30, pp. 299-336.

https://doi.org/10.1145/2713609.2713611
https://doi.org/10.1145/2787622.2787731
https://doi.org/10.1145%2F2787622.2787731
https://doi.org/10.1145%2F2787622.2787731
https://doi.org/10.1145/3328778.3366950
https://doi.org/10.1145/3328778.3366950
https://doi.org/https://doi.org/10.1016/j.scico.2013.11.040

Bibliography 13

Hsiao, Than, Sergey A. Sosnovsky, and Peter Brusilovsky (2010). “Guiding students
to the right questions: adaptive navigation support in an E-Learning system for
Java programming”. In: . Comput. Assist. Learn. 26, pp. 270-283.

Huang, Alice et al. (2020). “Selecting Student-Authored Questions for Summative
Assessments”. In: bioRxiv.

Thantola, Petri and Ville Karavirta (2011). “Two-Dimensional Parson’s Puzzles: The
Concept, Tools, and First Observations”. In: Journal of Information Technology Edu-
cation 10, 119-132. URL: https://jite.org/documents/Vol10/JITEv10IIPp119-
132Thantola944.pdf.

Karavirta, Ville, Petri Thantola, and Teemu Koskinen (2013). “Service-Oriented Ap-
proach to Improve Interoperability of E-Learning Systems”. In: 2013 IEEE 13th
International Conference on Advanced Learning Technologies, pp. 341-345. DOI: 10.
1109/ICALT.2013.105.

Koc-Januchta, Marta Maria et al. (2020). “Engaging With Biology by Asking Ques-
tions: Investigating Students’ Interaction and Learning With an Artificial Intelligence-
Enriched Textbook”. In: Journal of Educational Computing Research 58, pp. 1190 —
1224.

Ni, Lin et al. (2021). “DeepQR: Neural-based Quality Ratings for Learnersourced
Multiple-Choice Questions”. In: ArXiv abs/2111.10058.

Pollari-Malmi, Kerttu et al. (2017). “On the Value of Using an Interactive Electronic
Textbook in an Introductory Programming Course”. In: Proceedings of the 17th Koli
Calling International Conference on Computing Education Research. Koli Calling "17.
Koli, Finland: Association for Computing Machinery, 168-172. 1SBN: 9781450353014.
DOI: 10.1145/3141880.3141890. URL: https://doi.org/10.1145/3141880.
3141890.

Rahdari, Behnam et al. (2020). “Knowledge-Driven Wikipedia Article Recommenda-
tion for Electronic Textbooks”. In: EC-TEL.

Ritter, Steven et al. (2019). “What’s a Textbook? Envisioning the 21st Century K-12
Text”. In: iTextbooks@AIED.

Rofling, Guido et al. (2006). “Merging Interactive Visualizations with Hypertext-
books and Course Management”. In: SIGCSE Bull. 38.4, pp. 166-181. 1SSN: 0097-
8418. DOI: 10.1145/1189136.1189184.

Sirkid, Teemu (2018). “Jsvee Kelmu: Creating and tailoring program animations
for computing education”. In: Journal of Software: Evolution and Process 30.2. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1924.

Sosnovsky, Sergey A. and Peter Brusilovsky (2015). “Evaluation of topic-based adap-
tation and student modeling in QuizGuide”. In: User Modeling and User-Adapted
Interaction 25, pp. 371-424.

Vihavainen, Arto et al. (2013). “Scaffolding Students” Learning Using Test My Code”.
In: Proceedings of the 18th ACM Conference on Innovation and Technology in Computer
Science Education. ITICSE "13. Canterbury, England, UK: Association for Comput-
ing Machinery, 117-122. 1SBN: 9781450320788. DOI: 10.1145/2462476.2462501.

Walker, Erin et al. (2017). “EMBRACE: Applying cognitive tutor principles to read-
ing comprehension”. In: International Conference on Artificial Intelligence in Educa-
tion. Springer, pp. 578-581.

Walker, Erin et al. (2018). “Balancing student needs and learning theory in a social in-
teractive postdigital textbook”. In: End-user considerations in educational technology
design. IGI Global, pp. 141-159.

Weber, Gerhard and Peter Brusilovsky (2001). “ELM-ART: An adaptive versatile sys-
tem for Web-based instruction”. In: International Journal of Artificial Intelligence in
Education 12.4, pp. 351-384.

https://jite.org/documents/Vol10/JITEv10IIPp119-132Ihantola944.pdf
https://jite.org/documents/Vol10/JITEv10IIPp119-132Ihantola944.pdf
https://doi.org/10.1109/ICALT.2013.105
https://doi.org/10.1109/ICALT.2013.105
https://doi.org/10.1145/3141880.3141890
https://doi.org/10.1145/3141880.3141890
https://doi.org/10.1145/3141880.3141890
https://doi.org/10.1145/1189136.1189184
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1924
https://doi.org/10.1145/2462476.2462501

Bibliography 14

Xu, Ying and Mark Warschauer (2020). “Exploring Young Children’s Engagement in
Joint Reading with a Conversational Agent”. In: Proceedings of the Interaction De-
sign and Children Conference. IDC "20. London, United Kingdom: Association for
Computing Machinery, 216-228. 1ISBN: 9781450379816. DOI: 10 . 1145/3392063 .
3394417.

Zingaro, Daniel et al. (2013). “Facilitating Code-Writing in PI Classes”. In: Proceeding
of the 44th ACM Technical Symposium on Computer Science Education. SIGCSE "13.
Denver, Colorado, USA: Association for Computing Machinery, 585-590. ISBN:
9781450318686.

https://doi.org/10.1145/3392063.3394417
https://doi.org/10.1145/3392063.3394417

	Abstract
	Introduction
	Related Work
	Augmenting Reusable Smart Learning Content
	Proof-of-Concept Implementations
	A Python Programming Textbook with Smart Content

	Discussion & Future Work
	Challenges
	Conclusions
	Acknowledgements

	Bibliography

