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Abstract: Explanatory program visualization is a name for program visualization ex- 
tended with natural language explanations. Explanatory visualization can seriously in- 
crease students' understanding of program behavior. This paper gives the rationale 
and background for explanatory visualization and introduces our work on using ex- 
planatory visualization in educational programming environments. In particular, we 
present ftrst experimental results on using explanatory visualization and provide a 
free-grained description of the implementation of adaptive explanatory visualization 
in our ITEM/IP-II system. This system employs student model to adapt the visualiza- 
tion to the student knowledge level. 

1 Introduction 

Intelligent programming environments for novices (Brusilovsky, 1993a) attempt to 
bridge the gap between Intelligent Tutoring Systems for programming and novice 
programming environments. An Educational Programming Environment (EPE) is a 
set of tools supporting the student in the process of learning introductory program- 
ming. Some of these tools support students' activities in program design and debug- 
ging, other tools support teachers' activities such as presenting new material or 
evaluating students' programs. Good examples of tools provided by an EPE are pro- 
gram visualization tools and intelligent program debuggers. A program visualizer is 
a tool that provides the student with an animated representation of program execu- 
tion and makes some of the hidden aspects of program behavior visible to the pro- 
grammer. A program visualization tool is an important component of a learning en- 
vironment for programming. Such a tool enables the student to build a clear mental 
model of virtual (notional) machine behavior (du B oulay et al, 1981), as well as un- 
derstand the semantics of programming language constructs and the behavior of al- 
gorithms. There are a number of systems and environments that employ program 
visualization (see McGlinn, Britt & Woolard, 1989; Sanders & Gopal, 1991 for a 
good review and reference list). Traditionally program visualization is comprised of 
flow of control visualization and data structure visualizations on different levels. The 
traditional role of program visualization is to enhance the understanding of the se- 
mantics of programming constructs and algorithms and to support learning through 
exploratory programming. 
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For a number of years we have been working on EPE problems. In 1985 we de- 
signed the ITEM/IP environment (Brusilovsky, 1992) to support an introductory 
programming course for first year students at Moscow University. The course was 
based upon the visual, educational mini-language Turingal (Brusilovsky, 1991), 
which is a combination of a Turing machine language with Pascal control structures. 

ITEM/IP consists of several modules that support student and teacher activities. 
Two important modules are the visual interpreter for Tufingal and the evaluation 
module. The interpreter produces flow of control and action visualizations: each 
statement is marked before being executed and the machine head moves along the 
tape and replaces symbols as the corresponding statement is executed. The inter- 
preter also produces some visual effects while evaluating conditions in "while" and 
"'if' statements. The evaluation module checks the student's solution of a program- 
ming problem. The module applies a simple, but effective test-based method. Each 
programming problem presented to the student has a prestored model solution and a 
set of input tests. The evaluation module compares the results produced by the model 
solution to the results produced by the student solution for each test. If the results 
differ for one of the tests, the test is called "faulty" and the student program is con- 
sidered to be wrong in some way, otherwise it is considered to be correct. 

The visualization tool was widely used by the tutoring module in the explanation 
and debugging stage. First, visual examples were used to explain the semantics of 
programming language constructs to the student. Second, the system provided de- 
bugging assistance by visually executing the student program on the "faulty" test 
found by the evaluation module, thus visually demonstrating student errors. Our first 
experience with ITEM/IP in 1985 showed that the use of the visual interpreter for 
explanation and debugging significantly increased students' tmderstanding of both 
language semantics and of their own bugs. However, more experience with ITEM/IP 
in 1986-1987 showed that program visualization is sometimes a less effective tool 
than it is expected to be. 

We have revealed an interesting phenomenon - quite often weak students (and 
sometimes average students) simply cannot make sense of the visualizations. They 
look at the visualized piece of code but "'do not understand" what is happening on 
the screen. For example, if an important loop in a buggy program is always skipped 
due to an incorrectly written condition (the cause of the error), the students some- 
times cannot understand why the flow of control pointer passes this loop? They will 
run the program again and again on the same faulty test with no changes. The 
interview showed that they really do not understand why the loop is passed. At the 
same time, most of the students can answer questions about the semantics of the loop 
correctly. Thus they have good general knowledge, but often fail to apply it to a spe- 
cific example. 

Our "'first aid" to such students was to explain in words how the given construct 
behaves in the given example. For example, the following explanation can be pre- 
sented by an assistant when checking the condition of a "while A" statement: "'The 
condition "A' of the while statement is false because the tortoise stands on letter "B' 
which is not "A'." On the next step of the execution the assistant might say: "' Since 
the condition of the while statement is false, we jump to the statement after 
'endwhile', and do not execute the body of the loop." Such natural language expla- 
nations complement regular visualization and appear to provide very effective in- 
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structional help. Our assistants were often working in exactly this way, as 
"'explainers" of what the program is doing, often repeating the same explanations. 

The above experience motivated our current research and development work on 
explanations in program visualization. The preliminary results of this work are pre- 
sented in this paper. We provide a brief summary of research on example explana- 
tion in programming, then we introduce our work on (what we call) explanatory 
visualization in a new ITEM/IP system and present the first experimental results 
which support our hypotheses and design decisions. The second part of the paper is 
devoted to a fine-grained description of the implementation of explanatory visualiza- 
tion in the ITEM/IP-II system. 

Background: Example explanations in teaching and learning programming. 
The most relevant research on using explanations of examples in teaching pro- 
gramming was performed by the group of Peter Pirolli. Their ideas were based on 
previous research into the role of examples in programming (Pirolli & Anderson 
1989) and on findings about the role of self-explanations in the domain of physics 
problem solving (Chi at al, 1989). Investigating student self-explanation strategies in 
the programming domain (PiroUi & Bielaczyc, 1989), Pirolli, et al. found that the 
self-explanations students made while studying instructional materials correlated 
with the corresponding problem solving performance of those students. Students 
showing good performance not only generated more self-explanations than students 
showing poor performance, their explanations were qualitatively different. In par- 
ticular, the following two effective self-explanation strategies were identified: con- 
necting ideas in the texts with their instantiations in the examples (and vice-versa), 
and determining the meaning of LISP code presented in the examples. Good per- 
formers generated almost an order of magnitude more explanations connecting por- 
tions of the example solution to concepts introduced in the text. 

Such findings can be used to produce better learning support systems. The first 
idea is to make a meta-cognitive tool that supports self-explanations by providing 
students with the ability to make written comments about both provided examples 
and their own programs. Unfortunately, such tools that have been designed recently 
(Recker & Pirolli, 1992; Linn, 1992) do not appear to be vel3~ effective. Many stu- 
dents consider such commenting activity as a waste of time. 

From our point of view, the educational role of self-explanations is. to provide a 
way for the student to relate their general knowledge about a subject with situational 
knowledge represented in a particular example. Using Clancey's terms (1987), self- 
explanations establish the links between general models and situation-specific mod- 
els of an example. There is, however, another way - the instructional materials pro- 
vided by the system can be extended with special example explanations that connect 
the problem examples with general knowledge. System-provided explanations are 
not as effective as self-explanations, but they can be easily provided and are very 
beneficial for the students, as was shown by Recker and Pirolli (1992). They de- 
signed a hypermedia-based system that contained a set of examples. These examples 
were annotated with explanatory elaborations (accessed via mouse clicks), that ex- 
plained how programming principles were implemented within a concrete model. 
The idea of representing examples augmented with explorable explanations has also 
been implemented in other systems, such as Molehill (Singley & Carrol, 1992) and 
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Explainer (Redmiles, 1993). These tools were also effective, but their implementa- 
tion was inspired more by experience of the authors than by cognitive considerations. 

The work of Pirolli and his group gives more support to our hypotheses about our 
problems with understanding visualization. Weak students often cannot understand 
the visualization, because they do not relate the behavior of a particular construct in 
an example with their general knowledge about the semantics of the construct. An 
assistant's explanations bridge the gap between the example and general knowledge 
and enable the student to understand the example. Stronger students, or the students 
with more experience, have well established connections between general knowledge 
and situational knowledge that control the interpretation of examples, so they require 
example explanations much less frequently. 

Interestingly, a similar phenomenon was reported in a related domain - algorithm 
visualization (Stasko, Badre & Lewis, 1993). It appears that novices and weak stu- 
dents benefit much less from algorithm visualization than was expected. Based on 
our experience and the ideas of Pirolli, we can explain this phenomenon: novices 
didn't relate their general knowledge of algorithms with the animation of a particular 
case on the screen. We think specific system-provided explanations bridging this gap 
can be of significant help here. 

2 Explanatory Visualization: First Experience 

Once our experience has shown that example explanations are helpful to resolve stu- 
dent problems with understanding visualization, the next step was to design a tool 
that can generate such explanations for the student. We have designed such a tool as 
a component of our recent ITEM/IP-II system that was designed to support a part of 
"'the computer literacy" course for 14--16 year-old students of Moscow schools. 
ITEM/IP-II is similar in its architecture to ITEM/IP and uses a similar mini-lan- 
guage called Tortoise. 

One of the new features of ITEM/IP-II is what we call "explanatory 
visualization". In addition to standard visualizations, the visual interpreter uses a 
special window to explain all the steps of the executed program in the same way that 
human assistants sometimes do when working with ITEM/IP. Note that our 
explanatory visualization tool differs from the tools suggested by Pirolli and other 
authors. First, all existing example explanation tools are applied to examples of 
program design, while our tool deals with examples of program behavior. Second, all 
other tools use static explanations of examples, provided by a course designer 
beforehand; our tool is able to generate explanations for any given example, either 
contained in the course, or suggested by the student. In this sense, our system is 
similar to the SCENT (McCalla, Greer, et al, 1992) program understanding system, 
which can explain the role of particular lines in a recursive student program in terms 
of standard recursion techniques. An ability to generate explanations requires expert 
knowledge to be represented in the tool - in our case, knowledge about language 
semantics. 

Last year we completed the first classroom study of the ITEM/IP-II system. One 
of our goals was to measure the role of explanatory visualization in program debug- 
ging. The subjects in this study, 30 students from Moscow Lyceum of Information 
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Technologies, were divided into two groups. The students were 15--16 years old and 
most of them had never had any programming experience. The subjects were pre- 
sented with a course of introductory programming based on the Tortoise mini-lan- 
guage. A course contains 14 lessons of 40 minutes each. Six lessons were spent pre- 
senting new material and solving some problems in a blackboard classroom. Each of 
these lessons was followed by a lesson in the computer classroom where the subjects 
used the ITEM/IP-II system to solve a sequence of related problems. The students 
used the structure editor and the visual interpreter to prepare solutions and called the 
evaluation module to check a solution when they thought it was ready. The solution 
was checked on a sequence of tests. If the solution appeared to be correct, then the 
student was presented with the next problem. Otherwise the evaluation module de- 
termined the "'faulty" test and beeped to call one of the assistants to the student's 
computer for a short " interview". 

The role of the assistant was to test several kinds of tools aimed at helping the 
student to understand the source of the error. At the beginning of the "'interview," 
and again after trying each tool, the assistant checked to determine whether the stu- 
dent understood the location and the source of the bug. If the student claimed that 
the error was understood and explained it correctly to the assistant, then the case was 
recorded and the student was permitted to correct the program. Otherwise, the next 
tool was applied. The first tool presented to the student showed the unequal results 
produced by the student solution and by the model solution on the "faulty" test. Then 
the student was presented with a standard, computer-generated visual execution of 
his or her incorrect solution on the faulty test. Next the assistant, with the use of the 
computer, formally simulated a standard explanatory visualization, as it is imple- 
mented, and then gave an adaptive explanatory visualization. Finally, the assistant 
applied lfis or her own intelligence to explain the error until the student understood 
it. 

We utilized simulated vs. automatic explanatory visualizations because we 
wanted to obtain some feedback on our explanation methods, and because explana- 
tory visualization was not well-tested enough to be used in a real classroom. How- 
ever, all of the assistants were carefully instructed to produce standard explanatory 
visualizations as they were implemented in our system. Adaptive explanatory visu- 
aiizations were produced less formally than standard visualizations, but more for- 
mally than ad-hoc assistant explanations. We found one very interesting result of the 
experiment was that sometimes" assistant explanations" were just the same explana- 
tory visualizations given in an earlier step, but adapted to the student in two ways: 
the better the particular student's knowledge, the less detailed the explanations were, 
and at the same time, the closer the explanation was to the source of an error, the 
more detailed it was. It was about in the middle of the experiment that we formalized 
the rules of adaptive visualization and started counting it as a separate case (so the 
effect of adaptive visualization is probably even bigger than the data show). Up to six 
assistants were employed to work with each of 15 students in a group. They proc- 
essed 167 interviews. The following table presents the proportion of students that 
understood the error after the corresponding tool was applied to the "'faulty" test. 
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Table 1. The results of experiment 

Before all tools were applied 10 6.0% 
Demonstrating results 32 19.0% 

Standard visual execution 64 39.0% 
Simulated explanatory visualization 34 20.0% 

Simulated adaptive visualization 11 6.5% 
A s s i S t  e..~..l~fions ,, i 16 9.5% 

The results confirm our hypotheses that visualization is really a good tool for 
program debugging. We also found that explanatory visualization can significantly 
increase the effect of visualizations, leaving only 16% of errors uncovered, and that 
adaptive visualization provides further improvement. Measuring the role of visuali- 
zation was not the only goal of the experiment. However, we obtained encouraging 
results as well as some new ideas about how to improve the visualization. Of course, 
even formally simulated explanatory visualization is not the same as computer gen- 
erated visualization. First, human assistants cannot be as rigid as a computer, even if 
instructed. Second, simulated visualization was presented in a spoken way, i.e. in a 
different modality than the computer-generated visualization. Both aspects make 
simulated visualization more effective than computer-generated visualization. We 
plan to study the role of explanatory visualization (including adaptive visualization) 
more formally in the next studies. 

3 Adaptive Explanatory Visualization in ITEM/IP-H 

The results of the experiment gave us some idea about how to improve explanatory 
visualization in ITEM/IP. The current version of ITEM/IP-II includes not just 
explanatory visualization, but also adaptive explanatory visualization. At present we 
have implemented automatic adaptation of generated explanations for various 
student knowledge levels. This kind of adaptation was investigated by us previously 
(Brusilovsky, 1992a) for the case of regular visualizations. With adaptive program 
visualization the level of detail given in the visualization of a programming construct 
is made dependent on the differences in the students' knowledge about this construct. 
Adaptive visualization appears to be a very useful feature. For explanatory 
visualization adaptation is even more important. Explanatory visualization produces 
large amounts of text, so students may get lost in this stream of explanations and 
miss the important piece of the explanation. 

There are 13 constructs in the Tortoise mini-language having from 1 to 4 degrees 
of visualization. The current state of visualization is determined by the visualization 
status vector which consists of 13 integers. This vector is formed using the central 
student model in the system. Each component of the vector determines the level of 
visualization for one of the constructs (level 1 - concept is new or poorly studied - 
maximum degree of visualization; level 2 - concept is understood better - 
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visualization is less detailed; ...; 4 - concept is understood well enough and does not 
need to be visualized). For each construct a template with stop points was developed. 
For example, consider the operator "IF < condition > THEN - ELSE - END_IF". 
This operator has five potential stops (figure 1) for stepwise execution mode. At each 
stop the corresponding part of the operator is pointed out and an appropriate message 
is displayed in the explanation window. 

(a) 

Col) 
IF < condition > .. THEN 

[ First block of operators I 
ELSE 

(b2) 
[ - -  Second block of operators [ 

(c) 
E N D I F  

[- Next operator in program ] 

Figure 1. A construct template with visualization stops 

Examples of comments for several degrees of visualization are given bellow. 
l-st degree of visualization: 
(a) - Operator "IF < condition > THEN - ELSE - END IF" consists of one 

condition and two branches - "THEN - ELSE" and "ELSE - END_IF". 
First we shall check the condition: true or false. (Here a visualization of 
checking the condition can follow). 

(bl(b2)) - Condition is true (false)- control is passed to the "THEN - ELSE" 
("ELSE - END_IF") block of operators. 

(c1(c2)) - The "THEN - ELSE" CELSE - END IF") block of operators has been 
executed - go to the operator following END_IF. 

2-nd degree of visualization: 
(a) - Operator "IF". Checking if the condition is trae or false. (Here a 

visualization of checking the condition can follow). 
(b10o2)) - Condition is true (false) - control is passed to the THEN (ELSE) block 

of operators. 
No visualization and no stop at points (cl, c2). 

3-rd degree of visualization: 
(a) - just stop without any explanation message 
(b10o2)) - Condition is true (false) - control is passed to the THEN (ELSE) block 

of operators. 
No visualization and no stop at points (cl, c2). 
4-th degree qf visualization: 
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operator "IF" is well understood, we shall not explain it, however the silent stop is 
kept at (a). 

All text displayed in the visualization window is stored in a file in an easily 
modifiable format (figure 2). This was specifically done to provide the teacher with 
the ability to represent pedagogical knowledge about the required behavior of the 
visualizations. An example of the explanation message representation is given in 
figure 3. The role of the teacher is important for the explanatory visualization 
mechanism. Actually, it's the knowledge and the experience of the teacher that 
should determine when and how to use explanatory visualization. The system 
provides the teacher with a great deal of control over the use of visualization. The 
teacher can change the vector of parameters of visnaliTation, the number of visuali- 
zation degrees for any concept, the mtmber of break points (stops), and the content of 
all visualization messages for every degree of visualization. 

@<key_i 1 > <degree_of visualization_j 1 > <break__point_k 1 > 

Part of the visualization text 
for il-th operator using 
j 1-th degree of visualization 

@<key_i2> <degree of visualization_j2> <break._point__k2> 

Figure 2. Representation of teacher's knowledge about visualization 

@if2 1 
Operator "IF". Checking the condition true or false. 
@if22 
Condition is true (false) - control is passed 
to the THEN (ELSE) block of operators. 
@tr 3 
N I L  . . . . .  

Figure 3. An example of explanations for operator "IF" (translated from Russian). 
If the word "NIL" is stored, instead of text, then there is no stop for the 
given degree of visualization at this point. 

4 Student Modeling for A d a p t i v e - E x p l a n a t o r y  Visualization 

The vector of visualization parameters is constructed as a dynamic projection of the 
central student model. According to our general approach to student modeling 
(Brusilovsky, 1993b), the central student model keeps the history of student interac- 
tions with system components, with the domain model concepts clearly indicated. 
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For the case of the visualization module, the central student model stores the number 
of its executions for each level of visualization separately for each construct (table 2). 

Table  2. Individual parameters for student modeling 

I i iiiiiii Niiiilliiiiiiiii ilil !iliiil ii iiiN ii NNiitI!i Nii!ilii !  ilN!iiilN!iiiiiiii 

repetit ions ~ ,,_ 
weight  _ al a2 . a3 

X~, X2, X3 .... - how many times a construct was executed in different conditions; 
a~, az, a3 .... - weights to calculate the cumulative amount of visualization. 
For example: a~ = 0.1, a; = 1, a3 = 5, a4 = 4, as = 3, a6 = 3, a7 = 2. 

When projecting the central student model onto the vector of visualization pa- 
rameters, first the cumulative amount Y of the visualization the student has received 
for a construct is calculated. 

Y = al,X~ + a2,X2 + a3,X3 + ... + aeX~; 

The weights (al,  a2 . . . .  ) are specific to each student (table 2). They are stored in a 
file, and may be changed by the teacher. The visualization parameters for a construct 
are determined from Y using thresholds R1, R2, R3 and R4 for the 1-st, 2-rid, 3-rd, 
and 4-th degrees. If Y falls within segment [Ri4, Ri], then the i-th degree of visuali- 
zation is assigned. 

Thus the historic content of the central student model is currently projected into 
the vector of visualization parameters and used to control the visualization granular- 
ity. If the student is not satisfied with the degree of visualization, the vector of visu- 
alization parameters may be modified by the student or the teacher for better com- 
prehension. More details about student modeling for adaptive visualization cart be 
found in (Brusilovsky, 1992a, 1993b). 

5 C o n c l u s i o n  

We have presented some ideas about explanatory program visualization. We describe 
the technique of adaptive explanatory visualization developed for a mini-language 
and provide some experimental results for its effectiveness. We consider two direc- 
tions of further work on explanatol~" visualization. First, a more formal study should 
be conducted to careftdly measure the contributions of both adaptive and standard 
explanatory visualization. Second, a similar approach can be used to support other 
parts of teaching programming. A particularly interesting area to support is the pro- 
duction of adaptive explanatory visualization at the level of algorithms. We think 
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that such an explanatory visualization can solve some of the problems with algo- 
rithrn visualization reported by Stasko, Badre and Lewis (1993). Eisenstadt et al. 
(1992) also suggest some good ideas regarding the application of knowledge about 
plans and algorithms to dynamic algorithm visualization. In addition, some of the 
existing approaches to program understanding and plan recognition can be used to 
evaluate the student knowledge about plans and to update the student model. 
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