AHA! meets|nterbook, and more...

Paul De Bra and Tomislav Santic Peter Brusilovsky
Department of Computing Science School of Information Sciences
Eindhoven University of Technology (TU/e) University of Pittsburgh
PO Box 513, Eindhoven 135 North Bellefield Avenue
The Netherlands Pittsburgh, PA 15260
debra@win.tue.nl, tomi @santic.nl peterb@mail.sis.pitt.edu

Abstract: The AHA! system (De Bra & Calvi, 1998, De Bra et al, 2002) has been repeatedly
extended over the past few years, focusing on adaptation flexibility. This has resulted in a powerful
adaptation engine, but little support for creating adaptive applications. AHA! provides tools for
defining the conceptua structure and the adaptation of an application, but leaves the presentation
and additional support tools up to the author of that application. Interbook (Brusilovsky et al, 1998)
on the other hand is a simple environment for creating and serving adaptive textbooks, with arich
user interface characterized by the use of multiple windows and frames. Authors write an annotated
Microsoft Word file, which is translated to a series of files used by Interbook. This paper presents
an extension of AHA! that enables a high-level specification of the presentation (layout) of an
AHA! application. We illustrate this extension through a powerful demonstrator: an Interbook to
AHA! compiler. The source format for Interbook is translated to AHA! with the new Layout
model. The dynamic structures of the Layout model are easily extendible and give author the power
to adapt the user interface to the nature of the application. AHA! can thus “emulate” not just
Interbook but other adaptive environments as well.

I ntroduction

Numerous Web-based adaptive hypermedia systems have been developed within the last 10 years
(Grigoriadou et al, 2001, Henze & Nejdl, 2001, Melis et a, 2001, Weber & Brusilovsky, 2001). These systems all
have a different “look and feel” and offer different ways of adaptation. Y et, behind this diversity an expert can find a
reasonably limited set of methods and techniques (Brusilovsky, 1996, Brusilovsky, 2001). A major motivation
behind the AHA! project (De Bra& Calvi, 1998, De Bra et al, 2002) was developing a flexible adaptive hypermedia
architecture that can be used for implementing a wide variety of adaptation methods. AHA! was created as an
“assembly language” of adaptive hypermedia in the sense that any higher-level adaptation paradigm can be
expressed in terms of AHA! and simulated by the AHA! engine. The most recent AHA! version (De Bra et al.,
2002) was shown to be very powerful in this respect. The reasonably advanced adaptation paradigm implemented in
the InterBook system (Brusilovsky et al, 1998) can be simulated by AHA! (De Bra et a, 2002, Wu et al, 2001).
However, recreating the layout/presentation offered by InterBook would be very laborious, as until now AHA! did
not offer any support for multi-frame presentations. (Multi-frame applications are possible, as demonstrated in a
course offered at the TU/e, but the synchronization between the frames has to be programmed by the author, using
JavaScript.) The AHA! engine responds to an HTTP (get) request by returning one HTML document to the browser.
When using multiple frames, the requests to load HTML documents in the different frames are treated by AHA! as
completely independent requests. In other words, the AHA! engine does not “know” that multiple frames exist in the
application. In contrast, many modern adaptive Web-based hypermedia systems use rich multi-frame or even muilti-
window interfaces. InterBook is a good example here. It uses several multi-frame windows (textbook, glossary, and
table of contents). An example of InterBook’s Textbook and Glossary windows is provided in (Fig. 1).

The goa of the project introduced in this paper was to resolve the problem by developing a flexible
interface model for the AHA! engine. Following the idea of AHA! that can be used to describe a variety of
adaptation functionalities, we wanted to develop an interface model that is used to describe a variety of adaptive
Web-based hypermedia interfaces. The primary goal of our project was reasonably modest: we wanted to extend the
AHA! engine to enable it to simulate the InterBook adaptation mechanism and its multi-frame interface. In doing so,
we wanted to avoid narrow-minded solutions and hacks (like the Javascript hack previously used with AHAL),
developing a reasonably universal approach that can be used to implement the InterBook interface along with many
other interfaces. This paper presents the first results of our work.

To introduce the background for our work, we start with a brief introduction of the InterBook and AHA!
interfaces. After that, we present our Layout Model that extends AHA! and demonstrate how it can be used to
simulate the InterBook interfacein AHA!.

TheInterBook Interface Paradigm

InterBook has two main kinds of windows - a Textbook window, left on (Fig. 1), and a Glossary Window,
right on (Fig. 1). These windows correspond to two major kinds of information items supported by InterBook - a
book page and a domain knowledge concept. Each window in InterBook can include multiple links to concepts and
pages. A click on any page link causes the linked page to be loaded in the Textbook window. A click on any concept
link causes the information about the linked concept to be loaded in the glossary Window.

Despite of its complicated interface, InterBook attempted to support a simple metaphor - one window
shows one and only one information item - i.e., a textbook window shows exactly one page of atextbook at atime.
While each of these two windows includes several frames, there are considered not as independent windows, but as
multiple views on the same concept or page. For example: the text frame (bottom left) presents the text of the page;
the navigation bar (top) presents the location of the current page among its ancestors and siblings, and the concept
bar (bottom right) presents prerequisite and outcome concepts for the current page. All four frames of the textbook
window are updated at the same time. Technically, a link to a textbook page is calling a whole page frameset to be
loaded into the textbook window. This frameset, in turn, pulls several frames associated with the requested page.
The frameset approach is simple to understand and also works well with most browsers' standard way of navigation
using back and forward buttons and history.

Metscape: ACT-R Lesson Unils SFE - Netscape: Glossary and Concepts = [4=
ACT-E Lesson Unlts Contont id 2 @ & o b 4
#Tnit |- Undevstanding Production Systems i Bak Forward Reload Home Search Guide Images
W Sect . 5 3 Glossary £
112 Prosincton Rules in ACTR ild ALL A B 9 problem testing
1L Production Rale Founat Search CDEE @procedural knowledge
o ER's Condit GHILISJ #procedural memory
i TR, Interface -
$LLACT R Action Sige % % % % # production
1.1.2 Production Rules- in ACT-R+ & Background: STOY QP:oduc.tjon parameter
A aroducti) . TITE # Production paramoters
P—tfl‘O Uct‘or;l-;alrwe n:tsrélstg;egent ofEa parhlwlar . procedural @Production Parameters Di.
contingency [5 wior. Examples mig] Daowiedse ° = :
be : Preduction.
IF the goal+ is to classify a person Ottichinie:
and he is unmarried
THEN classify him as a bachelor acticm Produetion -
condition
IF the goal iz to add two digits di and d2 rocedural Preductions are condition-aetion- rules which specify
and di+ d2 = d3) meEmery what to do in a situation.
THEH set as a subgoal-+ to write d3 in the o .
production : s)
The condition~ of a production rule (the IF part) This c"“n“m is introduced on these pages:
consists of a specification of a goal and a mumber of produstion 1.1.2 Production Rules in ACT-R
clamks+ while the action~ of a production rule (the o 113 Production Ruls Format
THEMN part) basically inwvolves the creation or @Section 1.5: Creating Declarative Structure
modifications of sorme chunks. The above isan < Production
infermal English specification of production rules.
You will learn the syntax for their precise Enowledge about this concept is required for:
specification within the ACT-R system, JSection 1.6: Writing Produstions
I @Section 2.1: English Rules
A production rule specifies an | to he taken .WM
whena | is met @ Buy Arenamanis
e e e 5] I]
= & |

Figure 1: InterBook interface.

The AHA! Interface Paradigm

AHA! was initially created to add adaptation to the course on hypermedia at the Eindhoven University of
Technology (currently available at http://wwwis.win.tue.nl/2L690/). This course predates the general availability of
frames in browsers. The course was therefore written using a single frame layout. The browser showed one course
page at atime, with adapted links and conditionally included fragments. AHA! also added an optional header (with a
progress report) and footer (with copyright statement). Header and footer were created by the author as html
fragments. Multi-frame applications are possible in AHA!. (Fig. 2) shows part of the multi-frame interface paradigm
used in a course on graphical user interfaces, also at the TU/e.

FRouwd Map TU/e Pw.\.u.:'f?nl..n_xu‘].?\‘.i!.ugw =.Ja-7.u';f..a'.a,..g;... e (ats 6 o ez 0l 14 49

op
mireduciion

segonomic et Evaluating User-Interface Design Without Users
svaluahon
TV AR ? There are geod reazons for performing evalastons watbout users (0 addfion 1o testng with users)

ofn wdkthrough
a + Users bavee anly bnuted fume bor takeng past o the desygn amd evaluahon. Thecebore, the user-oterface should be See of (tunal)

preblems wisch can be rasdy fereseen and avouded
= Evalvancn weh ocly a few urers may not reveal all problemns a large numbez of Snal end-uzers wil enpenence, becanes not al
posnbiltes of the appbeaton and user-oierface wil be Ined

Aty analie * Whie the user-ulerface 12 berg doveloped the test-users are 2l le rang the mterface. They may net encovnber ke probleasns
formal expersenced users will encovnder lajer
il %
. There are fhree popdar evabaaton bechuque s whoch e perfermed withowt sealang teit-iziers
BN shes ”
R ugers

+ rognieive wallzthrough fes technique it especialy usefial for tazk. centered desiga
augnment + nction mialysas thes technique is used to estimate the tone an expert user wil need to perfom a task usng the rhecface
TT dewel opn et

A = lenoistic ovalnamon ueng a checkleor one may catch a wade vanety of problem:, but ths technique reguires evahirers with
Jawa

' enoeledge fuzabley problems
applets

azdignment:

Alrights meerved

HLSRRORE Copemght © Fand O Pea, 1997, 1998, 1999, 2000 a
-

Figure 2: AHA! multi-frame interface.

In order to make this interface work in AHA!, every page must include the following piece of Javascript code:

<script |anguage="JavaScript">

parent.franes[0].locati on="content.xm "

</script>
The result is that when a link to a page is followed the leftmost frame is reloaded. It contains the “content” file,
which is a navigation menu in which submenus are conditionally shown, based on which page is displayed in the
rightmost frame. The access to a page and the subsequent access to the menu are treated separately by AHAL.
Whereas in Interbook following a link requests a complete frameset from the server, in AHA! following a link
requests a page or frame, but no new frameset. The AHA! engine does not “know” about a possible use of frames.

The View-Based L ayout M odel

The View-Based Layout Modd is the new way in AHA! to present concepts (pages) to the user. It was
developed to address the lack of user interface possibilities in the earlier versions of the AHA! architecture. The
Layout Model combines the strong points of InterBook’s rich user interface with the flexibility and customization
style that are typical for the AHA!-architecture. This model alows every adaptive courseware developer to adapt the
user interface to the course nature (without the need for the above mentioned Javascript hack).

To provide a high level of flexibility, the Layout Model was designed as a three-level interface model that
is based on the concepts views, viewgroups and layouts. Views are considered as atomic interface elements. Views
can be grouped in viewgroups. One or more viewgroups form alayout. These concepts are elaborated below.

Views

Views are pieces of information about the course domain. They usually represent some relevant
information about the active concept (the concept the user is viewing at the moment). A view can also represent
some static information about the course domain. Views are used as pre-fabricated building blocks to construct the
user interface for some specific course. Internally views are ssmply Java classes that generate HTML pages (frames)
using underlying AHA! data structures. To present a concept to the user the system uses a set of predefined views.
These predefined views can be customized by the author of the course to develop an interface that meets the needs
of the course. The author defines and customizes a view using an XML -based description like:

<vi ew name="v5" type="Tool boxView' title="Tool box"

backgr ound="1 Bookbl uesq. bmp" paranms="1eft space=70">
<secwnds>
<secwnd | ink="TOC" vi ewgroup="TOC" i ng="ContentBtn. bnp"/>
<secwnd | ink="G ossary" vi ewgroup="Gd ossary"
i nrg="d ossaryBtn. bmp"/ >
</ secwnds>
</ vi ew>

At the moment we have already implemented a number of relatively simple basic views. Their configuration
consists of setting the background picture, the title or changing the page margin to make the view more readable. It
is possible however to implement much more complex views that will offer much more tuning possibilities to the
author. We are considering parameters that will influence the content of the view page and not only the shape of it.

A view usually displays some information about the active concept including links to other relevant
concepts. However a view can also contain links to other views which will offer more information to the user about
the active concept. Following one of these links will result in displaying a new set of views. Views that are used
directly to represent different aspects of a concept are called primary views. Views that present some supplementary
information are called secondary views (and appear in secondary viewgroups). These views and viewgroups are not
visible until they are triggered by alink in one of the primary views. The author of the course will usually choose the
most important views as primary views and less important views as secondary views. The connection between
primary and secondary views can be specified by the author of the course in the XML view structures presented
above. In the presented example ToolboxView can trigger two secondary viewgroups:. Table of Content and
Glossary.

Viewgroups and L ayouts

As aready said views are the building blocks for constructing concept representation. Views can be
grouped in viewgroups. In HTML terms a viewgroup corresponds to an independent window and a view
corresponds to a page that can be shown in a separate browser window or in an HTML frame within a window. A
set of viewgroups forms a concept layout, which is the entire presentation of a concept. Practically, it means that
different aspects of a concept can be presented in several synchronized windows.

We assume that the system may have more than one type of concepts (pages). For example, InterBook has
a textbook page and a glossary concept that are both concepts in terms of the AHA! architecture. We also assume
that an author of an adaptive course may want different types of concepts to be presented differently (this is what
happens in InterBook). To support this possibility, our Layout Model allows an author to define several layouts.
Each concept type has to be associated with one of the layouts. Presenting concepts of the same type always in the
same way (using the same layout) contributes to the user confidence in the system and avoids confusion. Links to
the concepts of the same type are also annotated in the same way for obvious reasons.

The following XML structure is an example of a layout definition for two layouts that we use to simulate
an InterBook style user interface:

<l ayoutlist>

<l ayout name="page_c_layout" trigger="MAlI N'>
<vi ewgroup nanme="MAI N' wndOpt =" wi dt h=800, hei ght =600" >
<compound franestruct="rows=20% *" border="0">
<conmpound franestruct="col s=*, 130" border="0">
<vi ewr ef name="v1" />
<vi ew ef nane="v5" />
</ conpound>
<conmpound franestruct="col s=*, 130" >
<vi ewr ef name="v3" />
<vi ew ef nane="v2" />
</ conpound>
</ conmpound>
</ vi ewgr oup>
<vi ewgr oup
nane="TOC'" wndOpt ="resi zabl e=1, t ool bar =1, wi dt h=300, hei ght =400" >
<vi ewr ef name="v1"/>
</ vi ewgr oup>
<vi ewgr oup
nane="d ossary" secondary="true" wndQpt="wi dt h=600, hei ght =500" >
<vi ew ef nanme="v4"/>
</ vi ewgr oup>
</l ayout >
<l ayout nanme="abst_c_layout" trigger="d ossary" >
<vi ewgr oup
name="d ossary" wndOpt ="t ool bar =1, wi dt h=600, hei ght =500" >
<vi ewr ef name="v4"/>
</ vi ewgr oup>
</l ayout >

</layoutlist>
We have defined two layouts each associated with one of the two concept types that we use in AHA! at the moment:
page concepts and abstract concepts. As can be seen in the example above each layout consists of a set of

viewgroups which contain pointers to predefined views. Viewgroups use compound elements to define the place of
each of the views within the window. For each viewgroup the author of the course can also define window options
for the window in which the viewgroup is placed. The layout structure of layout ‘ page ¢ layout’ above corresponds
to the screen presented in (Fig. 3).

fcdress 8] httpeflloc host:080/aha/Get fparams concept=cal 690, dexteranchor | [ed 6o Lnks ¥ feron Antvins kgl -

0 index a

W L

L1 hyperdocument

13 hierarchies

= . v
~

TUE - Hypernews - User torni has read 33 pages and still has 169 pages to read - fzad - Background:

pages - Still has to read - Color preferences - Enowledge 21690 - Change password -

21690 - Log out
- dexter

Anchoring in the Dexter model i

The Dexter model provides a unique identifier (UID) for each component. But in order to daiecanchor
implement linkes fromsfto parts of a component it must be possible to also identify substructures dexteranchoting 4
within components. In order to preserve the boundary between the hypertest network per s2
and the content/structure within the components, this mechanistn cannot depend in any way on
knowledge about the intermal structure of (atomic) components. In the Dexter model, this is
accomplished by an indirect addressing entity, called the anchor. An anchor has two parts: an
anchor id and an archor vaiwe, The anchor value 15 an arbitrary value that specifies some
locaton, region, item, or substructure within a component. This anchor value can only be
interpreted by the applicatons respensible for handiing the content/structure of the component.
Tt is pnmihive and unrestricted from the wiewpoint of the storage layer. The anchor id 12 an
identifier which uniquely identifies the anchor within the scope of ts component. Anchors can
therefore be uniquely identified across the whole unmwerse by a cotponent ULD and an anchor
1d,

The two part compesition of an anchor is designed to provide a fixed point of reference foruse v < | >
Figure 3: InterBook style concept layout for ‘page’ concepts

This layout consists of four primary views grouped into one viewgroup, which is shown in the figure, and two
secondary views (Glossary and Table of Content) which can be triggered by the buttons in the ToolboxView (upper
right corner).

Changing the XML configuration structures will change the layout associated with a certain concept type.
The following example of an XML configuration structure uses the same views for the same concept type but

grouped in a different way:
<l ayout nane="page_c_|l ayout" trigger="MAl N'>
<vi ewgr oup nane="MAl N'
wndOpt =" st at us=1, nenubar =1, r esi zabl e=1, t ool bar =1, wi dt h=800, hei ght =600" >
<conmpound franestruct="col s=200, *" >
<compound franestruct="rows=*, 85" >
<vi ew ef name="v1" />
<vi ewr ef name="v5" />
</ conmpound>
<vi ew ef nanme="v3" />
</ conmpound>
</ vi ewgr oup>
<vi ewgr oup nane="Concept bar"
wndOpt =" st at us=1, menubar =1, r esi zabl e=1, t ool bar =1, wi dt h=300, hei ght =400" >
<vi ewr ef name="v2"/>
</ vi ewgr oup>
<vi ewgroup nane="d ossary" secondary="true"
wndOpt =" st at us=1, menubar =1, r esi zabl e=1, t ool bar =1, wi dt h=600, hei ght =500" >
<vi ewr ef name="v4"/>
</ vi ewgr oup>
</ | ayout >
The corresponding screen layout for the XML configuration structure above is shown in figure 4.
In this version of the layout associated with page concepts there are two primary viewgroups (MAIN and
Conceptbar) and one secondary viewgroup (Glossary). Viewgroup MAIN consists of three views (MainView, Table
of Content and Toolbox) and the Conceptbar viewgroup contains one view (ConceptbarView). Button ‘Glossary’ in

the Toolbox view triggers the display of the secondary viewgroup Glossary.

Ble Edt Yew Favorites TIools Help o Eie Edi Wew Favorkes % g
= N\ = z ; » i
OBa\:k b > 1% 2\. o ' Search ¢ Favorkes %‘Hcda o = | g e Maorton Arkivis G5 =
Ardress |) "ttD‘i:".ﬁU'ZO‘hD‘.‘l‘iWUWth‘IG.G-UD\Yﬂsi wccﬂ=ﬁ6§j.tvur o) e E‘} Go Links * Neetor anetines B -
¥ Background:
D index TUE - Hypernews - User torn has read 34 pages and shll haz 168 pages to read - foad
1 pages - Still has to read - Color preferences - Enowledge 20690 - Change password - History
e ZLES0 - Log our
8] hyperdocument Outcome:
W pierarchies
U anady Guided Tours o
2 tour idedtouss ¥
Jitg . . } . . . Euidedioute
R Erowsing through a hyperdocument may easily lead to disorientation. When reading about
s a certain topic you would ke to follow links that are relevant to that topic only. Also,
1 adaptive when reading a hyperdecument more bkee a book, you would bke to be able to find a
B compactness Togical' arder mowhich to wiew the nodes.
1 defindhon &] % J L acal intranet
o T The "trails*, suggested by Bush, can be viewed as some kind of "superlink”, connecting a
hustory whele series of nedes, rather than only two nodes. As long as you stay on such a guided

tour, you can simply click on a "next node” ancher to meve aleng the tour,

Cuided tours are most useful for systems that prowde mformation on different subjects, or
that must guide the user through an nformation base, without too much inhative from the
user's part. A system that contams mFormation for museun wstors for mstance should
provide puded rours abour different aspects of the smszeurn's exhibinons. Hamnond and
Allingon coined the term "Trawel Metaphor" [HAZT], ancther term related to tourism.

Trigg [Trize-88] extended the idea of guided tours for the MoteCards system by making
cach "stop” on the tour a set of cards, rather than a single node, An accompanying
Tabletep tool allowed authers te create these steps on the tour.

S Guided tours are difficulr to mamtain in a changing hyperdocument. Also, when the user
washes to follow a tour about a topic that 15 relevant bus for which the author hasn't created
a tour, the problem of Bnding a sensible path through the hyperdecument becomes very L

Figure 4: second version of ‘page’ concepts layout
ThelInterbook to AHA! Compiler

The fina step in our attempt of bringing AHA! and Interbook together is the implementation of Interbook to
AHA! compiler. There are several reasons that make this step extremely important:

- Testing the flexibility of our layout model by simulating real courses already offered by other AHS;
Testing the correctness of data extracted by views. We can compare the Interbook and AHA! versions;
Achieving atotal ssimulation of Interbook by AHA!. AHA! can serve Interbook courses just like Interbook;
Authoring of Interbook courses is much easer than authoring AHA! courses. Implementation of a bridge
between these two systems can simplify the AHA! authoring mechanism. The author can use the Interbook
authoring mechanism (using Microsoft Word and tools to generate HTML from that) to implement a course
and then use the Interbook to AHA! compiler to convert the course to AHA! format. (This process does not
use the full power of AHA!. We intend to add features from AHA! To the Interbook authoring process.)

Paradigm trandation

The most important part of the Interbook to AHA! compiler is the trandlation of the Interbook concept
paradigm to the AHA! concept paradigm. The Interbook paradigm consists of text pages, also called sections, and
glossary concepts. Text pages are presented in a Text Window and glossary concepts are presented in a Glossary
Window. AHA! on the other hand sees everything as a “concept”. We introduced concept types to the AHA!
concept paradigm. This turned to be a very simple and versatile solution for our problem. Each concept is of some
type and each concept type is associated with different layout. This means that each concept type can be represented
in a different way, depending on the associated layout, which is exactly what we need to simulate Interbook courses.
AHA! does not have a predefined set of concept types. The author of a course can define any desirable number of
concept types and represent every concept type using different layout. The connection between concept types and
the layout model, which can be established using small XML configuration files, offers great flexibility and
possibility to simulate the user interface of almost every existing Adaptive Hypermedia system.

To get back to the Interbook concept paradigm, our Interbook to AHA! compiler generates three kinds of
concepts to smulate Interbook courses:

1. Items (smulation of Interbook concepts presented in a Glossary Window)
2. Sections (simulation of Interbook text pages presented in a Text Window having child nodes)
3. Ledfs(simulation of Interbook text pages presented in a Text Window without child nodes)

All these concept types are associated with different layouts. The difference between Sections and Leafs is very
small. They use layouts that are almost the same with the difference that the Sections layout shows the child nodes
of the active concept and the Leafs layout does not.

Compiler Input/Output

The Interbook to AHA! compiler uses special Interbook files as input and produces AHA! formatted XML
files as output. Interbook course files are valid HTML documents that contain Interbook specific codes. These codes
are used to connect sections (text pages) and glossary concepts. Every section has a set of prerequisite concepts
(required to be known before reading the section) and a set of outcome concepts (that are introduced by the section).

AHA! courses are saved in a different way. AHA! uses XML structures to save concept data and separate
XHTML files are used for the resources. AHA! XML concept structures are more complex than Interbook concept
relations. Interbook uses two kinds of relations between Sections and Glossary concepts: ‘is prerequisite’ and ‘is
outcome’. AHA! on the other hand uses expressions to implement different kinds of relationships. These expressions
can be of any form aslong asthey are syntactically valid.

For each prerequisite concept of each section we use the following AHA! expression:

‘Conceptname.knowledge>=(1/3*100)’

For each outcome concept of each section we use the following AHA! expression:

‘if (required) Conceptname.knowledge+1/3* (100-Conceptname.knowl edge)

else Conceptname.knowledge+1/6* (100-Conceptname.knowledge)’

(Fig. 5) shows the course data transformation from Interbook format to AHA! format.

REQUIREMENT RELATION:
Prerequisites: P1, P2,...

For all P in Prerequisites:

‘ P.knowledge=>=(1/3*100)

Section/Glossary concept Interbook to CONDITION ACTION RULES:
(HTML page) I:{> AHA! Compiler I:{> For all O In Oulcomes:

il (required)

‘ O.krowledge+1/3*(100-0.knowledge)
clse
Oukmawledge+1/6*(100-Orknowledge)

QOutcomes: 01, 02,03,...

Concept type: [Section | Leaf | Item] ‘

Interbook Concept data format ‘ Resouce element ‘

Cancept XML file

Y

Resource (Section/Glossary
concept HTML code in XHTML
file)

AHA! Concept data format

Figure5: Interbook to AHA! concept data transformation
Conclusions and Future Work

The new AHA! Layout Model offers versatile user interface possibilities and brings AHA! one step closer
to its main goa of being a generic Adaptive Hypermedia environment for all kinds of Adaptive Hypermedia
applications. View based concept presentation is extremely flexible and gives a course author the power to adapt the
user interface to the needs of the course. Internally views are Java objects with one task: extracting data from AHA!
data structures and generating HTML pages from these data. In the future we are planning to extend the user
interface adaptation possihilities by introducing the total data-presentation separation. We are thinking of giving the

author the opportunity of implementing his’hers own views, in addition to using a set of predefined views. If the
internal static AHA! data structures would be saved as XML files the author could use any standard XSLT editor to
implement views as XSLT files which could extract data from XML formatted data structures. This model would
give the author the possibility to represent the data in any desirable way without being dependent on aready
implemented views.

The Interbook to AHA! compiler is an important step towards improving the usability of both Interbook
and AHA!. Authoring adaptive textbooks for Interbook is relatively easy as it is done in Microsoft Word (together
with some conversion to HTML). Compiling the applications to (the new) AHA! makes Interbook independent of
the specific server environment required by Interbook (a Lisp-based Webserver) and opens up the possibility to add
content adaptation (conditionally included text fragments) to Interbook applications.

Acknowledgement

The development of AHA! was made possible through a grant of the NLnet Foundation, and the hospitality of the
University of Pittsburgh.

References

Brusilovsky, P. (1996) Methods and techniques of adaptive hypermedia. In P. Brusilovsky and J. Vassileva (eds.),
User Modeling and User-Adapted Interaction 6 (2-3), Special Issue on Adaptive Hypertext and Hypermedia, 87-129.

Brusilovsky, P. (2001) Adaptive hypermedia. User Modeling and User Adapted Interaction 11 (1/2), 87-110.

Brusilovsky, P., Eklund, J., and Schwarz, E. (1998) Web-based education for all: A tool for developing adaptive
courseware. Computer Networks and ISDN Systems (Proceedings of Seventh International World Wide Web
Conference, 14-18 April 1998) 30 (1-7), 291-300.

De Bra, P., Aerts, A., Smits, D., and Stash, N. (2002) AHA! Version 2.0: More Adaptation Flexibility for Authors.
In: M. Driscoll and T. C. Reeves (eds.) Proceedings of World Conference on E-Learning, E-Learn 2002, Montreal,
Canada, October 15-19, 2002, AACE, pp. 240-246.

De Bra, P., Brusilovsky, P., and Houben, G.-J. (1999a) Adaptive Hypermedia: From Systems to Framework. ACM
Computing Surveys 31 (4es): http://www.cs.brown.edu/memex/ACM _HypertextTestbed/papers/25.html.

De Bra, P. and Calvi, L. (1998) AHA! An open Adaptive Hypermedia Architecture. In P. Brusilovsky and M.
Milosavljevic (eds.), The New Review of Hypermedia and Multimedia 4, Specia Issue on Adaptivity and user
modeling in hypermedia systems, 115-139.

De Bra, P., Houben, G. J., and Wu, H. (1999b) AHAM: A Dexter-based Reference Model for Adaptive Hypermedia.
In: Proceedings of 10th ACM Conference on Hypertext and hypermedia (Hypertext'99), Darmstadt, Germany,
February 21 - 25, 1999, ACM Press, pp. 147-156.

Grigoriadou, M., Papanikolaou, K., Kornilakis, H., and Magoulas, G. (2001) INSPIRE: An INtelligent System for
Personalized Instruction in a Remote Environment. In: P. D. Bra, P. Brusilovsky and A. Kobsa (eds.) Proceedings of
Third workshop on Adaptive Hypertext and Hypermedia, Sonthofen, Germany, July 14, 2001, Technical University
Eindhoven, pp. 13-24.

Henze, N. and Nejdl, W. (2001) Adaptation in open corpus hypermedia. In P. Brusilovsky and C. Peylo (eds.),
International Journal of Artificial Intelligence in Education 12 (4), Special Issue on Special Issue on Adaptive and
Intelligent Web-based Educational Systems, 325-350, http://cbl.leeds.ac.uk/ijaied/abstracts/\VVol _12/henze.html.

Mélis, E., Andres, E., Bidenbender, J., Frishauf, A., Goguadse, G., Libbrecht, P., Pallet, M., and Ullrich, C. (2001)
ActiveMath: A web-based learning environment. In P. Brusilovsky and C. Peylo (eds.), International Journal of
Artificial Intelligence in Education 12 (4), Special Issue on Specia Issue on Adaptive and Intelligent Web-based
Educational Systems, 385-407.

Weber, G. and Brusilovsky, P. (2001) ELM-ART: An adaptive versatile system for Web-based instruction. In P.
Brusilovsky and C. Peylo (eds.), International Journal of Artificial Intelligencein Education 12 (4), Special Issue on
Adaptive and Intelligent Web-based Educationa Systems, 351-384: http://cbl.leeds.ac.uk/ijaied/abstracts/
Vol_12/weber.html.

Wu, H., De Kort, E., and De Bra, P. (2001) Design Issues for General Purpose Adaptive Hypermedia Systems. In:;
Proceedings of Twelfth ACM Conference on Hypertext and Hypermedia (Hypertext 2001), Aarhus, Denmark,
August 14-18, 2001, ACM Press, pp. 141-150.

