HW 6 - due Oct 19

1. Consider the pendulum on a spring. Here r is the length of the pendulum and because it is on a spring it can move freely only along the axis (i.e think if it like a shock absorber on a car with only one degree of freedom) The potential energy, $P.E. = mgy + (k/2)(r - r_0)^2$ where k is the spring constant and r_0 is the rest length of the spring. (a) Express (x, y) in terms of (r, θ) (b) $K.E. = (m/2)(\dot{x}^2 + \dot{y}^2)$. Express K.E. in terms of $r, \theta, \dot{r}, \dot{\theta}$. (c) Express P.E in terms of (r, θ) . (d) The lagrangian L = K.E. - P.E. Compute $\partial L/\partial r, \partial L, \partial \dot{r}, \partial L/\partial \theta, \partial L, \partial \dot{\theta}$. (e) Write the equations of motion:

$$\begin{array}{ll} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{r}} \right) & = & \frac{\partial L}{\partial r} \\ \\ \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) & = & \frac{\partial L}{\partial \theta} \end{array}$$

You do not have to solve them!! (e) Show that if $\theta(0) = 0$, $\dot{\theta(0)} = 0$, then you get:

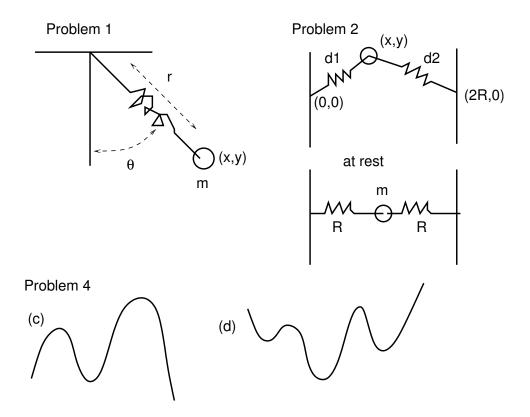
$$m\ddot{R} = mg - k(r - r_0)$$

the simple linear spring!

2. Consider the "guitar string" illustrated in the figure. The rest state of each spring is R when the mass is centered at the origin. (a) compute d_1, d_2 as a function of (x, y). We have

$$P.E. = (k/2)[(d_1 - R)^2 + (d_2 - R^2)]$$

 $K.E. = (m/2)(\dot{x}^2 + \dot{y}^2)$


- (b) The Lagrangian is L = K.E. P.E Compute the equations of motion for (x, y) (c) Show that if y(0) = 0, $\dot{y}(0) = 0$, you recover the linear spring on a line!
- 3. Roller coaster tycoon. Okay, lets make a roller coaster that lies in the (x,y) plane. We will keep it simple and suppose that it can be described by a simple function, y=f(x). Let's assume that f is at least twice differentiable. Clearly, P.E.=mgy and $K.E.=(m/2)(\dot{x}^2+\dot{y}^2)$. Using the chain rule a lot, compute the Lagrangian L=K.E.-P.E and the equations of motion in terms of x (as y is a constrained to lie on the track):

$$(d/dt)(\partial L/\partial \dot{x}) = \partial L/\partial x$$

Compute the total energy, P.E. + K.E. For example, here is a fun roller coaster, $f(x) = x^4 - 3x^2$. Derive the equations for this model and simulate it with initial conditions $x(0) = -2, \dot{x}(0) = 0$. Plot x(t), y(t) = f(x(t)).

4. Sketch the phase plane for the systems $\ddot{x} = -dF/dx$ with (a) $F(x) = x^4/4 - x^2/2$, (b) $F(x) = \cos(x)$, (c,d) F(x) as drawn in the figures

1

