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Fundamental Theory

1.1 ODEs and Dynamical Systems

Ordinary Differential Equations

An ordinary differential equation (or ODE) is an equation involving

derivatives of an unknown quantity with respect to a single variable.

More precisely, suppose j,n ∈ N, E is a Euclidean space, and

F : dom(F) ⊆ R×
n+ 1 copies︷ ︸︸ ︷
E × · · · × E → Rj . (1.1)

Then an nth order ordinary differential equation is an equation of the

form

F(t, x(t), ẋ(t), ẍ(t), x(3)(t), · · · , x(n)(t)) = 0. (1.2)

If I ⊆ R is an interval, then x : I → E is said to be a solution of (1.2) on I
if x has derivatives up to order n at every t ∈ I , and those derivatives

satisfy (1.2). Often, we will use notation that suppresses the depen-

dence of x on t. Also, there will often be side conditions given that

narrow down the set of solutions. In these notes, we will concentrate

on initial conditions which prescribe x(ℓ)(t0) for some fixed t0 ∈ R

(called the initial time) and some choices of ℓ ∈ {0,1, . . . , n}. Some ODE

texts examine two-point boundary-value problems, in which the value

of a function and its derivatives at two different points are required to

satisfy given algebraic equations, but we won’t focus on them in this

one.

1
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1. Fundamental Theory

First-order Equations

Every ODE can be transformed into an equivalent first-order equation.

In particular, given x : I → E, suppose we define

y1 := x
y2 := ẋ
y3 := ẍ

...

yn := x(n−1),

and let y : I → En be defined by y = (y1, . . . , yn). For i = 1,2, . . . , n−1,

define

Gi : R× En × En → E
by

G1(t,u,p) := p1 −u2

G2(t,u,p) := p2 −u3

G3(t,u,p) := p3 −u4

...

Gn−1(t,u,p) := pn−1 −un,

and, given F as in (1.1), define Gn : dom(Gn) ⊆ R× En × En → Rj by

Gn(t,u,p) := F(t,u1, . . . , un, pn),

where

dom(Gn) =
{
(t,u,p) ∈ R× En × En

∣∣ (t,u1, . . . , un, pn) ∈ dom(F)
}
.

Letting G : dom(Gn) ⊆ R× En × En → En−1 × Rj be defined by

G :=




G1

G2

G3

...

Gn




,

2
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ODEs and Dynamical Systems

we see that x satisfies (1.2) if and only if y satisfies G(t,y(t), ẏ(t)) =
0.

Equations Resolved with Respect to the Derivative

Consider the first-order initial-value problem (or IVP)




F(t, x, ẋ) = 0

x(t0) = x0

ẋ(t0) = p0,

(1.3)

where F : dom(F) ⊆ R × Rn × Rn → Rn, and x0, p0 are given ele-

ments of Rn satisfying F(t0, x0, p0) = 0. The Implicit Function The-

orem says that typically the solutions (t, x,p) of the (algebraic) equa-

tion F(t, x,p) = 0 near (t0, x0, p0) form an (n+1)-dimensional surface

that can be parametrized by (t, x). In other words, locally the equation

F(t, x,p) = 0 is equivalent to an equation of the form p = f (t, x) for

some f : dom(f ) ⊆ R×Rn → Rn with (t0, x0) in the interior of dom(f ).

Using this f , (1.3) is locally equivalent to the IVP



ẋ = f (t, x)
x(t0) = x0.

Autonomous Equations

Let f : dom(f ) ⊆ R×Rn → Rn. The ODE

ẋ = f (t, x) (1.4)

is autonomous if f doesn’t really depend on t, i.e., if dom(f ) = R×Ω
for some Ω ⊆ Rn and there is a function g : Ω → Rn such that f (t,u) =
g(u) for every t ∈ R and every u ∈ Ω.

Every nonautonomous ODE is actually equivalent to an autonomous

ODE. To see why this is so, given x : R → Rn, define y : R → Rn+1 by

y(t) = (t, x1(t), . . . , xn(t)), and given f : dom(f ) ⊆ R × Rn → Rn,

define a new function f̃ : dom(f̃ ) ⊆ Rn+1 → Rn+1 by

f̃ (p) =




1

f1(p1, (p2, . . . , pn+1))
...

fn(p1, (p2, . . . , pn+1))



,

3
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1. Fundamental Theory

where f = (f1, . . . , fn)T and

dom(f̃ ) = {p ∈ Rn+1
∣∣ (p1, (p2, . . . , pn+1)) ∈ dom(f )

}
.

Then x satisfies (1.4) if and only if y satisfies ẏ = f̃ (y).
Because of the discussion above, we will focus our study on first-

order autonomous ODEs that are resolved with respect to the deriva-

tive. This decision is not completely without loss of generality, because

by converting other sorts of ODEs into equivalent ones of this form, we

may be neglecting some special structure that might be useful for us

to consider. This trade-off between abstractness and specificity is one

that you will encounter (and have probably already encountered) in

other areas of mathematics. Sometimes, when transforming the equa-

tion would involve too great a loss of information, we’ll specifically

study higher-order and/or nonautonomous equations.

Dynamical Systems

As we shall see, by placing conditions on the function f : Ω ⊆ Rn → Rn

and the point x0 ∈ Ω we can guarantee that the autonomous IVP



ẋ = f (x)
x(0) = x0

(1.5)

has a solution defined on some interval I containing 0 in its interior,

and this solution will be unique (up to restriction or extension). Fur-

thermore, it is possible to “splice” together solutions of (1.5) in a nat-

ural way, and, in fact, get solutions to IVPs with different initial times.

These considerations lead us to study a structure known as a dynami-

cal system.

Given Ω ⊆ Rn, a continuous dynamical system (or a flow) on Ω is a

function ϕ : R×Ω→ Ω satisfying:

1. ϕ(0, x) = x for every x ∈ Ω;

2. ϕ(s,ϕ(t, x)) =ϕ(s + t, x) for every x ∈ Ω and every s, t ∈ R;

3. ϕ is continuous.

If f and Ω are sufficiently “nice” we will be able to define a function

ϕ : R ×Ω → Ω by letting ϕ(·, x0) be the unique solution of (1.5), and

4
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ODEs and Dynamical Systems

this definition will make ϕ a dynamical system. Conversely, any con-

tinuous dynamical system ϕ(t,x) that is differentiable with respect to

t is generated by an IVP.

Exercise 1 Suppose that:

• Ω ⊆ Rn;

• ϕ : R×Ω→ Ω is a continuous dynamical system;

• ∂ϕ(t,x)
∂t

exists for every t ∈ R and every x ∈ Ω;

• x0 ∈ Ω is given;

• y : R → Ω is defined by y(t) :=ϕ(t,x0);

• f : Ω→ Rn is defined by f (p) := ∂ϕ(s,p)

∂s

∣∣∣∣
s=0

.

Show that y solves the IVP




ẏ = f (y)
y(0) = x0.

In these notes we will also discuss discrete dynamical systems. Giv-

en Ω ⊆ Rn, a discrete dynamical system on Ω is a function ϕ : Z×Ω→
Ω satisfying:

1. ϕ(0, x) = x for every x ∈ Ω;

2. ϕ(ℓ,ϕ(m,x)) = ϕ(ℓ+m,x) for every x ∈ Ω and every ℓ,m ∈ Z;

3. ϕ is continuous.

There is a one-to-one correspondence between discrete dynamical sys-

tems ϕ and homeomorphisms (continuous functions with continuous

inverses) F : Ω → Ω, this correspondence being given by ϕ(1, ·) = F . If

we relax the requirement of invertibility and take a (possibly noninvert-

ible) continuous function F : Ω → Ω and define ϕ : {0,1, . . .} ×Ω → Ω
5
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1. Fundamental Theory

by

ϕ(n,x) =
n copies︷ ︸︸ ︷

F(F(· · · (F(x)) · · · )),
then ϕ will almost meet the requirements to be a dynamical system,

the only exception being that property 2, known as the group property

may fail because ϕ(n,x) is not even defined for n < 0. We may still

call this a dynamical system; if we’re being careful we may call it a

semidynamical system.

In a dynamical system, the set Ω is called the phase space. Dynam-

ical systems are used to describe the evolution of physical systems in

which the state of the system at some future time depends only on the

initial state of the system and on the elapsed time. As an example,

Newtonian mechanics permits us to view the earth-moon-sun system

as a dynamical system, but the phase space is not physical space R3,

but is instead an 18-dimensional Euclidean space in which the coordi-

nates of each point reflect the position and momentum of each of the

three objects. (Why isn’t a 9-dimensional space, corresponding to the

three spatial coordinates of the three objects, sufficient?)

1.2 Existence of Solutions

Approximate Solutions

Consider the IVP 


ẋ = f (t, x)
x(t0) = a,

(1.6)

where f : dom(f ) ⊆ R× Rn → Rn is continuous, and (t0, a) ∈ dom(f )

is constant. The Fundamental Theorem of Calculus implies that (1.6)

is equivalent to the integral equation

x(t) = a+
∫ t

t0
f (s, x(s))ds. (1.7)

How does one go about proving that (1.7) has a solution if, unlike

the case with so many IVPs studied in introductory courses, a formula

for a solution cannot be found? One idea is to construct a sequence

of “approximate” solutions, with the approximations becoming better

and better, in some sense, as we move along the sequence. If we can

6
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Existence of Solutions

show that this sequence, or a subsequence, converges to something,

that limit might be an exact solution.

One way of constructing approximate solutions is Picard iteration.

Here, we plug an initial guess in for x on the right-hand side of (1.7),

take the resulting value of the left-hand side and plug that in for x

again, etc. More precisely, we can set x1(t) := a and recursively define

xk+1 in terms of xk for k > 1 by

xk+1(t) := a+
∫ t

t0
f (s, xk(s))ds.

Note that if, for some k, xk = xk+1 then we have found a solution.

Another approach is to construct a Tonelli sequence. For each k ∈ N,

let xk(t) be defined by

xk(t) =





a, if t0 ≤ t ≤ t0 + 1/k

a+
∫ t−1/k

t0
f (s, xk(s))dx, if t ≥ t0 + 1/k

(1.8)

for t ≥ t0, and define xk(t) similarly for t ≤ t0.

We will use the Tonelli sequence to show that (1.7) (and therefore

(1.6)) has a solution, and will use Picard iterates to show that, under an

additional hypothesis on f , the solution of (1.7) is unique.

Existence

For the first result, we will need the following definitions and theorems.

Definition A sequence of functions gk : U ⊆ R → Rn is uniformly

bounded if there exists M > 0 such that |gk(t)| ≤ M for every t ∈ U
and every k ∈ N.

Definition A sequence of functions gk : U ⊆ R → Rn is uniformly

equicontinuous if for every ε > 0 there exists a number δ > 0 such

that |gk(t1)− gk(t2)| < ε for every k ∈ N and every t1, t2 ∈ U satisfy-

ing |t1 − t2| < δ.

Definition A sequence of functions gk : U ⊆ R → Rn converges uni-

formly to a function g : U ⊆ R → Rn if for every ε > 0 there exists a

number N ∈ N such that if k ≥ N and t ∈ U then |gk(t)− g(t)| < ε.
7
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1. Fundamental Theory

Definition If a ∈ Rn and β > 0, then the open ball of radius β centered

at a, denoted B(a, β), is the set

{
x ∈ Rn

∣∣ |x − a| < β}.

Theorem (Arzela-Ascoli) Every uniformly bounded, uniformly equicon-

tinuous sequence of functions gk : U ⊆ R → Rn has a subsequence that

converges uniformly on compact (closed and bounded) sets.

Theorem (Uniform Convergence) If a sequence of continuous functions

hk : [b, c]→ Rn converges uniformly to h : [b, c]→ Rn, then

lim
k↑∞

∫ c

b
hk(s)ds =

∫ c

b
h(s)ds.

We are now in a position to state and prove the Cauchy-Peano Exis-

tence Theorem.

Theorem (Cauchy-Peano) Suppose f : [t0 − α, t0 +α]×B(a, β) → Rn is

continuous and bounded by M > 0. Then (1.7) has a solution defined on

[t0 − b, t0 + b], where b =min{α,β/M}.

Proof. For simplicity, we will only consider t ∈ [t0, t0 + b]. For each

k ∈ N, let xk : [t0, t0 + b] → Rn be defined by (1.8). We will show that

(xk) converges to a solution of (1.6).

Step 1: Each xk is well-defined.

Fix k ∈ N. Note that the point (t0, a) is in the interior of a set on which

f is well-defined. Because of the formula for xk(t) and the fact that

it is, in essence, recursively defined on intervals of width 1/k moving

steadily to the right, if xk failed to be defined on [t0, t0+b] then there

would be t1 ∈ [t0+1/k, t0+b) for which |xk(t1)−a| = β. Pick the first

such t1. Using (1.8) and the bound on f , we see that

|xk(t1)− a| =
∣∣∣∣∣

∫ t1−1/k

t0
f (s, xk(s))ds

∣∣∣∣∣ ≤
∫ t1−1/k

t0
|f (s, xk(s))|ds

≤
∫ t1−1/k

t0
M ds = M(t1 − t0 − 1/k) < M(b − 1/k)

≤ β−M/k < β = |xk(t1)− a|,
which is a contradiction.

8
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Existence of Solutions

Step 2: (xk) is uniformly bounded.

Calculating as above, we find that (1.8) implies that, for k ≥ 1/b,

|xk(t)| ≤ |a| +
∫ b+t0−1/k

t0
|f (s, xk(s))|dx ≤ |a| + (b− 1/k)M < |a| + β.

Step 3: (xk) is uniformly equicontinuous.

If t1, t2 ≥ t0 + 1/k, then

|xk(t1)− xk(t2)| =
∣∣∣∣∣

∫ t2
t1
f (s, xk(s))ds

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ t2
t1
|f (s, xk(s))|ds

∣∣∣∣∣

≤ M|t2 − t1|.

Since xk is constant on [t0, t0 + 1/k] and continuous at t0 + 1/k, the

estimate |xk(t1)− xk(t2)| ≤ M|t2 − t1| holds for every t1, t2 ∈ [t0, t0 +
b]. Thus, given ε > 0, we can set δ = ε/M and see that uniform

equicontinuity holds.

Step 4: Some subsequence (xkℓ) of (xk) converges uniformly, say

to x, on [t0, t0 + b].
This follows directly from the previous steps and the Arzela-Ascoli

Theorem.

Step 5: The function f (·, x(·)) is the uniform limit of (f (·, xkℓ(·)))
on [t0, t0 + b].
Let ε > 0 be given. Since f is continuous on a compact set, it is

uniformly continuous. Thus, we can pick δ > 0 such that |f (s, p) −
f (s, q)| < ε whenever |p − q| < δ. Since (xkℓ) converges uniformly

to x, we can pick N ∈ N such that |xkℓ(s) − x(s)| < δ whenever

s ∈ [t0, t0+b] and ℓ ≥ N . If ℓ ≥ N , then |f (s, xkℓ(s))−f (s, x(s))| < ε.
Step 6: The function x is a solution of (1.6).

Fix t ∈ [t0, t0 + b]. If t = t0, then clearly (1.7) holds. If t > t0, then for

ℓ sufficiently large

xkℓ(t) = a+
∫ t

t0
f (s, xkℓ(s))ds −

∫ t

t−1/kℓ

f (s, xkℓ(s))ds. (1.9)

Obviously, the left-hand side of (1.9) converges to x(t) as ℓ ↑ ∞. By

the Uniform Convergence Theorem and the uniform convergence of

(f (·, xkℓ(·))), the first integral on the right-hand side of (1.9) converges

to ∫ t

t0
f (s, x(s))ds,

9
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1. Fundamental Theory

and by the boundedness of f the second integral converges to 0. Thus,

taking the limit of (1.9) as ℓ ↑ ∞ we see that x satisfies (1.7), and

therefore (1.6), on [t0, t0 + b].

Note that this theorem guarantees existence, but not necessarily

uniqueness, of a solution of (1.6).

Exercise 2 How many solutions of the IVP




ẋ = 2

√
|x|

x(0) = 0,

on the interval (−∞,∞) are there? Give formulas for all of them.

1.3 Uniqueness of Solutions

Uniqueness

If more than continuity of f is assumed, it may be possible to prove

that 


ẋ = f (t, x)
x(t0) = a,

(1.10)

has a unique solution. In particular Lipschitz continuity of f (t, ·) is

sufficient. (Recall that g : dom(g) ⊆ Rn → Rn is Lipschitz continuous if

there exists a constant L > 0 such that |g(x1) − g(x2)| ≤ L|x1 − x2|
for every x1, x2 ∈ dom(g); L is called a Lipschitz constant for g.)

One approach to uniqueness is developed in the following exercise,

which uses what are know as Gronwall inequalities.

Exercise 3 Assume that the conditions of the Cauchy-Peano

Theorem hold and that, in addition, f (t, ·) is Lipschitz continu-

ous with Lipschitz constant L for every t. Show that the solution

of (1.10) is unique on [t0, t0+b] by completing the following steps.

10
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(The solution can similarly be shown to be unique on [t0 − b, t0],
but we won’t bother doing that here.)

(a) If x1 and x2 are each solutions of (1.10) on [t0, t0 + b] and

U : [t0, t0 + b] → R is defined by U(t) := |x1(t) − x2(t)|,
show that

U(t) ≤ L
∫ t

t0
U(s)ds (1.11)

for every t ∈ [t0, t0 + b].

(b) Pick ε > 0 and let

V(t) := ε + L
∫ t

t0
U(s)ds.

Show that

V ′(t) ≤ LV(t) (1.12)

for every t ∈ [t0, t0 + b], and that V(t0) = ε.

(c) Dividing both sides of (1.12) by V(t) and integrating from t =
t0 to t = T , show that V(T) ≤ ε exp[L(T − t0)].

(d) By using (1.11) and letting ε ↓ 0, show that U(T) = 0 for all

T ∈ [t0, t0 + b], so x1 = x2.

We will prove an existence-uniqueness theorem that combines the

results of the Cauchy-Peano Theorem and Exercise 3. The reason for

this apparently redundant effort is that the concepts and techniques

introduced in this proof will be useful throughout these notes.

First, we review some definitions and results pertaining to metric

spaces.

Definition A metric space is a setX together with a function d : X×X →
R satisfying:

1. d(x,y) ≥ 0 for every x,y ∈ X , with equality if and only if x = y ;

2. d(x,y) = d(y,x) for every x,y ∈ X ;

11
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1. Fundamental Theory

3. d(x,y)+ d(y, z) ≥ d(x, z) for every x,y, z ∈ X .

Definition A normed vector space is a vector space together with a func-

tion ‖ · ‖ : X → R satisfying:

1. ‖x‖ ≥ 0 for every x ∈ X , with equality if and only if x = 0;

2. ‖λx‖ = |λ|‖x‖ for every x ∈ X and every scalar λ;

3. ‖x +y‖ ≤ ‖x‖ + ‖y‖ for every x,y ∈ X .

Every normed vector space is a metric space with metric d(x,y) =
‖x −y‖.

Definition An inner product space is a vector space together with a

function 〈·, ·〉 : X ×X → R satisfying:

1. 〈x,x〉 ≥ 0 for every x ∈ X , with equality if and only if x = 0;

2. 〈x,y〉 = 〈y,x〉 for every x,y ∈ X ;

3. 〈λx + µy, z〉 = λ〈x, z〉 + µ〈y,z〉 for every x,y, z ∈ X and all

scalars µ,λ.

Every inner product space is a normed vector space with norm

‖x‖ =
√
〈x,x〉.

Definition A sequence (xn) in a metric space X is said to be (a) Cauchy

(sequence) if for every ε > 0, there exists N ∈ N such that d(xm, xn) <

ε wheneverm,n ≥ N .

Definition A sequence (xn) in a metric space X converges to x if for

every ε > 0, there exists N ∈ N such that d(xn, x) < ε whenevern ≥ N .

Definition A metric space is said to be complete if every Cauchy se-

quence in X converges (in X). A complete normed vector space is

called a Banach space. A complete inner product space is called a

Hilbert space.

12
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Uniqueness of Solutions

Definition A function f : X → Y from a metric space to a metric

space is said to be Lipschitz continuous if there exists L ∈ R such that

d(f (u), f (v)) ≤ Ld(u,v) for every u,v ∈ X . We call L a Lipschitz con-

stant, and write Lip(f ) for the smallest Lipschitz constant that works.

Definition A contraction is a Lipschitz continuous function from a met-

ric space to itself that has Lipschitz constant less than 1.

Definition A fixed point of a function T : X → X is a point x ∈ X such

that T(x) = x.

Theorem (Contraction Mapping Principle) If X is a nonempty, complete

metric space and T : X → X is a contraction, then T has a unique fixed

point in X .

Proof. Pick λ < 1 such that d(T(x), T(y)) ≤ λd(x,y) for every x,y ∈
X . Pick any point x0 ∈ X . Define a sequence (xk) by the recursive

formula

xk+1 = T(xk). (1.13)

If k ≥ ℓ ≥ N , then

d(xk, xℓ) ≤ d(xk, xk−1)+ d(xk−1, xk−2)+ · · · + d(xℓ+1, xℓ)

≤ λd(xk−1, xk−2)+ λd(xk−2, xk−3)+ · · · + λd(xℓ, xℓ−1)

...

≤ λk−1d(x1, x0)+ λk−2d(x1, x0)+ · · · + λℓd(x1, x0)

≤ λN

1− λd(x1, x0).

Hence, (xk) is a Cauchy sequence. Since X is complete, (xk) converges

to some x ∈ X . By letting k ↑ ∞ in (1.13) and using the continuity of

T , we see that x = T(x), so x is a fixed point of T .

If there were another fixed point y of T , then

d(x,y) = d(T(x), T(y)) ≤ λd(x,y),

so d(x,y) = 0, which means x = y . This shows uniqueness of the

fixed point.

13
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1. Fundamental Theory

1.4 Picard-Lindelöf Theorem

Theorem The space C([a, b]) of continuous functions from [a, b] to Rn

equipped with the norm

‖f‖∞ := sup
{|f (x)|

∣∣ x ∈ [a, b]}

is a Banach space.

Definition Two different norms ‖ ·‖1 and ‖ ·‖2 on a vector space X are

equivalent if there exist constants m,M > 0 such that

m‖x‖1 ≤ ‖x‖2 ≤ M‖x‖1

for every x ∈ X .

Theorem If (X,‖ · ‖1) is a Banach space and ‖ · ‖2 is equivalent to ‖ · ‖1

on X , then (X,‖ · ‖2) is a Banach space.

Theorem A closed subspace of a complete metric space is a complete

metric space.

We are now in a position to state and prove the Picard-Lindelöf

Existence-Uniqueness Theorem. Recall that we are dealing with the

IVP 


ẋ = f (t, x)
x(t0) = a.

(1.14)

Theorem (Picard-Lindelöf) Suppose f : [t0 − α, t0 + α] × B(a, β) → Rn

is continuous and bounded by M . Suppose, furthermore, that f (t, ·) is

Lipschitz continuous with Lipschitz constant L for every t ∈ [t0−α, t0+
α]. Then (1.14) has a unique solution defined on [t0 − b, t0 + b], where

b = min{α,β/M}.

Proof. Let X be the set of continuous functions from [t0−b, t0+b] to

B(a, β). The norm

‖g‖w := sup
{
e−2L|t−t0||g(t)|

∣∣ t ∈ [t0 − b, t0 + b]
}

14
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Picard-Lindelöf Theorem

is equivalent to the standard supremum norm ‖ · ‖∞ on C([t0 − b, t0 +
b]), so this vector space is complete under this weighted norm. The set

X endowed with this norm/metric is a closed subset of this complete

Banach space, so X equipped with the metric d(x1, x2) := ‖x1 − x2‖w
is a complete metric space.

Given x ∈ X , define T(x) to be the function on [t0−b, t0+b] given

by the formula

T(x)(t) = a+
∫ t

t0
f (s, x(s))ds.

Step 1: If x ∈ X then T(x) makes sense.

This should be obvious.

Step 2: If x ∈ X then T(x) ∈ X .

If x ∈ X , then it is clear that T(x) is continuous (and, in fact, differen-

tiable). Furthermore, for t ∈ [t0 − b, t0 + b]

|T(x)(t)− a| =
∣∣∣∣∣

∫ t

t0
f (s, x(s))ds

∣∣∣∣∣ ≤
∣∣∣∣∣

∫ t

t0
|f (s, x(s))|ds

∣∣∣∣∣ ≤Mb ≤ β,

so T(x)(t) ∈ B(a, β). Hence, T(x) ∈ X .

Step 3: T is a contraction on X .

Let x,y ∈ X , and note that ‖T(x)− T(y)‖w is

sup

{
e−2L|t−t0|

∣∣∣∣∣

∫ t

t0
[f (s, x(s))− f (s,y(s))]ds

∣∣∣∣∣

∣∣∣∣∣ t ∈ [t0 − b, t0 + b]
}
.

For a fixed t ∈ [t0 − b, t0 + b],

e−2L|t−t0|
∣∣∣∣∣

∫ t

t0
[f (s, x(s))− f (s,y(s))]ds

∣∣∣∣∣

≤ e−2L|t−t0|
∣∣∣∣∣

∫ t

t0
|f (s, x(s))− f (s,y(s))|ds

∣∣∣∣∣

≤ e−2L|t−t0|
∣∣∣∣∣

∫ t

t0
L|x(s)− y(s)|ds

∣∣∣∣∣

≤ Le−2L|t−t0|
∣∣∣∣∣

∫ t

t0
‖x −y‖we2L|s−t0| ds

∣∣∣∣∣

= ‖x − y‖w
2

(
1− e−2L|t−t0|

)

≤ 1

2
‖x − y‖w .

Taking the supremum over all t ∈ [t0 − b, t0 + b], we find that T is a

contraction (with λ = 1/2).

15
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1. Fundamental Theory

By the contraction mapping principle, we therefore know that T has

a unique fixed point in X . This means that (1.14) has a unique solution

in X (which is the only place a solution could be).

1.5 Intervals of Existence

Maximal Interval of Existence

We begin our discussion with some definitions and an important theo-

rem of real analysis.

Definition Given f : D ⊆ R × Rn → Rn, we say that f (t, x) is locally

Lipschitz continuous with respect to x onD if for each (t0, a) ∈ D there

is a number L and a product set I × U ⊆ D containing (t0, a) in its

interior such that the restriction of f (t, ·) toU is Lipschitz continuous

with Lipschitz constant L for every t ∈ I .

Definition A subset K of a topological space is compact if whenever

K is contained in the union of a collection of open sets, there is a fi-

nite subcollection of that collection whose union also contains K. The

original collection is called a cover of K, and the finite subcollection is

called a finite subcover of the original cover.

Theorem (Heine-Borel) A subset of Rn is compact if and only if it is closed

and bounded.

Now, suppose that D is an open subset of R× Rn, (t0, a) ∈ D, and

f : D → Rn is locally Lipschitz continuous with respect to x on D.

Then the Picard-Lindelöf Theorem indicates that the IVP



ẋ = f (t, x)
x(t0) = a

(1.15)

has a solution existing on some time interval containing t0 in its inte-

rior and that the solution is unique on that interval. Let’s say that an

interval of existence is an interval containing t0 on which a solution of

(1.15) exists. The following theorem indicates how large an interval of

existence may be.

16
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Intervals of Existence

Theorem (Maximal Interval of Existence) The IVP (1.15) has a maxi-

mal interval of existence, and it is of the form (ω−,ω+), with ω− ∈
[−∞,∞) and ω+ ∈ (−∞,∞]. There is a unique solution x(t) of (1.15)

on (ω−,ω+), and (t, x(t)) leaves every compact subset K of D as

t ↓ω− and as t ↑ω+.

Proof.

Step 1: If I1 and I2 are open intervals of existence with correspond-

ing solutions x1 and x2, then x1 and x2 agree on I1 ∩ I2.

Let I = I1 ∩ I2, and let I∗ be the largest interval containing t0 and con-

tained in I on which x1 and x2 agree. By the Picard-Lindelöf Theorem,

I∗ is nonempty. If I∗ ≠ I , then I∗ has an endpoint t1 in I . By conti-

nuity, x1(t1) = x2(t1) =: a1. The Picard-Lindelöf Theorem implies that

the new IVP 


ẋ = f (t, x)
x(t1) = a1

(1.16)

has a local solution that is unique. But restrictions of x1 and x2 near t1

each provide a solution to (1.16), so x1 and x2 must agree in a neigh-

borhood of t1. This contradicts the definition of t1 and tells us that

I∗ = I .
Now, let (ω−,ω+) be the union of all open intervals of existence.

Step 2: (ω−,ω+) is an interval of existence.

Given t ∈ (ω−,ω+), pick an open interval of existence Ĩ that contains

t, and let x(t) = x̃(t), where x̃ is a solution to (1.15) on Ĩ . Because

of step 1, this determines a well-defined function x : (ω−,ω+) → Rn;

clearly, it solves (1.15).

Step 3: (ω−,ω+) is the maximal interval of existence.

An extension argument similar to the one in Step 1 shows that every

interval of existence is contained in an open interval of existence. Every

open interval of existence is, in turn, a subset of (ω−,ω+).
Step 4: x is the only solution of (1.15) on (ω−,ω+).

This is a special case of Step 1.

Step 5: (t, x(t)) leaves every compact subset K ⊂ D as t ↓ω− and

as t ↑ω+.

We only treat what happens as t ↑ ω+; the other case is similar. Fur-

thermore, the case whenω+ = ∞ is immediate, so supposeω+ is finite.

17
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1. Fundamental Theory

Let a compact subset K of D be given. Since D is open, for each

point (t, a) ∈ K we can pick numbers α(t, a) > 0 and β(t, a) > 0 such

that

[t − 2α(t, a), t + 2α(t, a)]×B(a,2β(t, a)) ⊂ D.
Note that the collection of sets

{
(t −α(t, a), t +α(t, a))×B(a, β(t, a))

∣∣ (t, a) ∈K}

is a cover of K. Since K is compact, a finite subcollection, say

{
(ti −α(ti, ai), ti +α(ti, ai))×B(ai, β(ti, ai))

}m
i=1,

covers K. Let

K′ :=
m⋃

i=1

(
[ti − 2α(ti, ai), ti + 2α(ti, ai)]×B(ai,2β(ti, ai))

)
,

let

α̃ := min
{
α(ti, ai)

}m
i=1,

and let

β̃ :=min
{
β(ti, xi)

}m
i=1.

Since K′ is a compact subset of D, there is a constant M > 0 such that

f is bounded by M on K′. By the triangle inequality,

[t0 − α̃, t0 + α̃]×B(a, β̃) ⊆ K′,

for every (t0, a) ∈ K, so f is bounded by M on each such product

set. According to the Picard-Lindelöf Theorem, this means that for

every (t0, a) ∈ K a solution to ẋ = f (t, x) starting at (t0, a) exists for

at least min{α̃, β̃/M} units of time. Hence, x(t) ∉ K for t > ω+ −
min{α̃, β̃/M}.

Corollary If D′ is a bounded set and D = (c, d) ×D′ (with c ∈ [−∞,∞)
and d ∈ (−∞,∞]), then either ω+ = d or x(t) → ∂D′ as t ↑ ω+, and

either ω− = c or x(t)→ ∂D′ as t ↓ω−.

Corollary If D = (c, d)× Rn (with c ∈ [−∞,∞) and d ∈ (−∞,∞]), then

either ω+ = d or |x(t)| ↑ ∞ as t ↑ω+, and eitherω− = c or |x(t)| ↑ ∞
as t ↓ω−.
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Intervals of Existence

If we’re dealing with an autonomous equation on a bounded set,

then the first corollary applies to tell us that the only way a solution

could fail to exist for all time is for it to approach the boundary of

the spatial domain. (Note that this is not the same as saying that x(t)

converges to a particular point on the boundary; can you give a relevant

example?) The second corollary says that autonomous equations on all

of Rn have solutions that exist until they become unbounded.

Global Existence

For the solution set of the autonomous ODE ẋ = f (x) to be repre-

sentable by a dynamical system, it is necessary for solutions to exist

for all time. As the discussion above illustrates, this is not always the

case. When solutions do die out in finite time by hitting the boundary

of the phase space Ω or by going off to infinity, it may be possible to

change the vector field f to a vector field f̃ that points in the same

direction as the original but has solutions that exist for all time.

For example, if Ω = Rn, then we could consider the modified equa-

tion

ẋ = f (x)√
1+ |f (x)|2

.

Clearly, |ẋ| < 1, so it is impossible for |x| to approach infinity in finite

time.

If, on the other hand, Ω ≠ Rn, then consider the modified equation

ẋ = f (x)√
1+ |f (x)|2

· d(x,Rn \Ω)√
1+ d(x,Rn \Ω)2 ,

where d(x,Rn \Ω) is the distance from x to the complement of Ω. It is

not hard to show that it is impossible for a solution x of this equation

to become unbounded or to approach the complement of Ω in finite

time, so, again, we have global existence.

It may or may not seem obvious that if two vector fields point in

the same direction at each point, then the solution curves of the cor-

responding ODEs in phase space match up. In the following exercise,

you are asked to prove that this is true.
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1. Fundamental Theory

Exercise 4 Suppose that Ω is a subset of Rn, that f : Ω → Rn

and g : Ω → Rn are (continuous) vector fields, and that there is a

continuous function h : Ω → (0,∞) such that g(u) = h(u)f (u)
for every u ∈ Ω. If x is the only solution of




ẋ = f (x)
x(0) = a

(defined on the maximal interval of existence) and y is the only

solution of 


ẏ = g(y)
y(0) = a,

(defined on the maximal interval of existence), show that there is

an increasing function j : dom(y) → dom(x) such that y(t) =
x(j(t)) for every t ∈ dom(y).

1.6 Dependence on Parameters

Parameters vs. Initial Conditions

Consider the IVP 


ẋ = f (t, x)
x(t0) = a,

(1.17)

and the paramterized IVP



ẋ = f (t, x, µ)
x(t0) = a,

(1.18)

where µ ∈ Rk. We are interested in studying how the solution of (1.17)

depends on the initial condition a and how the solution of (1.18) de-

pends on the parameter µ. In a sense, these two questions are equiv-

alent. For example, if x solves (1.17) and we let x̃ := x − a and

f̃ (t, x̃, a) := f (t, x̃ + a), then x̃ solves




˙̃x = f̃ (t, x̃, a)
x̃(t0) = 0,
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Dependence on Parameters

so a appears as a parameter rather than an initial condition. If, on

the other hand, x solves (1.18), and we let x̃ := (x, µ) and f̃ (t, x̃) :=
(f (t, x, µ),0), then x̃ solves





˙̃x = f̃ (t, x̃)
x̃(t0) = (a, µ),

so µ appears as part of the initial condition, rather than as a parameter

in the ODE.

We will concentrate on (1.18).

Continuous Dependence

The following result can be proved by an approach like that outlined

in Exercise 3.

Theorem (Grownwall Inequality) Suppose that X(t) is a nonnegative,

continuous, real-valued function on [t0, T ] and that there are constants

C,K > 0 such that

X(t) ≤ C +K
∫ t

t0
X(s)ds

for every t ∈ [t0, T ]. Then

X(t) ≤ CeK(t−t0)

for every t ∈ [t0, T ].

Using the Grownwall inequality, we can prove that the solution of

(1.18) depends continuously on µ.

Theorem (Continuous Dependence) Suppose

f : [t0 −α, t0 +α]×Ω1 ×Ω2 ⊆ R×Rn ×Rk → Rn

is continuous. Suppose, furthermore, that f (t, ·, µ) is Lipschitz continu-

ous with Lipschitz constant L1 > 0 for every (t, µ) ∈ [t0−α, t0+α]×Ω2

and f (t, x, ·) is Lipschitz continuous with Lipschitz constant L2 > 0 for

every (t, x) ∈ [t0−α, t0+α]×Ω1. If xi : [t0−α, t0+α]→ Rn (i = 1,2)
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1. Fundamental Theory

satisfy 


ẋi = f (t, xi, µi)
xi(t0) = a,

then

|x1(t)− x2(t)| ≤ L2

L1
|µ1 − µ2|(eL1|t−t0| − 1) (1.19)

for t ∈ [t0 − α, t0 +α].

This theorem shows continuous dependence on parameters if, in

addition to the hypotheses of the Picard-Lindelöf Theorem, the right-

hand side of the ODE in (1.18) is assumed to be Lipschitz continuous

with respect to the parameter (on finite time intervals). The connec-

tion between (1.17) and (1.18) shows that the hypotheses of the Picard-

Lindelöf Theorem are sufficient to guarantee continuous dependence

on initial conditions. Note the exponential dependence of the modulus

of continuity on |t − t0|.

Proof. For simplicity, we only consider t ≥ t0. Note that

|x1(t)− x2(t)| =
∣∣∣∣∣

∫ t

t0
[f (s, x1(s), µ1)− f (s, x2(s), µ2]ds

∣∣∣∣∣

≤
∫ t

t0
|f (s, x1(s), µ1)− f (s, x2(s), µ2)|ds

≤
∫ t

t0
|f (s, x1(s), µ1)− f (s, x1(s), µ2)|ds

+
∫ t

t0
|f (s, x1(s), µ2)− f (s, x2(s), µ2)|ds

≤
∫ t

t0
[L2|µ1 − µ2| + L1|x1(s)− x2(s)|]ds

Let X(t) = L2|µ1 − µ2| + L1|x1(t)− x2(t)|. Then

X(t) ≤ L2|µ1 − µ2| + L1

∫ t

t0
X(s)ds,

so by the Gronwall Inequality X(t) ≤ L2|µ1 − µ2|eL1(t−t0). This means

that (1.19) holds.
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Exercise 5 Suppose that f : R × R → R and g : R × R → R

are continuous and are each Lipschitz continuous with respect to

their second variable. Suppose, also, that x is a global solution to




ẋ = f (t, x)
x(t0) = a,

and y is a global solution to




ẏ = g(t,y)
y(t0) = b.

(a) If f (t, p) < g(t, p) for every (t, p) ∈ R × R and a < b, show

that x(t) < y(t) for every t ≥ t0.

(b) If f (t, p) ≤ g(t, p) for every (t, p) ∈ R × R and a ≤ b, show

that x(t) ≤ y(t) for every t ≥ t0. (Hint: You may want to

use the results of part (a) along with a limiting argument.)

Differentiable Dependence

Theorem (Differentiable Dependence) Suppose f : R × R × R → R is a

continuous function and is continuously differentiable with respect to x

and µ. Then the solution x(·, µ) of




ẋ = f (t, x, µ)
x(t0) = a

(1.20)

is differentiable with respect to µ, and y = xµ := ∂x/∂µ satisfies




ẏ = fx(t, x(t, µ), µ)y + fµ(t, x(t, µ), µ)
y(t0) = 0.

(1.21)

That xµ , if it exists, should satisfy the IVP (1.21) is not terribly sur-

prising; (1.21) can be derived (formally) by differentiating (1.20) with

respect to µ. The real difficulty is showing that xµ exists. The key to
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1. Fundamental Theory

the proof is to use the fact that (1.21) has a solution y and then to

use the Gronwall inequality to show that difference quotients for xµ

converge to y .

Proof. Given µ, it is not hard to see that the right-hand side of the ODE

in (1.21) is continuous in t and y and is locally Lipschitz continuous

with respect to y , so by the Picard-Lindelöf Theorem we know that

(1.21) has a unique solution y(·, µ). Let

w(t, µ,∆µ) := x(t, µ +∆µ)− x(t, µ)∆µ .

We want to show that w(t, µ,∆µ) → y(t, µ) as ∆µ → 0.

Let z(t, µ,∆µ) := w(t, µ,∆µ)− y(t, µ). Then

dz

dt
(t, µ,∆µ) = dw

dt
(t, µ,∆µ)−fx(t, x(t, µ), µ)y(t, µ)−fµ(t, x(t, µ), µ),

and

dw

dt
(t, µ,∆µ) = f (t, x(t, µ +∆µ), µ +∆µ)− f (t, x(t, µ), µ)∆µ

= f (t, x(t, µ +∆µ), µ +∆µ)− f (t, x(t, µ), µ +∆µ)∆µ

+ f (t, x(t, µ), µ +∆µ)− f (t, x(t, µ), µ)∆µ
= fx(t, x(t, µ)+ θ1∆x,µ +∆µ)w(t, µ,∆µ) + fµ(t, x(t, µ), µ + θ2∆µ),

for some θ1, θ2 ∈ [0,1] (by the Mean Value Theorem), where

∆x := x(t, µ +∆µ)− x(t, µ).

Hence,

∣∣∣∣
dz

dt
(t, µ,∆µ)

∣∣∣∣ ≤ |fµ(t, x(t, µ), µ + θ2∆µ)− fµ(t, x(t, µ), µ)|

+ |fx(t, x(t, µ)+ θ1∆x,µ +∆µ)| · |z(t, µ,∆µ)|
+ |fx(t, x(t, µ)+ θ1∆x,µ +∆µ)− fx(t, x(t, µ), µ +∆µ)| · |y(t, µ)|

+ |fx(t, x(t, µ), µ +∆µ)− fx(t, x(t, µ), µ)| · |y(t, µ)|
≤ p(t, µ,∆µ) + (|fx(t, x(t, µ), µ)| + p(t, µ,∆µ))|z(t, µ,∆µ)|,

where p(t, µ,∆µ) → 0 as ∆µ → 0, uniformly on bounded sets.
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Dependence on Parameters

Letting X(t) = ε + (K + ε)|z|, we see that if

|fx(t, x(t, µ), µ)| ≤ K (1.22)

and

|p(t, µ,∆µ)| < ε, (1.23)

then

|z(t, µ,∆µ)| ≤
∫ t

t0

∣∣∣∣
dz

ds
(s, µ,∆µ)

∣∣∣∣ ds ≤
∫ t

t0
X(s)ds

so

X(t) ≤ ε + (K + ε)
∫ t

t0
X(s)ds,

which gives X(t) ≤ εe(K+ε)(t−t0), by Gronwall’s inequality. This, in turn,

gives

|z| ≤ ε(e
(K+ε)(t−t0) − 1)

K + ε .

Given t ≥ t0, pick K so large that (1.22) holds. As ∆µ → 0, we can

take ε arbitrarily small and still have (1.23) hold, to see that

lim
∆µ→0

z(t, µ,∆µ) = 0.
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Linear Systems

2.1 Constant Coefficient Linear Equations

Linear Equations

Definition Given

f : R×Rn → Rn,

we say that the first-order ODE

ẋ = f (t, x) (2.1)

is linear if every linear combination of solutions of (2.1) is a solution

of (2.1).

Definition Given two vector spaces X and Y, L(X,Y) is the space of

linear maps from X to Y.

Exercise 6 Show that if (2.1) is linear (and f is continuous) then

there is a function A : R → L(Rn,Rn) such that f (t, p) = A(t)p,

for every (t, p) ∈ R×Rn.

ODEs of the form ẋ = A(t)x + g(t) are also often called linear, al-

though they don’t satisfy the definition given above. These are called

inhomogeneous; ODEs satisfying the previous definition are called ho-

mogeneous.
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2. Linear Systems

Constant Coefficients and the Matrix Exponential

Here we will study the autonomous IVP



ẋ = Ax
x(0) = x0,

(2.2)

where A ∈ L(Rn,Rn), or equivalently A is a (constant) n×n matrix.

If n = 1, then we’re dealing with ẋ = ax. The solution is x(t) =
etax0. When n > 1, we will show that we can similarly define etA in a

natural way, and the solution of (2.2) will be given by x(t) = etAx0.

Given B ∈ L(Rn,Rn), we define its matrix exponential

eB :=
∞∑

k=0

Bk

k!
.

We will show that this series converges, but first we specify a norm on

L(Rn,Rn).

Definition The operator norm ‖B‖ of an element B ∈ L(Rn,Rn) is de-

fined by

‖B‖ = sup
x≠0

|Bx|
|x| = sup

|x|=1

|Bx|.

L(Rn,Rn) is a Banach space under the operator norm. Thus, to

show that the series for eB converges, it suffices to show that
∥∥∥∥∥∥

m∑

k=ℓ

Bk

k!

∥∥∥∥∥∥

can be made arbitrarily small by taking m ≥ ℓ ≥ N for N sufficiently

large.

Suppose B1, B2 ∈ L(Rn,Rn) and B2 does not map everything to

zero. Then

‖B1B2‖ = sup
x≠0

|B1B2x|
|x| = sup

B2x≠0,x≠0

|B1B2x|
|B2x|

· |B2x|
|x|

≤
(

sup
y≠0

|B1y|
|y|

)(
sup
x≠0

|B2x|
|x|

)
= ‖B1‖ · ‖B2‖.

If B2 does map everything to zero, then ‖B2‖ = ‖B1B2‖ = 0, so ‖B1B2‖ ≤
‖B1‖ · ‖B2‖, obviously. Thus, the operator norm is submultiplicative.
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Constant Coefficient Linear Equations

Using this property, we have

∥∥∥∥∥∥

m∑

k=ℓ

Bk

k!

∥∥∥∥∥∥
≤

m∑

k=ℓ

∥∥∥∥∥
Bk

k!

∥∥∥∥∥ ≤
m∑

k=ℓ

‖B‖k
k!
.

Since the regular exponential series (for real arguments) has an infinite

radius of convergence, we know that the last quantity in this estimate

goes to zero as ℓ,m ↑ ∞.

Thus, eB makes sense, and, in particular, etA makes sense for each

fixed t ∈ R and each A ∈ L(Rn,Rn). But does x(t) := etAx0 solve

(2.2)? To check that, we’ll need the following important property.

Lemma If B1, B2 ∈ L(Rn,Rn) and B1B2 = B2B1, then eB1+B2 = eB1eB2 .

Proof. Using commutativity, we have

eB1eB2 =


∞∑

j=0

B
j
1

j!






∞∑

k=0

Bk2
k!


 =

∞∑

j=0

∞∑

k=0

B
j
1B
k
2

j!k!
=

∞∑

i=0

∑

j+k=i

B
j
1B
k
2

j!k!

=
∞∑

i=0

i∑

j=0

B
j
1B
(i−j)
2

j!(i− j)! =
∞∑

i=0

i∑

j=0

(
i

j

)
B
j
1B
(i−j)
2

i!

=
∞∑

i=0

(B1 + B2)i

i!
= eB1+B2 .

Now, if x : R→ Rn is defined by x(t) := etAx0, then

d

dt
x(t) = lim

h→0

x(t + h)− x(t)
h

= lim
h→0

e(t+h)Ax0 − etAx0

h

=
(

lim
h→0

e(t+h)A − etA
h

)
x0 =

(
lim
h→0

ehA − I
h

)
etAx0

=

lim
h→0

∞∑

k=1

hk−1Ak

k!


 etAx0 = AetAx0 = Ax(t),

so x(t) = etAx0 really does solve (2.2).
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2. Linear Systems

2.2 Understanding the Matrix Exponential

Transformations

Now that we have a representation of the solution of linear constant-

coefficient initial-value problems, we should ask ourselves: “What good

is it?” Does the power series formula for the matrix exponential pro-

vide an efficient means for calculating exact solutions? Not usually.

Is it an efficient way to compute accurate numerical approximations

to the matrix exponential? Not according to Matrix Computations by

Golub and Van Loan. Does it provide insight into how solutions be-

have? It is not clear that it does. There are, however, transformations

that may help us handle these problems.

Suppose that B, P ∈ L(Rn,Rn) are related by a similarity transfor-

mation; i.e., B = QPQ−1 for some invertible Q. Calculating, we find

that

eB =
∞∑

k=0

Bk

k!
=

∞∑

k=0

(QPQ−1)k

k!
=

∞∑

k=0

QPkQ−1

k!

=Q



∞∑

k=0

Pk

k!


Q−1 = QePQ−1.

It would be nice if, given B, we could choose Q so that P were a

diagonal matrix, since (as can easily be checked)

ediag{p1,p2,...,pn} = diag{ep1 , ep2 , . . . , epn}.

Unfortunately, this cannot always be done. Over the next few sections,

we will show that what can be done, in general, is to pick Q so that

P = S + N , where S is a semisimple matrix with a fairly simple form,

N is a nilpotent matrix with a fairly simple form, and S and N com-

mute. (Recall that a matrix is semisimple if it is diagonalizable over

the complex numbers and that a matrix is nilpotent if some power of

the matrix is 0.) The forms of S and N are simple enough that we

can calculate their exponentials fairly easily, and then we can multiply

them to get the exponential of S +N .

We will spend a significant amount of time carrying out the project

described in the previous paragraph, even though it is linear algebra

that some of you have probably seen before. Since understanding the

30



theoryofodes July 4, 2007 13:20 Page 31 �



�
	

�



�
	

�



�
	

�



�
	

Understanding the Matrix Exponential

behavior of constant coefficient systems plays a vital role in helping us

understand more complicated systems, I feel that the time investment

is worth it. The particular approach we will take follows chapters 3, 4,

5, and 6, and appendix 3 of Hirsch and Smale fairly closely.

Eigensystems

Given B ∈ L(Rn,Rn), recall that that λ ∈ C is an eigenvalue of B if

Bx = λx for some nonzero x ∈ Rn or if B̃x = λx for some nonzero

x ∈ Cn, where B̃ is the complexification of B; i.e., the element of

L(Cn,Cn) which agrees with B on Rn. (Just as we often identify a linear

operator with a matrix representation of it, we will usually not make

a distinction between an operator on a real vector space and its com-

plexification.) A nonzero vector x for which Bx = λx for some scalar

λ is an eigenvector. An eigenvalue λ with corresponding eigenvector x

form an eigenpair (λ,x).

If an operator A ∈ L(Rn,Rn) were chosen at random, it would al-

most surely have n distinct eigenvalues {λ1, . . . , λn} and n correspond-

ing linearly independent eigenvectors {x1, . . . , xn}. If this is the case,

then A is similar to the (possibly complex) diagonal matrix



λ1 0 · · · 0

0
.. .

. . .
...

...
. . .

. . . 0

0 · · · 0 λn



.

More specifically,

A =


x1 · · · xn


 ·




λ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 λn



·


x1 · · · xn




−1

.

If the eigenvalues of A are real and distinct, then this means that

tA =


x1 · · · xn


 ·




tλ1 0 · · · 0

0
.. .

. . .
...

...
. . .

. . . 0

0 · · · 0 tλn



·


x1 · · · xn




−1

,

31



theoryofodes July 4, 2007 13:20 Page 32 �



�
	

�



�
	

�



�
	

�



�
	

2. Linear Systems

and the formula for the matrix exponential then yields

etA =


x1 · · · xn


 ·




etλ1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0

0 · · · 0 etλn



·


x1 · · · xn




−1

.

This formula should make clear how the projections of etAx0 grow or

decay as t → ±∞.

The same sort of analysis works when the eigenvalues are (non-

trivially) complex, but the resulting formula is not as enlightening. In

addition to the difficulty of a complex change of basis, the behavior of

etλk is less clear when λk is not real.

One way around this is the following. Sort the eigenvalues (and

eigenvectors) of A so that complex conjugate eigenvalues {λ1, λ1, . . . ,

λm, λm} come first and are grouped together and so that real eigen-

values {λm+1, . . . , λr} come last. For k ≤ m, set ak = Reλk ∈ R,

bk = Imλk ∈ R, yk = Rexk ∈ Rn, and zk = Imxk ∈ Rn. Then

Ayk = ARexk = ReAxk = Reλkxk = (Reλk)(Rexk)− (Imλk)(Imxk)
= akyk − bkzk,

and

Azk = A Imxk = ImAxk = Imλkxk = (Imλk)(Rexk)+ (Reλk)(Imxk)

= bkyk + akzk.

Using these facts, we have A =QPQ−1, where

Q =


z1 y1 · · · · · · zm ym xm+1 · · · xr




and P is the (m + r) × (m + r) block diagonal matrix, whose first

m diagonal blocks are the 2× 2 matrices

Ak =
[
ak −bk
bk ak

]

for k = 1, . . . ,m, and whose last r −m diagonal blocks are the 1 × 1

matrices [λk] for k =m+ 1, . . . , r .
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Generalized Eigenspace Decomposition

In order to compute etA from this formula, we’ll need to know how

to compute etAk . This can be done using the power series formula. An

alternative approach is to realize that

[
x(t)

y(t)

]
:= etAk

[
c

d

]

is supposed to solve the IVP





ẋ = akx − bky
ẏ = bkx + aky
x(0) = c
y(0) = d.

(2.3)

Since we can check that the solution of (2.3) is

[
x(t)

y(t)

]
=
[
eakt(c cosbkt − d sinbkt)

eakt(d cosbkt + c sinbkt)

]
,

we can conclude that

etAk =
[
eakt cosbkt −eakt sinbkt

eakt sinbkt eakt cosbkt

]

Putting this all together and using the form of P , we see that etA =
QetPQ−1, where etP is the (m + r) × (m + r) block diagonal matrix

whose firstm diagonal blocks are the 2× 2 matrices

[
eakt cosbkt −eakt sinbkt

eakt sinbkt eakt cosbkt

]

for k = 1, . . . ,m, and the last r −m diagonal blocks are the 1 × 1

matrices [eλkt] for k =m+ 1, . . . , r .

This representation of etA shows that not only may the projec-

tions of etAx0 grow or decay exponentially, they may also exhibit si-

nusoidally oscillatory behavior.

2.3 Generalized Eigenspace Decomposition

Eigenvalues don’t have to be distinct for the analysis of the matrix

exponential that was done last time to work. There just needs to be
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2. Linear Systems

a basis of eigenvectors for Rn (or Cn). Unfortunately, we don’t always

have such a basis. For this reason, we need to generalize the notion of

an eigenvector.

First, some definitions:

Definition The algebraic multiplicity of an eigenvalue λ of an operator

A is the multiplicity of λ as a zero of the characteristic polynomial

det(A− xI).

Definition The geometric multiplicity of an eigenvalue λ of an operator

A is the dimension of the corresponding eigenspace, i.e., the dimension

of the space of all the eigenvectors of A corresponding to λ.

It is not hard to show (e.g., through a change-of-basis argument)

that the geometric multiplicity of an eigenvalue is always less than or

equal to its algebraic multiplicity.

Definition A generalized eigenvector of A is a vector x such that (A −
λI)kx = 0 for some scalar λ and some k ∈ N.

Definition If λ is an eigenvalue of A, then the generalized eigenspace

of A belonging to λ is the space of all generalized eigenvectors of A

corresponding to λ.

Definition We say that a vector space V is the direct sum of subspaces

V1, . . . ,Vm of V and write

V = V1 ⊕ · · · ⊕ Vm

if for each v ∈ V there is a unique (v1, . . . , vm) ∈ V1 × · · · ×Vm such

that v = v1 + · · · + vm.

Theorem (Primary Decomposition Theorem) Let B be an operator on E,

where E is a complex vector space, or else E is real and B has real

eigenvalues. Then E is the direct sum of the generalized eigenspaces

of B. The dimension of each generalized eigenspace is the algebraic

multiplicity of the corresponding eigenvalue.
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Generalized Eigenspace Decomposition

Before proving this theorem, we introduce some notation and state

and prove two lemmas.

Given T : V → V , let

N(T) = {x ∈ V
∣∣ T kx = 0 for some k > 0

}
,

and let

R(T) = {x ∈ V
∣∣ T ku = x has a solution u for every k > 0

}
.

Note that N(T) is the union of the null spaces of the positive powers of

T and R(T) is the intersection of the ranges of the positive powers of

T . This union and intersection are each nested, and that implies that

there is a number m ∈ N such that R(T) is the range of Tm and N(T)

is the nullspace of Tm.

Lemma If T : V → V , then V = N(T)⊕ R(T).

Proof. Pick m such that R(T) is the range of Tm and N(T) is the

nullspace of Tm. Note that T |R(T) : R(T) → R(T) is invertible. Given

x ∈ V , let y = (
T |R(T)

)−m
Tmx and z = x − y . Clearly, x = y + z,

y ∈ R(T), and Tmz = Tmx − Tmy = 0, so z ∈ N(T). If x = ỹ + z̃ for

some other ỹ ∈ R(T) and z̃ ∈ N(T) then Tmỹ = Tmx − Tmz̃ = Tmx,

so ỹ = y and z̃ = z.

Lemma If λj , λk are distinct eigenvalues of T : V → V , then

N(T − λjI) ⊆ R(T − λkI).

Proof. Note first that (T −λkI)N(T −λjI) ⊆ N(T −λjI). We claim that,

in fact, (T − λkI)N(T − λjI) = N(T − λjI); i.e., that

(T − λkI)|N(T−λj I) : N(T − λjI)→ N(T − λjI)

is invertible. Suppose it isn’t; then we can pick a nonzero x ∈ N(T −
λjI) such that (T−λkI)x = 0. But if x ∈ N(T−λjI) then (T−λjI)mjx =
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2. Linear Systems

0 for some mj ≥ 0. Calculating,

(T − λjI)x = Tx − λjx = λkx − λjx = (λk − λj)x,
(T − λjI)2x = T(λk − λj)x − λj(λk − λj)x = (λk − λj)2x,

...

(T − λjI)mjx = · · · = (λk − λj)mjx ≠ 0,

contrary to assumption. Hence, the claim holds.

Note that this implies not only that

(T − λkI)N(T − λjI) = N(T − λjI)

but also that

(T − λkI)mN(T − λjI) = N(T − λjI)

for everym ∈ N. This means that

N(T − λjI) ⊆ R(T − λkI).

Proof of the Principal Decomposition Theorem. The claim is obviously

true if the dimension of E is 0 or 1. We prove it for dimE > 1 by

induction on dimE. Suppose it holds on all spaces of smaller dimen-

sion than E. Let λ1, λ2, . . . , λq be the eigenvalues of B with algebraic

multiplicities n1, n2, . . . , nq. By the first lemma,

E = N(B − λqI)⊕ R(B − λqI).

Note that dimR(B−λqI) < dimE, and R(B−λqI) is (positively) invari-

ant under B. Applying our assumption to B|R(B−λqI) : R(B − λqI) →
R(B − λqI), we get a decomposition of R(B − λqI) into the generalized

eigenspaces of B|R(B−λqI). By the second lemma, these are just

N(B − λ1I),N(B − λ2I), . . . , N(B − λq−1I),

so

E = N(B − λ1I)⊕N(B − λ2I)⊕ · · · ⊕N(B − λq−1I)⊕N(B − λqI).
36
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Operators on Generalized Eigenspaces

Now, by the second lemma, we know that B|N(B−λkI) has λk as its

only eigenvalue, so dimN(B − λkI) ≤ nk. Since

q∑

k=1

nk = dimE =
q∑

k=1

dimN(B − λkI),

we actually have dimN(B − λkI) = nk.

2.4 Operators on Generalized Eigenspaces

We’ve seen that the space on which a linear operator acts can be decom-

posed into the direct sum of generalized eigenspaces of that operator.

The operator maps each of these generalized eigenspaces into itself,

and, consequently, solutions of the differential equation starting in a

generalized eigenspace stay in that generalized eigenspace for all time.

Now we will see how the solutions within such a subspace behave by

seeing how the operator behaves on this subspace.

It may seem like nothing much can be said in general since, given a

finite-dimensional vector space V , we can define a nilpotent operator

S on V by

1. picking a basis {v1, . . . , vm} for V ;

2. creating a graph by connecting the nodes {v1, . . . , vm,0} with di-

rected edges in such a way that from each node there is a unique

directed path to 0;

3. defining S(vj) to be the unique node vk such that there is a di-

rected edge from vj to vk;

4. extending S linearly to all of V .

By adding any multiple of I to S we have an operator for which V is

a generalized eigenspace. It turns out, however, that there are really

only a small number of different possible structures that may arise

from this seemingly general process.

To make this more precise, we first need a definition, some new

notation, and a lemma.
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2. Linear Systems

Definition A subspace Z of a vector space V is a cyclic subspace of S

on V if SZ ⊆ Z and there is some x ∈ Z such that Z is spanned by

{x, Sx, S2x, . . .}.

Given S, note that every vector x ∈ V generates a cyclic subspace.

Call it Z(x) or Z(x, S). If S is nilpotent, write nil(x) or nil(x, S) for the

smallest nonnegative integer k such that Skx = 0.

Lemma The set {x, Sx, . . . , Snil(x)−1x} is a basis for Z(x).

Proof. Obviously these vectors span Z(x); the question is whether they

are linearly independent. If they were not, we could write down a linear

combination α1Sp1x + · · · + αkSpkx, with αj ≠ 0 and 0 ≤ p1 < p2 <

· · · < pk ≤ nil(x) − 1, that added up to zero. Applying Snil(x)−p1−1 to

this linear combination would yield α1Snil(x)−1x = 0, contradicting the

definition of nil(x).

Theorem If S : V → V is nilpotent then V can be written as the direct

sum of cyclic subspaces of S on V . The dimensions of these subspaces

are determined by the operator S.

Proof. The proof is inductive on the dimension of V . It is clearly true

if dimV = 0 or 1. Assume it is true for all operators on spaces of di-

mension less than dimV .

Step 1: The dimension of SV is less than the dimension of V .

If this weren’t the case, then S would be invertible and could not pos-

sibly be nilpotent.

Step 2: For some k ∈ N and for some nonzero yj ∈ SV , j = 1, . . . , k,

SV = Z(y1)⊕ · · · ⊕ Z(yk). (2.4)

This is a consequence of Step 1 and the induction hypothesis.

Pick xj ∈ V such that Sxj = yj , for j = 1, . . . , k. Suppose that
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Operators on Generalized Eigenspaces

zj ∈ Z(xj) for each j and

z1 + · · · + zk = 0. (2.5)

We will show that zj = 0 for each j. This will mean that the direct sum

Z(x1)⊕ · · · ⊕ Z(xk) exists.

Step 3: Sz1 + · · · + Szk = 0.

This follows from applying S to both sides of (2.5).

Step 4: For each j, Szj ∈ Z(yj).
The fact that zj ∈ Z(xj) implies that

zj = α0xj + α1Sxj + · · · +αnil(xj)−1S
nil(xj)−1xj (2.6)

for some αi. Applying S to both sides of (2.6) gives

Szj = α0yj +α1Syj + · · · + αnil(xj)−2S
nil(xj)−2yj ∈ Z(yj).

Step 5: For each j, Szj = 0.

This is a consequence of Step 3, Step 4, and (2.4).

Step 6: For each j, zj ∈ Z(yj).
If

zj = α0xj + α1Sxj + · · · +αnil(xj)−1S
nil(xj)−1xj

then by Step 5

0 = Szj = α0yj +α1Syj + · · · +αnil(xj)−2S
nil(xj)−2yj .

Since nil(xj) − 2 = nil(yj) − 1, the vectors in this linear combination

are linearly independent; thus, αi = 0 for i = 0, . . . ,nil(xj) − 2. In

particular, α0 = 0, so

zj = α1yj + · · · +αnil(xj)−1S
nil(xj)−2yj ∈ Z(yj).

39



theoryofodes July 4, 2007 13:20 Page 40 �



�
	

�



�
	

�



�
	

�



�
	

2. Linear Systems

Step 7: For each j, zj = 0.

This is a consequence of Step 6, (2.4), and (2.5).

We now know that Z(x1)⊕· · ·⊕Z(xk) =: Ṽ exists, but it is not nec-

essarily all of V . Choose a subspace W of Null(S) such that Null(S) =
(Ṽ ∩ Null(S)) ⊕W . Choose a basis {w1, . . . ,wℓ} for W and note that

W = Z(w1)⊕ · · · ⊕ Z(wℓ).

Step 8: The direct sum Z(x1)⊕ · · · ⊕ Z(xk)⊕Z(w1)⊕ · · · ⊕ Z(wℓ)
exists.

This is a consequence of the fact that the direct sums Z(x1) ⊕ · · · ⊕
Z(xk) and Z(w1)⊕ · · · ⊕ Z(wℓ) exist and that Ṽ ∩W = {0}.

Step 9: V = Z(x1)⊕ · · · ⊕ Z(xk)⊕ Z(w1)⊕ · · · ⊕ Z(wℓ).
Let x ∈ V be given. Recall that Sx ∈ SV = Z(y1)⊕ · · · ⊕Z(yk). Write

Sx = s1 + · · · + sk with sj ∈ Z(yj). If

sj = α0yj + α1Syj + · · · +αnil(yj)−1S
nil(yj)−1yj ,

let

uj = α0xj +α1Sxj + · · · +αnil(yj)−1S
nil(yj)−1xj ,

and note that Suj = sj and that uj ∈ Z(xj). Setting u = u1+· · ·+uk,
we have

S(x −u) = Sx − Su = (s1 + · · · + sk)− (s1 + · · · + sk) = 0,

so x −u ∈ Null(S). By definition of W , that means that

x −u ∈ Z(x1)⊕ · · · ⊕ Z(xk)⊕ Z(w1)⊕ · · · ⊕ Z(wℓ).

Since u ∈ Z(x1)⊕ · · · ⊕ Z(xk), we have

x ∈ Z(x1)⊕ · · · ⊕ Z(xk)⊕Z(w1)⊕ · · · ⊕ Z(wℓ).

This completes the proof of the first sentence in the theorem. The

second sentence follows similarly by induction.
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Real Canonical Form

2.5 Real Canonical Form

Real Canonical Form

We now use the information contained in the previous theorems to

find simple matrices representing linear operators. Clearly, a nilpotent

operator S on a cyclic space Z(x) can be represented by the matrix




0 · · · · · · · · · 0

1
. . .

...

0
. . .

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 1 0




,

with the corresponding basis being {x, Sx, . . . , Snil(x)−1x}. Thus, if λ

is an eigenvalue of an operator T , then the restriction of T to a cyclic

subspace of T − λI on the generalized eigenspace N(T − λI) can be

represented by a matrix of the form




λ 0 · · · · · · 0

1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 1 λ




. (2.7)

If λ = a+bi ∈ C \R is an eigenvalue of an operator T ∈ L(Rn,Rn),
and Z(x, T − λI) is one of the cyclic subspaces whose direct sum is

N(T − λI), then Z(x, T − λI) can be taken to be one of the cyclic sub-

spaces whose direct sum is N(T − λI). If we set k = nil(x, T − λI) − 1

and yj = Re((T − λI)jx) and zj = Im((T − λI)jx) for j = 0, . . . , k, then

we have Tyj = ayj − bzj +yj+1 and Tzj = byj + azj + zj+1 for j =
0, . . . , k − 1, and Tyk = ayk − bzk and Tzk = byk + azk. The 2k + 2

real vectors {z0, y0, . . . , zk, yk} span Z(x, T − λI)⊕ Z(x, T − λI) over

C and also span a (2k + 2)-dimensional space over R that is invariant

under T . On this real vector space, the action of T can be represented
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2. Linear Systems

by the matrix




a −b 0 0 · · · · · · · · · · · · 0 0

b a 0 0 · · · · · · · · · · · · 0 0

1 0
.. .

. . .
. . .

. . .
...

...

0 1
. . .

. . .
. . .

. . .
...

...

0 0
. . .

. . .
. . .

. . .
. . .

. . .
...

...

0 0
. . .

. . .
. . .

. . .
. . .

. . .
...

...

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0 0

...
...

. . .
. . .

. . .
. . .

. . .
. . . 0 0

0 0 · · · · · · 0 0 1 0 a −b
0 0 · · · · · · 0 0 0 1 b a




. (2.8)

The restriction of an operator to one of its generalized eigenspaces

has a matrix representation like






λ

1 λ

1 λ




[
λ

1 λ

]

[
λ
]

[
λ
]

. . .




(2.9)

if the eigenvalue λ is real, with blocks of the form (2.7) running down

the diagonal. If the eigenvalue is complex, then the matrix representa-

tion is similar to (2.9) but with blocks of the form (2.8) instead of the

form (2.7) on the diagonal.

Finally, the matrix representation of the entire operator is block

diagonal, with blocks of the form (2.9) (or its counterpart for complex

eigenvalues). This is called the real canonical form. If we specify the

order in which blocks should appear, then matrices are similar if and

only if they have the same real canonical form.
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2.6 Solving Linear Systems

Exercise 7 Classify all the real canonical forms for operators

on R4. In other words, find a collection of 4× 4 matrices, possibly

with (real) variable entries and possibly with constraints on those

variables, such that

1. Only matrices in real canonical form match one of the matri-

ces in your collection.

2. Each operator on R4 has a matrix representation matching

one of the matrices in your collection.

3. No matrix matching one of your matrices is similar to a ma-

trix matching one of your other matrices.

For example, a suitable collection of matrices for operators on R2

would be:

[
λ 0

1 λ

]
;

[
λ 0

0 µ

]
;

[
a −b
b a

]
, (b ≠ 0).

Computing etA

Given an operator A ∈ L(Rn,Rn), let M be its real canonical form.

Write M = S +N , where S has M ’s diagonal elements λk and diagonal

blocks
[
a −b
b a

]

and 0’s elsewhere, andN hasM ’s off-diagonal 1’s and 2×2 identity ma-

trices. If you consider the restrictions of S and N to each of the cyclic

subspaces of A−λI into which the generalized eigenspaceN(A−λI) of

A is decomposed, you’ll probably be able to see that these restrictions

commute. As a consequence of this fact (and the way Rn can be rep-

resented in terms of these cyclic subspaces), S and N commute. Thus

etM = etSetN .
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2. Linear Systems

Now, etS has eλkt where S has λk, and has
[
eakt cosbkt −eakt sinbkt

eakt sinbkt eakt cosbkt

]

where S has [
ak −bk
bk ak

]
.

The series definition can be used to compute etN , since the fact

that N is nilpotent implies that the series is actually a finite sum. The

entries of etN will be polynomials in t. For example,




0

1
. . .

. . .
. . .

1 0



7→




1

t
. . .

...
. . .

. . .

tm · · · t 1




and




[
0 0

0 0

]

[
1 0

0 1

]
. . .

. . .
. . .[

1 0

0 1

] [
0 0

0 0

]




7→




[
1 0

0 1

]

[
t 0

0 t

]
. . .

...
. . .

. . .[
tm/m! 0

0 tm/m!

]
· · ·

[
t 0

0 t

] [
1 0

0 1

]




.

Identifying A with its matrix representation with respect to the

standard basis, we have A = PMP−1 for some invertible matrix P .

Consequently, etA = PetMP−1. Thus, the entries of etA will be linear

combinations of polynomials times exponentials or polynomials times

exponentials times trigonometric functions.
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Exercise 8 Compute etA (and justify your computations) if

1. A =




0 0 0 0

1 0 0 1

1 0 0 1

0 −1 1 0




2. A =




1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4




Linear Planar Systems

A thorough understanding of constant coefficient linear systems ẋ =
Ax in the plane is very helpful in understanding systems that are non-

linear and/or higher-dimensional.

There are 3 main categories of real canonical forms for an operator

A in L(R2,R2):

•
[
λ 0

0 µ

]

•
[
λ 0

1 λ

]

•
[
a −b
b a

]
, (b ≠ 0)

We will subdivide these 3 categories further into a total of 14 cate-

gories and consider the corresponding phase portraits, i.e., sketches of

some of the trajectories or parametric curves traced out by solutions

in phase space.
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2. Linear Systems

A =
[
λ 0

0 µ

]

(λ < 0 < µ)

saddle

u2

u1
b

1

A =
[
λ 0

0 µ

]

(λ < µ < 0)

stable node

u2

u1
b

2

A =
[
λ 0

0 µ

]

(λ = µ < 0)

stable node

u2

u1b

3
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A =
[
λ 0

0 µ

]

(0 < µ < λ)

unstable node

u2

u1
b

4

A =
[
λ 0

0 µ

]

(0 < λ = µ)

unstable node

u2

u1
b

5

A =
[
λ 0

0 µ

]

(λ < µ = 0)

degenerate

u2

u1b

b

b

6
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2. Linear Systems

A =
[
λ 0

0 µ

]

(0 = µ < λ)

degenerate

u2

u1
b

b

b

7

A =
[
λ 0

0 µ

]

(0 = µ = λ)

degenerate

u2

u1
b

b

b

b

b

b

b

bb

8

A =
[
λ 0

1 λ

]

(λ < 0)

stable node

u2

u1b

9
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A =
[
λ 0

1 λ

]

(0 < λ)

unstable node

u2

u1
b

10

A =
[
λ 0

1 λ

]

(λ = 0)

degenerate

u2

u1
b

b

b

11

A =
[
a −b
b a

]

(a < 0 < b)

stable spiral

u2

u1b

12
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2. Linear Systems

A =
[
a −b
b a

]

(b < 0 < a)

unstable spiral

u2

u1
b

13

A =
[
a −b
b a

]

(a = 0, b > 0)

center

u2

u1
b

14

If A is not in real canonical form, then the phase portrait should

look (topologically) similar but may be rotated, flipped, skewed, and/or

stretched.

2.7 Qualitative Behavior of Linear Systems

Parameter Plane

Some of the information from the preceding phase portraits can be

summarized in a parameter diagram. In particular, let τ = traceA and

let δ = detA, so the characteristic polynomial is λ2 − τλ + δ. Then

the behavior of the trivial solution x(t) ≡ 0 is given by locating the

corresponding point in the (τ, δ)-plane:
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δ

τdegenerate degenerate

c
e
n

te
r δ

= τ
2 /4

unstable spiralstable spiral

unstable nodestable node

saddle

Growth and Decay Rates

Given A ∈ L(Rn,Rn), let

Eu =



⊕

λ>0

N(A− λI)


⊕





⊕

Reλ>0
Imλ≠0

{
Reu

∣∣ u ∈ N(A− λI)}



⊕





⊕

Reλ>0
Imλ≠0

{
Imu

∣∣ u ∈ N(A− λI)}



,

Es =



⊕

λ<0

N(A− λI)


⊕





⊕

Reλ<0
Imλ≠0

{
Reu

∣∣ u ∈ N(A− λI)}



⊕





⊕

Reλ<0
Imλ≠0

{
Imu

∣∣ u ∈ N(A− λI)}



,

and

Ec = N(A)⊕




⊕

Reλ=0
Imλ≠0

{
Reu

∣∣ u ∈ N(A− λI)}



⊕





⊕

Reλ=0
Imλ≠0

{
Imu

∣∣ u ∈ N(A− λI)}



.
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From our previous study of the real canonical form, we know that

Rn = Eu ⊕Es ⊕Ec .

We call Eu the unstable space of A, Es the stable space of A, and Ec
the center space of A.

Each of these subspaces of Rn is invariant under the differential

equation

ẋ = Ax. (2.10)

In other words, if x : R → Rn is a solution of (2.10) and x(0) is in Eu,

Es , or Ec , then x(t) is in Eu, Es , or Ec , respectively, for all t ∈ R. We

shall see that each of these spaces is characterized by the growth or

decay rates of the solutions it contains. Before doing so, we state and

prove a basic fact about finite-dimensional normed vector spaces.

Theorem All norms on Rn are equivalent.

Proof. Since equivalence of norms is transitive, it suffices to prove that

every norm N : Rn → R is equivalent to the standard Euclidean norm

| · |.
Given an arbitrary norm N , and letting xi be the projection of x ∈

Rn onto the ith standard basis vector ei, note that

N(x) = N


n∑

i=1

xiei


 ≤

n∑

i=1

|xi|N(ei) ≤
n∑

i=1

|x|N(ei)

≤


n∑

i=1

N(ei)


 |x|.

This shows half of equivalence; it also shows that N is continuous,

since, by the triangle inequality,

|N(x)−N(y)| ≤ N(x −y) ≤


n∑

i=1

N(ei)


 |x −y|.

The set S := {
x ∈ Rn

∣∣ |x| = 1
}

is clearly closed and bounded and,

therefore, compact, so by the extreme value theorem, N must achieve

a minimum on S. SinceN is a norm (and is, therefore, positive definite),

this minimum must be strictly positive; call it k. Then for any x ≠ 0,

N(x) = N
(
|x| x|x|

)
= |x|N

(
x

|x|
)
≥ k|x|,
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and the estimate N(x) ≥ k|x| obviously holds if x = 0, as well.

Theorem Given A ∈ L(Rn,Rn) and the corresponding decomposition

Rn = Eu ⊕Es ⊕Ec , we have

Eu =
⋃

c>0

{
x ∈ Rn

∣∣ lim
t↓−∞

|e−ctetAx| = 0
}
, (2.11)

Es =
⋃

c>0

{
x ∈ Rn

∣∣ lim
t↑∞

|ectetAx| = 0
}
, (2.12)

and

Ec =
⋂

c>0

{
x ∈ Rn

∣∣ lim
t↓−∞

|ectetAx| = lim
t↑∞

|e−ctetAx| = 0
}
. (2.13)

Proof. By equivalence of norms, instead of using the standard Euclid-

ean norm on Rn we can use the norm

‖x‖ := sup{|P1x|, . . . , |Pnx|},

where Pi : Rn → R represents projection onto the ith basis vector

corresponding to the real canonical form. Because of our knowledge of

the structure of the real canonical form, we know that PietAx is either

of the form

p(t)eλt , (2.14)

where p(t) is a polynomial in t and λ ∈ R is an eigenvalue of A, or of

the form

p(t)eat(α cosbt + β sinbt), (2.15)

where p(t) is a polynomial in t, a+bi ∈ C\R is an eigenvalue of A, and

α and β are real constants. Furthermore, we know that the constant

λ or a is positive if Pi corresponds to a vector in Eu , is negative if Pi

corresponds to a vector in Es , and is zero if Pi corresponds to a vector

in Ec .
Now, let x ∈ Rn be given. Suppose first that x ∈ Es . Then each

PietAx is either identically zero or has as a factor a negative exponen-

tial whose constant is the real part of an eigenvalue of A that is to the

left of the imaginary axis in the complex plane. Let σ(A) be the set of

eigenvalues of A, and set

c =
∣∣max

{
Reλ

∣∣ λ ∈ σ(A) and Reλ < 0
}∣∣

2
.
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2. Linear Systems

Then ectPietAx is either identically zero or decays exponentially to

zero as t ↑ ∞.

Conversely, suppose x ∉ Es . Then Pix ≠ 0 for some Pi correspond-

ing to a real canonical basis vector in Eu or in Ec . In either case, PietAx

is not identically zero and is of the form (2.14) where λ ≥ 0 or of the

form (2.15) where a ≥ 0. Thus, if c > 0 then

lim sup
t↑∞

|ectPietAx| = ∞,

so

lim sup
t↑∞

‖ectetAx‖ = ∞.

The preceding two paragraphs showed that (2.12) is correct. By

applying this fact to the time-reversed problem ẋ = −Ax, we find that

(2.11) is correct, as well. We now consider (2.13).

If x ∈ Ec , then for each i, PietAx is either a polynomial or the

product of a polynomial and a periodic function. If c > 0 and we

multiply such a function of t by ect and let t ↓ −∞ or we multiply it by

e−ct and let t ↑ ∞, then the result converges to zero.

If, on the other hand, x ∉ Ec then for some i, PietAx contains a

nontrivial exponential term. If c > 0 is sufficiently small then either

ectPietAx diverges as t ↓ −∞ or e−ctPietAx diverges as t ↑ ∞. This

completes the verification of (2.13).

2.8 Exponential Decay

Definition If Eu = Rn, we say that the origin is a source and etA is an

expansion.

Definition If Es = Rn, we say that the origin is a sink and etA is a

contraction.

Theorem

(a) The origin is a source for the equation ẋ = Ax if and only if for a

given norm ‖ · ‖ there are constants k, b > 0 such that

‖etAx‖ ≤ ketb‖x‖

for every t ≤ 0 and x ∈ Rn.
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Exponential Decay

(b) The origin is a sink for the equation ẋ = Ax if and only if for a given

norm ‖ · ‖ there are constants k, b > 0 such that

‖etAx‖ ≤ ke−tb‖x‖

for every t ≥ 0 and x ∈ Rn.

Proof. The “if” parts are a consequence of the previous theorem. The

“only if” parts follow from the proof of the previous theorem.

Note that a contraction does not always “contract” things immedi-

ately; i.e., |etAx| � |x|, in general. For example, consider

A =
[
−1/4 0

1 −1/4

]
.

If

x(t) =
[
x1(t)

x2(t)

]

is a solution of ẋ = Ax, then

d

dt
|x(t)|2 = 2〈x, ẋ〉 = 2

[
x1 x2

][−1/4 0

1 −1/4

][
x1

x2

]

= −1

2
x2

1 + 2x1x2 −
1

2
x2

2 = x1x2 −
1

2
(x1 − x2)

2,

which is greater than zero if, for example, x1 = x2 > 0. However, we

have the following:

Theorem

(a) If etA is an expansion then there is some norm ‖ · ‖ and some con-

stant b > 0 such that

‖etAx‖ ≤ etb‖x‖

for every t ≤ 0 and x ∈ Rn.

(b) If etA is a contraction then there is some norm ‖ · ‖ and some con-

stant b > 0 such that

‖etAx‖ ≤ e−tb‖x‖

for every t ≥ 0 and x ∈ Rn.
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2. Linear Systems

Proof. The idea of the proof is to pick a basis with respect to which A

is represented by a matrix like the real canonical form but with some

small constant ε > 0 in place of the off-diagonal 1’s. (This can be done

by rescaling.) If the Euclidean norm with respect to this basis is used,

the desired estimates hold. The details of the proof may be found in

Chapter 7, §1, of Hirsch and Smale.

Exercise 9

(a) Show that if etA and etB are both contractions on Rn, and BA =
AB, then et(A+B) is a contraction.

(b) Give a concrete example that shows that (a) can fail if the as-

sumption that AB = BA is dropped.

Exercise 10 Problem 5 on page 137 of Hirsch and Smale reads:

“For any solution to ẋ = Ax, A ∈ L(Rn,Rn), show that exactly

one of the following alternatives holds:

(a) lim
t↑∞
x(t) = 0 and lim

t↓−∞
|x(t)| = ∞;

(b) lim
t↑∞

|x(t)| = ∞ and lim
t↓−∞

x(t) = 0;

(c) there exist constants M,N > 0 such that M < |x(t)| < N for

all t ∈ R.”

Is what they ask you to prove true? If so, prove it. If not,

determine what other possible alternatives exist, and prove that

you have accounted for all possibilities.

2.9 Nonautonomous Linear Systems

We now move from the constant coefficient equation ẋ = Ax to the

nonautonomous equation

ẋ = A(t)x. (2.16)
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Nonautonomous Linear Systems

For simplicity we will assume that the domain of A is R.

Solution Formulas

In the scalar, or one-dimensional, version of (2.16)

ẋ = a(t)x (2.17)

we can separate variables and arrive at the formula

x(t) = x0e
∫ t
t0
a(τ)dτ

for the solution of (2.17) that satisfies the initial condition x(t0) = x0.

It seems like the analogous formula for the solution of (2.16) with

initial condition x(t0) = x0 should be

x(t) = e
∫ t
t0
A(τ)dτx0. (2.18)

Certainly, the right-hand side of (2.18) makes sense (assuming that A

is continuous). But does it give the correct answer?

Let’s consider a specific example. Let

A(t) =
[

0 0

1 t

]

and t0 = 0. Note that

∫ t

0
A(τ)dτ =

[
0 0

t t2/2

]
= t

2

2

[
0 0

2/t 1

]
,

and

e



0 0

t t2/2




=
[

1 0

0 1

]
+ t

2

2

[
0 0

2/t 1

]
+
(
t2

2

)2

2!

[
0 0

2/t 1

]
+ · · ·

=
[

1 0

0 1

]
+
(
et

2/2 − 1
)[ 0 0

2/t 1

]
=

 1 0

2
t

(
et

2/2 − 1
)
et

2/2


 .

On the other hand, we can solve the corresponding system

ẋ1 = 0

ẋ2 = x1 + tx2
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2. Linear Systems

directly. Clearly x1(t) = α for some constant α. Plugging this into

the equation for x2, we have a first-order scalar equation which can be

solved by finding an integrating factor. This yields

x2(t) = βet2/2 +αet2/2
∫ t

0
e−s

2/2 ds

for some constant β. Since x1(0) = α and x2(0) = β, the solution of

(2.16) is [
x1(t)

x2(t)

]
=

 1 0

et
2/2
∫ t
0 e

−s2/2 ds et
2/2



[
x1(0)

x2(0)

]
.

Since

et
2/2

∫ t

0
e−s

2/2 ds ≠
2

t

(
et

2/2 − 1
)

(2.18) doesn’t work? What went wrong? The answer is that

d

dt
e
∫ t
0 A(τ)dτ = lim

h→0

e
∫ t+h
0 A(τ)dτ − e

∫ t
0 A(τ)dτ

h

≠ lim
h→0

e
∫ t
0 A(τ)dτ

[
e
∫ t+h
t A(τ)dτ − I

]

h
,

in general, because of possible noncommutativity.

Structure of Solution Set

We abandon attempts to find a general formula for solving (2.16), and

instead analyze the general structure of the solution set.

Definition If x(1), x(2), . . . , x(n) are linearly independent solutions of

(2.16) (i.e., no nontrivial linear combination gives the zero function)

then the matrix

X(t) :=
[
x(1)(t) · · · x(n)(t)

]

is called a fundamental matrix for (2.16).

Theorem The dimension of the vector space of solutions of (2.16) is n.

Proof. Pick n linearly independent vectors v(k) ∈ Rn, k = 1, . . . , n,

and let x(k) be the solution of (2.16) that satisfies the initial condi-

tion x(k)(0) = v(k). Then these n solutions are linearly independent.
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Furthermore, we claim that any solution x of (2.16) is a linear com-

bination of these n solutions. To see why this is so, note that x(0)

must be expressible as a linear combination of {v(1), . . . , v(n)}. The

corresponding linear combination of {x(1), . . . , x(n)} is, by linearity, a

solution of (2.16) that agrees with x at t = 0. Since A is continuous,

the Picard-Lindelöf Theorem applies to (2.16) to tell us that solutions

of IVPs are unique, so this linear combination of {x(1), . . . , x(n)} must

be identical to x.

Definition If X(t) is a fundamental matrix and X(0) = I, then it is called

the principal fundamental matrix. (Uniqueness of solutions implies

that there is only one such matrix.)

Definition Given n functions (in some order) from R to Rn, their Wron-

skian is the determinant of the matrix that has these functions as its

columns (in the corresponding order).

Theorem The Wronskian of n solutions of (2.16) is identically zero if and

only if the solutions are linearly dependent.

Proof. Suppose x(1), . . . , x(n) are linearly dependent solutions; i.e.,

n∑

k=1

αkx
(k) = 0

for some constants α1, . . . , αn with
∑n
k=1α

2
k ≠ 0. Then

∑n
k=1αkx

(k)(t)

is 0 for every t, so the columns of the Wronskian W(t) are linearly

dependent for every t. This means W ≡ 0.

Conversely, suppose that the Wronskian W of n solutions x(1), . . . ,

x(n) is identically zero. In particular, W(0) = 0, so x(1)(0), . . . , x(n)(0)

are linearly dependent vectors. Pick constants α1, . . . , αn, with
∑n
k=1α

2
k

nonzero, such that
∑n
k=1αkx

(k)(0) = 0. The function
∑n
k=1αkx

(k) is a

solution of (2.16) that is 0 when t = 0, but so is the function that

is identically zero. By uniqueness of solutions,
∑n
k=1αkx

(k) = 0; i.e.,

x(1), . . . , x(n) are linearly dependent.

Note that this proof also shows that if the Wronskian of n solutions

of (2.16) is zero for some t, then it is zero for all t.
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What if we’re dealing with n arbitrary vector-valued functions (that

are not necessarily solutions of (2.16))? If they are linearly dependent

then their Wronskian is identically zero, but the converse is not true.

For example, [
1

0

]
and

[
t

0

]

have a Wronskian that is identically zero, but they are not linearly de-

pendent. Also, n functions can have a Wronskian that is zero for some

t and nonzero for other t. Consider, for example,

[
1

0

]
and

[
0

t

]
.

Initial-Value Problems

Given a fundamental matrix X(t) for (2.16), define G(t, t0) to be the

quantity X(t)[X(t0)]−1. We claim that x(t) := G(t, t0)v solves the IVP



ẋ = A(t)x
x(t0) = v.

To verify this, note that

d

dt
x = d

dt
(X(t)[X(t0)]

−1v) = A(t)X(t)[X(t0)]−1v = A(t)x,

and

x(t0) = G(t0, t0)v = X(t0)[X(t0)]−1v = v.

Inhomogeneous Equations

Consider the IVP 


ẋ = A(t)x + f (t)
x(t0) = x0.

(2.19)

In light of the results from the previous section when f was identi-

cally zero, it’s reasonable to look for a solution x of (2.19) of the form

x(t) := G(t, t0)y(t), where G is as before, and y is some vector-valued

function.

Note that

ẋ(t) = A(t)X(t)[X(t0)]−1y(t)+G(t, t0)ẏ(t) = A(t)x(t)+G(t, t0)ẏ(t);
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therefore, we need G(t, t0)ẏ(t) = f (t). Isolating, ẏ(t), we need

ẏ(t) = X(t0)[X(t)]−1f (t) = G(t0, t)f (t). (2.20)

Integrating both sides of (2.20), we see that y should satisfy

y(t)−y(t0) =
∫ t

t0
G(t0, s)f (s)ds.

If x(t0) is to be x0, then, since G(t0, t0) = I, we need y(t0) = x0, so

y(t) should be

x0 +
∫ t

t0
G(t0, s)f (s)ds,

or, equivalently, x(t) should be

G(t, t0)x0 +
∫ t

t0
G(t, s)f (s)ds,

since G(t, t0)G(t0, s) = G(t, s). This is called the Variation of Con-

stants formula or the Variation of Parameters formula.

2.10 Nearly Autonomous Linear Systems

Suppose A(t) is, in some sense, close to a constant matrix A. The ques-

tion we wish to address in this section is the extent to which solutions

of the nonautonomous system

ẋ = A(t)x (2.21)

behave like solutions of the autonomous system

ẋ = Ax. (2.22)

Before getting to our main results, we present a pair of lemmas.

Lemma The following are equivalent:

1. Each solution of (2.22) is bounded as t ↑ ∞.

2. The function t 7→ ‖etA‖ is bounded as t ↑ ∞ (where ‖·‖ is the usual

operator norm).
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3. Reλ ≤ 0 for every eigenvalue λ of A and the algebraic multiplicity

of each purely imaginary eigenvalue matches its geometric multi-

plicity.

Proof. That statement 2 implies statement 1 is a consequence of the

definition of the operator norm, since, for each solution x of (2.22),

|x(t)| = |etAx(0)| ≤ ‖etA‖ · |x(0)|.

That statement 1 implies statement 3, and statement 3 implies state-

ment 2 are consequences of what we have learned about the real canon-

ical form of A, along with the equivalence of norms on Rn.

Lemma (Generalized Gronwall Inequality) Suppose X and Φ are nonneg-

ative, continuous, real-valued functions on [t0, T ] for which there is a

nonnegative constant C such that

X(t) ≤ C +
∫ t

t0
Φ(s)X(s)ds,

for every t ∈ [t0, T ]. Then

X(t) ≤ Ce
∫ t
t0
Φ(s)ds .

Proof. The proof is very similar to the proof of the standard Gronwall

inequality. The details are left to the reader.

The first main result deals with the case when A(t) converges to A

sufficiently quickly as t ↑ ∞.

Theorem Suppose that each solution of (2.22) remains bounded as t ↑ ∞
and that, for some t0 ∈ R,

∫∞

t0
‖A(t)−A‖dt < ∞, (2.23)

where ‖ · ‖ is the standard operator norm. Then each solution of (2.21)

remains bounded as t ↑ ∞.

Proof. Let t0 be such that (2.23) holds. Given a solution x of (2.21), let

f (t) = (A(t)−A)x(t), and note that x satisfies the constant-coefficient
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inhomogeneous problem

ẋ = Ax + f (t). (2.24)

Since the matrix exponential provides a fundamental matrix solution to

constant-coefficient linear systems, applying the variation of constants

formula to (2.24) yields

x(t) = e(t−t0)Ax(t0)+
∫ t

t0
e(t−s)A(A(s)−A)x(s)ds. (2.25)

Now, by the first lemma, the boundedness of solutions of (2.22) in

forward time tells us that there is a constant M > 0 such that ‖etA‖ ≤
M for every t ≥ t0. Taking norms and estimating, gives (for t ≥ t0)

|x(t)| ≤ ‖e(t−t0)A‖ · |x(t0)| +
∫ t

t0
‖e(t−s)A‖ · ‖A(s)−A‖ · |x(s)|ds

≤M|x(t0)| +
∫ t

t0
M‖A(s)−A‖ · |x(s)|ds.

Setting X(t) = |x(t)|, Φ(t) = M‖A(t)−A‖, and C = M|x(t0)|, and

applying the generalized Gronwall inequality, we find that

|x(t)| ≤M|x(t0)|eM
∫ t
t0
‖A(s)−A‖ds .

By (2.23), the right-hand side of this inequality is bounded on [t0,∞),
so x(t) is bounded as t ↑ ∞.

The next result deals with the case when the origin is a sink for

(2.22). Will the solutions of (2.21) also all converge to the origin as

t ↑ ∞? Yes, if ‖A(t)−A‖ is sufficiently small.

Theorem Suppose all the eigenvalues of A have negative real part. Then

there is a constant ε > 0 such that if ‖A(t)−A‖ ≤ ε for all t sufficiently

large then every solution of (2.21) converges to 0 as t ↑ ∞.

Proof. Since the origin is a sink, we know that we can choose constants

k, b > 0 such that ‖etA‖ ≤ ke−bt for all t ≥ 0. Pick a constant ε ∈
(0, b/k), and assume that there is a time t0 ∈ R such that ‖A(t)−A‖ ≤
ε for every t ≥ t0.
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Now, given a solution x of (2.21) we can conclude, as in the proof

of the previous theorem, that

|x(t)| ≤ ‖e(t−t0)A‖ · |x(t0)| +
∫ t

t0
‖e(t−s)A‖ · ‖A(s)−A‖ · |x(s)|ds

for all t ≥ t0. This implies that

|x(t)| ≤ ke−b(t−t0)|x(t0)| +
∫ t

t0
ke−b(t−s)ε|x(s)|ds

for all t ≥ t0. Multiplying through by eb(t−t0) and setting y(t) :=
eb(t−t0)|x(t)| yield

y(t) ≤ k|x(t0)| + kε
∫ t

t0
y(s)ds

for all t ≥ t0. The standard Gronwall inequality applied to this estimate

gives

y(t) ≤ k|x(t0)|ekε(t−t0)

for all t ≥ t0, or, equivalently,

|x(t)| ≤ k|x(t0)|e(kε−b)(t−t0)

for all t ≥ t0. Since ε < b/k, this inequality implies that x(t) → 0 as

t ↑ ∞.

Thus, the origin remains a “sink” even when we perturbA by a small

time-dependent quantity. Can we perhaps just look at the (possibly,

time-dependent) eigenvalues of A(t) itself and conclude, for example,

that if all of those eigenvalues have negative real part for all t then

all solutions of (2.21) converge to the origin as t ↑ ∞? The following

example of Markus and Yamabe shows that the answer is “No”.

Exercise 11 Show that if

A(t) =
[
−1+ 3

2 cos2 t 1− 3
2 sin t cos t

−1− 3
2 sin t cos t −1+ 3

2 sin2 t

]

64



theoryofodes July 4, 2007 13:20 Page 65 �



�
	

�



�
	

�



�
	

�



�
	

Periodic Linear Systems

then the eigenvalues of A(t) both have negative real part for every

t ∈ R, but

x(t) :=
[
− cos t

sin t

]
et/2,

which becomes unbounded as t →∞, is a solution to (2.21).

2.11 Periodic Linear Systems

We now consider

ẋ = A(t)x (2.26)

when A is a continuous periodic n×n matrix function of t; i.e., when

there is a constant T > 0 such that A(t + T) = A(t) for every t ∈ R.

When that condition is satisfied, we say, more precisely, that A is T -

periodic. If T is the smallest positive number for which this condition

holds, we say that T is the minimal period of A. (Every continuous,

nonconstant periodic function has a minimal period).

Let A be T -periodic, and let X(t) be a fundamental matrix for (2.26).

Define X̃ : R → L(Rn,Rn) by X̃(t) = X(t + T). Clearly, the columns of

X̃ are linearly independent functions of t. Also,

d

dt
X̃(t) = d

dt
X(t + T) = X′(t + T) = A(t + T)X(t + T) = A(t)X̃(t),

so X̃ solves the matrix equivalent of (2.26). Hence, X̃ is a fundamental

matrix for (2.26).

Because the dimension of the solution space of (2.26) is n, this

means that there is a nonsingular (constant) matrix C such that X(t +
T) = X(t)C for every t ∈ R. C is called a monodromy matrix.

Lemma There exists B ∈ L(Cn,Cn) such that C = eTB .

Proof. Without loss of generality, we assume that T = 1, since if it isn’t

we can just rescale B by a scalar constant. We also assume, without

loss of generality, that C is in Jordan canonical form. (If it isn’t, then

use the fact that P−1CP = eB implies that C = ePBP−1
.) Furthermore,
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because of the way the matrix exponential acts on a block diagonal

matrix, it suffices to show that for each p × p Jordan block

C̃ :=




λ 0 · · · · · · 0

1
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 1 λ




,

C̃ = eB̃ for some B̃ ∈ L(Cp,Cp).
Now, an obvious candidate for B̃ is the natural logarithm of C̃, de-

fined in some reasonable way. Since the matrix exponential was de-

fined by a power series, it seems reasonable to use a similar definition

for a matrix logarithm. Note that C̃ = λI +N = λI(I + λ−1N), where N

is nilpotent. (Since C is invertible, we know that all of the eigenvalues

λ are nonzero.) We guess

B̃ = (logλ)I + log(I + λ−1N), (2.27)

where

log(I +M) := −
∞∑

k=1

(−M)k
k

,

in analogy to the Maclaurin series for log(1 + x). Since N is nilpotent,

this series terminates in our application of it to (2.27). Direct substitu-

tion shows that eB̃ = C̃, as desired.

The eigenvalues ρ of C are called the Floquet multipliers (or charac-

teristic multipliers) of (2.26). The corresponding numbers λ satisfying

ρ = eλT are called the Floquet exponents (or characteristic exponents)

of (2.26). Note that the Floquet exponents are only determined up to a

multiple of (2πi)/T . Given B for which C = eTB , the exponents can be

chosen to be the eigenvalues of B.

Theorem There exists a T -periodic function P : R → L(Rn,Rn) such that

X(t) = P(t)etB .
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Periodic Linear Systems

Proof. Let P(t) = X(t)e−tB . Then

P(t + T) = X(t + T)e−(t+T)B = X(t + T)e−TBe−tB = X(t)Ce−TBe−tB

= X(t)eTBe−TBe−tB = X(t)e−tB = P(t).

The decomposition of X(t) given in this theorem shows that the

behavior of solutions can be broken down into the composition of a

part that is periodic in time and a part that is exponential in time.

Recall, however, that B may have entries that are not real numbers,

so P(t) may be complex, also. If we want to decompose X(t) into a

real periodic matrix times a matrix of the form etB where B is real, we

observe that X(t + 2T) = X(t)C2, where C is the same monodromy

matrix as before. It can be shown that the square of a real matrix can

be written as the exponential of a real matrix. Write C2 = eTB with B

real, and let P(t) = X(t)e−tB as before. Then, X(t) = P(t)etB where P

is now 2T -periodic, and everything is real.

The Floquet multipliers and exponents do not depend on the partic-

ular fundamental matrix chosen, even though the monodromy matrix

does. They depend only on A(t). To see this, let X(t) and Y(t) be

fundamental matrices with corresponding monodromy matrices C and

D. Because X(t) and Y(t) are fundamental matrices, there is a non-

singular constant matrix S such that Y(t) = X(t)S for all t ∈ R. In

particular, Y(0) = X(0)S and Y(T) = X(T)S. Thus, C =

[X(0)]−1X(T) = S[Y(0)]−1Y(T)S−1 = S[Y(0)]−1Y(0)DS−1 = SDS−1.

This means that the monodromy matrices are similar and, therefore,

have the same eigenvalues.

Interpreting Floquet Multipliers and Exponents

Theorem If ρ is a Floquet multiplier of (2.26) and λ is a corresponding

Floquet exponent, then there is a nontrivial solution x of (2.26) such

that x(t + T) = ρx(t) for every t ∈ R and x(t) = eλtp(t) for some

T -periodic vector function p.

Proof. Pick x0 to be an eigenvector of B corresponding to the eigen-

value λ, where X(t) = P(t)etB is the decomposition of a fundamental
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2. Linear Systems

matrix X(t). Let x(t) = X(t)x0. Then, clearly, x solves (2.26). The

power series formula for the matrix exponential implies that x0 is an

eigenvector of etB with eigenvalue eλt . Hence,

x(t) = X(t)x0 = P(t)etBx0 = P(t)eλtx0 = eλtp(t),

where p(t) = P(t)x0. Also,

x(t + T) = eλT eλtp(t + T) = ρeλtp(t) = ρx(t).

Time-dependent Change of Variables

Let x solve (2.26), and let y(t) = [P(t)]−1x(t), where P is as defined

previously. Then

d

dt
[P(t)y(t)] = d

dt
x(t) = A(t)x(t) = A(t)P(t)y(t)

= A(t)X(t)e−tBy(t).

But

d

dt
[P(t)y(t)] = P ′(t)y(t)+ P(t)y ′(t)

= [X′(t)e−tB −X(t)e−tBB]y(t)+X(t)e−tBy ′(t)
= A(t)X(t)e−tBy(t)− X(t)e−tBBy(t)+ X(t)e−tBy ′(t),

so

X(t)e−tBy ′(t) = X(t)e−tBBy(t),
which implies that y ′(t) = By(t); i.e., y solves a constant coefficient

linear equation. Since P is periodic and, therefore, bounded, the growth

and decay of x and y are closely related. Furthermore, the growth or

decay of y is determined by the eigenvalues of B, i.e., by the Floquet

exponents of (2.26). For example, we have the following results.

Theorem If all the Floquet exponents of (2.26) have negative real parts

then all solutions of (2.26) converge to 0 as t ↑ ∞.

Theorem If there is a nontrivial T -periodic solution of (2.26) then there

must be a Floquet multiplier of modulus 1.
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Computing Floquet Multipliers and Exponents

Although Floquet multipliers and exponents are determined by A(t),

it is not obvious how to calculate them. As a previous exercise illus-

trated, the eigenvalues of A(t) don’t seem to be extremely relevant.

The following result helps a little bit.

Theorem If (2.26) has Floquet multipliers ρ1, . . . , ρn and corresponding

Floquet exponents λ1, . . . , λn, then

ρ1 · · ·ρn = exp

(∫ T

0
traceA(t)dt

)
(2.28)

and

λ1 + · · · + λn ≡ 1

T

∫ T

0
traceA(t)dt mod

2πi

T
(2.29)

Proof. We focus on (2.28). The formula (2.29) will follow immediately

from (2.28).

Let W(t) be the determinant of the principal fundamental matrix

X(t). Let Sn be the set of permutations of {1,2, . . . , n} and let ǫ : Sn →
{−1,1} be the parity map. Then

W(t) =
∑

σ∈Sn
ǫ(σ)

n∏

i=1

Xi,σ(i),

where Xi,j is the (i, j)-th entry of X(t).

Differentiating yields

dW(t)

dt
=

∑

σ∈Sn
ǫ(σ)

d

dt

n∏

i=1

Xi,σ(i)

=
n∑

j=1

∑

σ∈Sn
ǫ(σ)

[
d

dt
Xj,σ(j)

]∏

i≠j

Xi,σ(i)

=
n∑

j=1

∑

σ∈Sn
ǫ(σ)



n∑

k=1

Aj,k(t)Xk,σ(j)


∏

i≠j

Xi,σ(i)

=
n∑

j=1

n∑

k=1

Aj,k(t)


 ∑

σ∈Sn
ǫ(σ)Xk,σ(j)

∏

i≠j

Xi,σ(i)


 .

If j ≠ k, the inner sum is the determinant of the matrix obtained by

replacing the jth row of X(t) by its kth row. This new matrix, having
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2. Linear Systems

two identical rows, must necessarily have determinant 0. Hence,

dW(t)

dt
=

n∑

j=1

Aj,j(t)detX(t) = [traceA(t)]W(t).

Thus,

W(t) = e
∫ t
0 traceA(s)dsW(0) = e

∫ t
0 traceA(s)ds .

In particular,

e
∫ T
0 traceA(s)ds =W(T) = detX(T) = det(P(T)eTB) = det(P(0)eTB)

= det eTB = detC = ρ1ρ2 · · ·ρn.

Exercise 12 Consider (2.26) where

A(t) =
[

1
2 − cos t b

a 3
2 + sin t

]

and a and b are constants. Show that there is a solution of (2.26)

that becomes unbounded as t ↑ ∞.
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Topological Dynamics

3.1 Invariant Sets and Limit Sets

We will now begin an intensive study of the continuously differentiable

autonomous system

ẋ = f (x)

or, equivalently, of the corresponding dynamical system ϕ(t,x). We

will denote the phase space Ω and assume that it is an open (not nec-

essarily proper) subset of Rn.

Orbits

Definition Given x ∈ Ω, the (complete) orbit through x is the set

γ(x) := {ϕ(t,x)
∣∣ t ∈ R

}
,

the positive semiorbit through x is the set

γ+(x) := {ϕ(t,x)
∣∣ t ≥ 0},

and the negative semiorbit through x is the set

γ−(x) := {ϕ(t,x)
∣∣ t ≤ 0}.

Invariant Sets

Definition A setM⊆ Ω is invariant underϕ if it contains the complete

orbit of every point of M. In other words, for every x ∈ M and every

t ∈ R, ϕ(t,x) ∈M.
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3. Topological Dynamics

Definition A set M ⊆ Ω is positively invariant under ϕ if it contains

the positive semiorbit of every point of M. In other words, for every

x ∈M and every t ≥ 0, ϕ(t,x) ∈M.

Definition A set M ⊆ Ω is negatively invariant under ϕ if it contains

the negative semiorbit of every point of M. In other words, for every

x ∈M and every t ≤ 0, ϕ(t,x) ∈M.

Limit Sets

Definition Given x ∈ Ω, the ω-limit set of x, denotedω(x), is the set

{
y ∈ Ω

∣∣ lim inf
t↑∞

|ϕ(t,x)−y| = 0
}

= {y ∈ Ω
∣∣ ∃t1, t2, . . .→∞ s.t. ϕ(tk, x)→ y as k ↑ ∞}.

Definition Given x ∈ Ω, the α-limit set of x, denoted α(x), is the set

{
y ∈ Ω

∣∣ lim inf
t↓−∞

|ϕ(t,x)− y| = 0
}

= {y ∈ Ω
∣∣ ∃t1, t2, . . .→ −∞ s.t. ϕ(tk, x)→ y as k ↑ ∞}.

Lemma If, for each A ∈ Ω, we let A represent the topological closure of

A in Ω, then

ω(x) =
⋂

τ∈R

γ+(ϕ(τ,x)) (3.1)

and

α(x) =
⋂

τ∈R

γ−(ϕ(τ,x)). (3.2)

Proof. It suffices to prove (3.1); (3.2) can then be established by time

reversal.

Let y ∈ ω(x) be given. Pick a sequence t1, t2, . . . → ∞ such that

ϕ(tk, x)→ y as k ↑ ∞. Let τ ∈ R be given. Pick K ∈ N such that tk ≥ τ
for all k ≥ K. Note that ϕ(tk, x) ∈ γ+(ϕ(τ,x)) for all k ≥ K, so

y ∈ γ+(ϕ(τ,x)).

Since this holds for all τ ∈ R, we know that

y ∈
⋂

τ∈R

γ+(ϕ(τ,x)). (3.3)
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Invariant Sets and Limit Sets

Since (3.3) holds for each y ∈ω(x), we know that

ω(x) ⊆
⋂

τ∈R

γ+(ϕ(τ,x)). (3.4)

Now, we prove the reverse inclusion. Let

y ∈
⋂

τ∈R

γ+(ϕ(τ,x))

be given. This implies, in particular, that

y ∈
⋂

τ∈N

γ+(ϕ(τ,x)).

For each k ∈ N, we have

y ∈ γ+(ϕ(k,x))

so we can pick zk ∈ γ+(ϕ(k,x)) such that |zk − y| < 1/k. Since

zk ∈ γ+(ϕ(k,x)), we can pick sk ≥ 0 such that zk = ϕ(sk,ϕ(k,x)). If

we set tk = k+ sk, we see that tk ≥ k, so the sequence t1, t2, . . . goes to

infinity. Also, since

|ϕ(tk, x)−y| = |ϕ(sk + k,x)−y| = |ϕ(sk,ϕ(k,x))−y| = |zk − y|
< 1/k,

we know that ϕ(tk, x) → y as k ↑ ∞. Hence, y ∈ ω(x). Since this

holds for every

y ∈
⋂

τ∈R

γ+(ϕ(τ,x)),

we know that ⋂

τ∈R

γ+(ϕ(τ,x)) ⊆ω(x).

Combining this with (3.4) gives (3.1).

We now describe some properties of limit sets.

Theorem Given x ∈ Ω, ω(x) and α(x) are closed (relative to Ω) and

invariant. If γ+(x) is contained in some compact subset of Ω, thenω(x)

is nonempty, compact, and connected. If γ−(x) is contained in some

compact subset of Ω, then α(x) is nonempty, compact, and connected.
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3. Topological Dynamics

Proof. Again, time-reversal arguments tell us that it is only necessary

to prove the statements about ω(x).

Step 1: ω(x) is closed.

This is a consequence of the lemma and the fact that the intersection

of closed sets is closed.

Step 2: ω(x) is invariant.

Let y ∈ ω(x) and t ∈ R be given. Choose a sequence of times (tk)

converging to infinity such that ϕ(tk, x)→ y as k ↑ ∞. For each k ∈ N,

let sk = tk + t, and note that (sk) converges to infinity and

ϕ(sk, x) = ϕ(tk + t, x) =ϕ(t,ϕ(tk, x))→ϕ(t,y)

as k ↑ ∞ (by the continuity of ϕ(t, ·)). Hence, ϕ(t,y) ∈ ω(x). Since

t ∈ R and y ∈ω(x) were arbitrary, we know that ω(x) is invariant.

Now, suppose that γ+(x) is contained in a compact subset K of Ω.

Step 3: ω(x) is nonempty.

The sequenceϕ(1, x),ϕ(2, x), . . . is contained in γ+(x) ⊆K, so by the

Bolzano-Weierstrass Theorem, some subseqence ϕ(t1, x),ϕ(t2, x), . . .

converges to a point y ∈ K. By definition, y ∈ω(x).

Step 4: ω(x) is compact.

By the Heine-Borel Theorem, K is closed (relative to Rn), so, by the

choice of K, ω(x) ⊆ K. Since, by Step 1, ω(x) is closed relative to Ω,

it is also closed relative to K. Since K is compact, this meansω(x) is

closed (relative to Rn). Also, by the Heine-Borel Theorem, K is bounded

so its subset ω(x) is bounded, too. Thus, ω(x) is closed (relative to

Rn) and bounded and, therefore, compact.

Step 5: ω(x) is connected.

Suppose ω(x) were disconnected. Then there would be disjoint open

subsets G andH of Ω such that G∩ω(x) andH∩ω(x) are nonempty,

and ω(x) is contained in G ∪H . Then there would have to be a se-

quence s1, s2, . . . → ∞ and a sequence t1, t2, . . . → ∞ such that ϕ(sk, x)

∈ G, ϕ(tk, x) ∈ H , and sk < tk < sk+1 for each k ∈ N. Because (for
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Regular and Singular Points

each fixed k ∈ N)
{
ϕ(t,x)

∣∣ t ∈ [sk, tk]
}

is a (connected) curve going from a point in G to a point in H , there

must be a time τk ∈ (sk, tk) such that ϕ(τk, x) ∈ K \ (G ∪H ). Pick

such a τk for each k ∈ N and note that τ1, τ2, . . . → ∞ and, by the

Bolzano-Weierstrass Theorem, some subsequence of (ϕ(τk, x)) must

converge to a point y in K \ (G ∪H ). Note that y , being outside of

G ∪H , cannot be in ω(x), which is a contradiction.

Examples of empty ω-limit sets are easy to find. Consider, for ex-

ample, the one-dimensional dynamical system ϕ(t,x) := x + t (gener-

ated by the differential equation ẋ = 1.

Examples of dynamical systems with nonempty, noncompact, dis-

connected ω-limit sets are a little harder to find. Consider the planar

autonomous system




ẋ = −y(1− x2)

ẏ = x +y(1− x2).

After rescaling time, this differential equation generates a dynamical

system on R2 with

ω(x) = {(−1, y)
∣∣ y ∈ R

}∪ {(1, y)
∣∣ y ∈ R

}

for every x in the punctured strip

{
(x,y) ∈ R2

∣∣ |x| < 1 and x2 +y2 > 0
}
.

3.2 Regular and Singular Points

Consider the differential equation ẋ = f (x) and its associated dynam-

ical system ϕ(t,x) on a phase space Ω.

Definition We say that a point x ∈ Ω is an equilibrium point or a singu-

lar point or a critical point if f (x) = 0. For such a point, ϕ(t,x) = x
for all t ∈ R.
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3. Topological Dynamics

Definition A point x ∈ Ω that is not a singular point is called a regular

point.

We shall show that all of the interesting local behavior of a contin-

uous dynamical system takes place close to singular points. We shall

do this by showing that in the neighborhood of each regular point, the

flow is very similar to unidirectional, constant-velocity flow.

One way of making the notion of similarity of flows precise is the

following.

Definition Two dynamical systems ϕ : R × Ω → Ω and ψ : R × Θ →
Θ are topologically conjugate if there exists a homeomorphism (i.e., a

continuous bijection with continuous inverse) h : Ω→ Θ such that

h(ϕ(t,x)) = ψ(t,h(x)) (3.5)

for every t ∈ R and every x ∈ Ω. In other words, ψ(t, ·) = h ◦ϕ(t, ·) ◦
h−1, or, equivalently, the diagram

Ω ϕ(t,·)−−−−→ Ω

h

y
yh

Θ ψ(t,·)−−−−→ Θ

commutes for each t ∈ R. The function h is called a topological conju-

gacy. If, in addition, h and h−1 are r -times continuously differentiable,

we say that ϕ and ψ are Cr -conjugate.

A weaker type of similarity is the following.

Definition Two dynamical systems ϕ : R × Ω → Ω and ψ : R × Θ → Θ
are topologically equivalent if there exists a homeomorphism h : Ω→ Θ
and a time reparametrization function α : R×Ω→ R such that, for each

x ∈ Ω, α(·, x) : R → R is an increasing surjection and

h(ϕ(α(t, x), x)) = ψ(t,h(x))

for every t ∈ R and every x ∈ Ω. If, in addition, h is r -times continu-

ously differentiable, we say that ϕ and ψ are Cr -equivalent.
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Regular and Singular Points

A topological equivalence maps orbits to orbits and preserves the

orientation of time but may reparametrize time differently on each in-

dividual orbit.

As an example of the difference between these two concepts, con-

sider the two planar dynamical systems

ϕ(t,x) =
[

cos t − sin t

sin t cos t

]
x

and

ψ(t,y) =
[

cos 2t − sin 2t

sin 2t cos 2t

]
y,

generated, respectively, by the differential equations

ẋ =
[

0 −1

1 0

]
x

and

ẏ =
[

0 −2

2 0

]
y.

The functions h(x) = x and α(t,x) = 2t show that these two flows

are topologically equivalent. But these two flows are not topologically

conjugate, since, by setting t = π we see that any function h : R2 → R2

satisfying (3.5) would have to satisfy h(x) = h(−x) for all x, which

would mean that h is not invertible.

Because of examples like this, topological equivalence seems to be

the preferred concept when dealing with flows. The following theorem,

however, shows that in a neighborhood of a regular point, a smooth

flow satisfies a local version of Cr -conjugacy with respect to a unidi-

rectional, constant-velocity flow.

Theorem (Cr Rectification Theorem) Suppose f : Ω → Rn is r -times

continuously differentiable (with r ≥ 1) and x0 is a regular point of the

flow generated by

ẋ = f (x). (3.6)

Then there is a neighborhood V of x0, a neighborhood W of the origin

in Rn, and a Cr map g : V → W witha Cr inverse such that, for each
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3. Topological Dynamics

solution x of (3.6) in V , y(t) := g(x(t)) satisfies the equation

ẏ =




1

0
...

0




(3.7)

in W .

Proof. Without loss of generality, we shall assume that x0 = 0 and

f (x0) = f (0) = αe1 for some α > 0. LetW be a small ball centered at 0

in Rn, and define G(y) := G((y1, . . . , yn)T ) = ϕ(y1, (0, y2, . . . , yn)T ),

whereϕ is the flow generated by (3.6). (Whileϕmight not be a genuine

dynamical system because it might not be defined for all time, we know

that it is at least defined long enough that G is well-defined if W is

sufficiently small.)

In words, G(y) is the solution obtained by projecting y onto the

plane through the origin perpendicular to f (0) and locating the solu-

tion of (3.6) that starts at this projected point after y1 units of time

have elapsed.

Step 1: ϕ(·, p) is Cr+1.

We know that
d

dt
ϕ(t,p) = f (ϕ(t,p)). (3.8)

If f is continuous then, since ϕ(·, p) is continuous, (3.8) implies that

ϕ(·, p) is C1. If f is C1, then the previous observation implies that

ϕ(·, p) is C1. Then (3.8) implies that
d
dtϕ(t,p) is the composition of

C1 functions and is, therefore, C1; this means that ϕ(·, p) is C2. Con-

tinuing inductively, we see that, since f is Cr , ϕ(·, p) is Cr+1.

Step 2: ϕ(t, ·) is Cr .

This is a consequence of applying differentiability with respect to pa-

rameters inductively.

Step 3: G is Cr .

This is a consequence of Steps 1 and 2 and the formula for G in terms

of ϕ.
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Regular and Singular Points

Step 4: DG(0) is an invertible matrix.

Since

∂G(y)

∂y1

∣∣∣∣∣
y=0

= ∂

∂t
ϕ(t,0)

∣∣∣∣
t=0

= f (0) = αe1

and

∂G(y)

∂yk

∣∣∣∣∣
y=0

= ∂

∂p
ϕ(0, p)

∣∣∣∣∣
p=0

· ek = ∂p

∂p

∣∣∣∣∣
p=0

ek = ek,

for k ≠ 1, we have

DG(0) =


 αe1 e2 · · · en


 ,

which is invertible since α ≠ 0.

Step 5: If W is sufficiently small, then G is invertible.

This is a consequence of Step 4 and the Inverse Function Theorem.

Set g equal to the (locally defined) inverse of G. Since G is Cr , so

is g. The only thing remaining to check is that if x satisfies (3.6) then

g ◦ x satisfies (3.7). Equivalently, we can check that if y satisfies (3.7)

then G ◦y satisfies (3.6).

Step 6: If y satisfies (3.7) then G ◦y satisfies (3.6).

By the chain rule,

d

dt
G(y(t)) = ∂

∂s
ϕ(s, (0, y2, . . . , yn))

∣∣∣∣
s=y1

· ẏ1

+ ∂

∂p
ϕ(y1, p)

∣∣∣∣∣
p=(0,y2,...,yn)

·




0

ẏ2

...

ẏn




= f (ϕ(y1, (0, y2, . . . , yn))) = f (G(y)).
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3. Topological Dynamics

3.3 Definitions of Stability

In the previous section, we saw that all the “interesting” local behavior

of flows occurs near equilibrium points. One important aspect of the

behavior of flows has to do with whether solutions that start near a

given solution stay near it for all time and/or move closer to it as time

elapses. This question, which is the subject of stability theory, is not

just of interest when the given solution corresponds to an equilibrium

solution, so we study it–initially, at least–in a fairly broad context.

Definitions

First, we define some types of stability for solutions of the (possibly)

nonautonomous equation

ẋ = f (t, x). (3.9)

Definition A solution x(t) of (3.9) is (Lyapunov) stable if for each ε > 0

and t0 ∈ R there exists δ = δ(ε, t0) > 0 such that if x(t) is a solution

of (3.9) and |x(t0)− x(t0)| < δ then |x(t)− x(t)| < ε for all t ≥ t0.

Definition A solution x(t) of (3.9) is asymptotically stable if it is (Lya-

punov) stable and if for every t0 ∈ R there exists δ = δ(t0) > 0

such that if x(t) is a solution of (3.9) and |x(t0) − x(t0)| < δ then

|x(t)− x(t)| → 0 as t ↑ ∞.

Definition A solution x(t) of (3.9) is uniformly stable if for each ε > 0

there exists δ = δ(ε) > 0 such that if x(t) is a solution of (3.9) and

|x(t0)−x(t0)| < δ for some t0 ∈ R then |x(t)−x(t)| < ε for all t ≥ t0.

Some authors use a weaker definition of uniform stability that turns

out to be equivalent to Lyapunov stability for autonomous equations.

Since our main interest is in autonomous equations and this alterna-

tive definition is somewhat more complicated than the definition given

above, we will not use it here.

Definition A solution x(t) of (3.9) is orbitally stable if for every ε > 0

there exists δ = δ(ε) > 0 such that if x(t) is a solution of (3.9) and
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Definitions of Stability

|x(t1)− x(t0)| < δ for some t0, t1 ∈ R then

⋃

t≥t1
x(t) ⊆

⋃

t≥t0
B(x(t), ε).

Next, we present a couple of definitions of stability for subsets of

the (open) phase spaceΩ ⊆ Rn of a dynamical systemϕ(t,x). (In these

definitions, a neighborhood of a set A ⊆ Ω is an open subset of Ω that

contains A.)

Definition The set A is stable if every neighborhood of A contains a

positively invariant neighborhood of A.

Note that the definition implies that stable sets are positively in-

variant.

Definition The set A is asymptotically stable if it is stable and there is

some neighborhood V of A such that ω(x) ⊆ A for every x ∈ V .

(If V can be chosen to be the entire phase space, then A is globally

asymptotically stable.)

Examples

We now consider a few examples that clarify some properties of these

definitions.




ẋ = −y/2
ẏ = 2x.

y

xb

1

Orbits are ellipses with major axis along the y-axis. The equilibrium

solution at the origin is Lyapunov stable even though nearby orbits
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3. Topological Dynamics

sometimes move away from it.




ṙ = 0

θ̇ = r 2,

or, equivalently,



ẋ = −(x2 +y2)y

ẏ = (x2 +y2)x.

y

xb

2

The solution moving around the unit circle is not Lyapunov stable,

since nearby solutions move with different angular velocities. It is,

however, orbitally stable. Also, the set consisting of the unit circle is

stable.




ṙ = r(1− r)
θ̇ = sin2(θ/2).

y

xb b

3

The constant solution (x,y) = (1,0) is not Lyapunov stable and the

set {(1,0)} is not stable. However, every solution beginning near (1,0)

converges to (1,0) as t ↑ ∞. This shows that it is not redundant to

require Lyapunov stability (or stability) in the definition of asymptotic

stability of a solution (or a set).

Stability in Autonomous Equations

When we are dealing with a smooth autonomous differential equation

ẋ = f (x) (3.10)
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Definitions of Stability

on an open set Ω ⊆ Rn, all of the varieties of stability can be applied

to essentially the same object. In particular, let x be a function that

solves (3.10), and let

A(x) := {x(t)
∣∣ t ∈ R

}

be the corresponding orbit. Then it makes sense to talk about the

Lyapunov, asymptotic, orbital, or uniform stability of x, and it makes

sense to talk about the stability or asymptotic stability of A(x).
In this context, certain relationships between the various types of

stability follow from the definitions without too much difficulty.

Theorem Let x be a function that solves (3.10), and let A(x) be the

corresponding orbit. Then:

1. If x is asymptotically stable then x is Lyapunov stable;

2. If x is uniformly stable then x is Lyapunov stable;

3. If x is uniformly stable then x is orbitally stable;

4. If A(x) is asymptotically stable then A(x) is stable;

5. If A(x) contains only a single point, then Lyapunov stability of x,

orbital stability of x, uniform stability of x, and stability of A(x)
are equivalent.

We will not prove this theorem, but we will note that parts 1 and 2

are immediate results of the definitions (even if we were dealing with

a nonautonomous equation) and part 4 is also an immediate result of

the definitions (even if A were an arbitrary set).

Exercise 13 In items 1–18, an autonomous differential equa-

tion, a phase space Ω (that is an open subset of Rn), and a par-

ticular solution x of the equation are specified. For each of these

items, state which of the following statements is/are true:

(a) x is Lyapunov stable;

(b) x is asymptotically stable;
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3. Topological Dynamics

(c) x is orbitally stable;

(d) x is uniformly stable;

(e) A(x) is stable;

(f) A(x) is asymptotically stable.

You do not need to justify your answers or show your work. It

may convenient to express your answers in a concise form (e.g., in

a table of some sort). Use of variables r and θ signifies that the

equation (as well as the particular solution) is to be interpreted as

in polar form.

1. ẋ = x, Ω = R, x(t) := 0

2. ẋ = x, Ω = R, x(t) := et

3. {ẋ1 = 1+ x2
2 , ẋ2 = 0}, Ω = R2, x(t) := (t,0)

4. {ṙ = 0, θ̇ = r 2}, Ω = R2, x(t) := (1, t)

5. ẋ = x, Ω = (0,∞), x(t) := et

6. {ẋ1 = 1, ẋ2 = −x1x2}, Ω = R2, x(t) := (t,0)

7. ẋ = tanhx, Ω = R, x(t) := sinh−1(et)

8. {ẋ1 = tanhx1, ẋ2 = 0}, Ω = (0,∞) × R, x(t) :=
(sinh−1(et),0)

9. ẋ = tanhx, Ω = (0,∞), x(t) := sinh−1(et)

10. {ẋ1 = sechx1, ẋ2 = −x1x2 sechx1}, Ω = R2,

x(t) := (sinh−1(t),0)

11. ẋ = x2/(1+ x2), Ω = R, x(t) := −2/(t +
√
t2 + 4)

12. {ẋ1 = sechx1, ẋ2 = −x2}, Ω = R2, x(t) := (sinh−1(t),0)

13. ẋ = sechx, Ω = R, x(t) := sinh
−1(t)

14. {ẋ1 = 1, ẋ2 = 0}, Ω = R2, x(t) := (t,0)
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Principle of Linearized Stability

15. ẋ = 0, Ω = R, x(t) := 0

16. ẋ = 1, Ω = R, x(t) := t

17. {ẋ1 = −x1, ẋ2 = −x2}, Ω = R2, x(t) := (e−t,0)

18. ẋ = −x, Ω = R, x(t) := 0

3.4 Principle of Linearized Stability

Suppose f is a continuously differentiable function such that

ẋ = f (x) (3.11)

generates a continuous dynamical system ϕ on Ω ⊆ Rn. Suppose,

moreover, that x0 ∈ Ω is a singular point of ϕ. If x solves (3.11) and

we set u := x − x0 and A := Df(x0), we see that, by the definition of

derivative,

u̇ = f (u+ x0) = f (x0)+Df(x0)u+ R(u) = Au+ R(u), (3.12)

where R(u)/|u| → 0 as |u| ↓ 0. Because R(u) is small when u is small,

it is reasonable to believe that solutions of (3.12) behave similarly to

solutions of

u̇ = Au (3.13)

for u near 0. Equivalently, it is reasonable to believe that solutions of

(3.11) behave like solutions of

ẋ = A(x − x0) (3.14)

for x near x0. Equation (3.13) (or sometimes (3.14)) is called the lin-

earization of (3.11) at x0.

Now, we’ve defined (several types of) stability for equilibrium solu-

tions of (3.11) (as well as for other types of solutions and sets), but we

haven’t really given any tools for determining stability. In this lecture

we present one such tool, using the linearized equation(s) discussed

above.
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3. Topological Dynamics

Definition An equilibrium point x0 of (3.11) is hyperbolic if none of the

eigenvalues of Df(x0) have zero real part.

If x0 is hyperbolic, then either all the eigenvalues of A := Df(x0)

have negative real part or at least one has positive real part. In the

former case, we know that 0 is an asymptotically stable equilibrium

solution of (3.13); in the latter case, we know that 0 is an unstable

solution of (3.13). The following theorem says that similar things can

be said about the nonlinear equation (3.11).

Theorem (Principle of Linearized Stability) If x0 is a hyperbolic equi-

librium solution of (3.11), then x0 is either unstable or asymptotically

stable, and its stability type (with respect to (3.11)) matches the stability

type of 0 as an equilibrium solution of (3.13) (where A := Df(x0)).

This theorem is an immediate consequence of the following two

propositions.

Proposition (Asymptotic Stability) If x0 is an equilibrium point of (3.11)

and all the eigenvalues of A := Df(x0) have negative real part, then x0

is asymptotically stable.

Proposition (Instability) If x0 is an equilibrium point of (3.11) and some

eigenvalue of A := Df(x0) has positive real part, then x0 is unstable.

Before we prove these propositions, we state and prove a lemma to

which we have referred before in passing.

Lemma Let V be a finite-dimensional real vector space and let L ∈
L(V ,V ). If all the eigenvalues of L have real part larger than c, then

there is an inner product 〈·, ·〉 and an induced norm ‖ · ‖ on V such

that

〈v,Lv〉 ≥ c‖v‖2

for every v ∈ V .

Proof. Let n = dimV , and pick ε > 0 so small that all the eigenvalues
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Principle of Linearized Stability

of L have real part greater than c +nε. Choose a basis {v1, . . . , vn} for

V that puts L in “modified” real canonical form with the off-diagonal

1’s replaced by ε’s, and let 〈·, ·〉 be the inner product associated with

this basis (i.e. 〈vi, vj〉 = δij) and let ‖ · ‖ be the induced norm on V .

Given v =∑ni=1αivi ∈ V , note that (if L = (ℓij))

〈v,Lv〉 =
n∑

i=1

ℓiiα
2
i +

n∑

i=1

∑

j≠i

ℓijαiαj ≥
n∑

i=1

ℓiiα
2
i −

n∑

i=1

∑

j≠i

ε


α

2
i +α2

j

2




≥
n∑

i=1

ℓiiα
2
i −

n∑

i=1

nεα2
i =

n∑

i=1

(ℓii −nε)α2
i ≥

n∑

i=1

cα2
i = c‖v‖2.

Note that applying this theorem to −L also tells us that, for some

inner product,

〈v,Lv〉 ≤ c‖v‖2 (3.15)

if all the eigenvalues of L have real part less than c.

Proof of Proposition on Asymptotic Stability. Without loss of generality,

assume that x0 = 0. Pick c < 0 such that all the eigenvalues of A have

real part strictly less than c. Because of equivalence of norms and be-

cause of the lemma, we can work with a norm ‖·‖ and a corresponding

inner product 〈·, ·〉 for which (3.15) holds, with L = A. Let r > 0 be

small enough that ‖R(x)‖ ≤ −c/2‖x‖ for all x satisfying ‖x‖ ≤ r , and

let

Br := {x ∈ Ω
∣∣ ‖x‖ < r}.

If x(t) is a solution of (3.11) that starts in Br at time t = 0, then as

long as x(t) remains in Br
d

dt
‖x(t)‖2 = 2〈x(t), ẋ(t)〉 = 2〈x(t), f (x(t))〉

= 2〈x(t),Ax(t)〉 + 2〈x(t), R(x(t))〉
≤ 2c‖x(t)‖2 + 2‖x(t)‖ · ‖R(x(t))‖
≤ 2c‖x(t)‖2 − c‖x(t)‖2 = c‖x(t)‖2.

This means that x(t) ∈ Br for all t ≥ 0, and x(t) converges to 0

(exponentially quickly) as t ↑ ∞.
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3. Topological Dynamics

The proof of the second proposition will be geometric and will con-

tain ideas that will be used to prove stronger results later in this text.

Proof of Proposition on Instability. We assume again that x0 = 0. If

Eu,Es , and Ec are, respectively, the unstable, stable, and center spaces

corresponding to (3.13), set E− := Es ⊕ Ec and E+ := Eu. Then

Rn = E+ ⊕ E−, all of the eigenvalues of A+ := A|E+ have positive real

part, and all of the eigenvalues of A− := A|E− have nonpositive real

part. Pick constants a > b > 0 such that all of the eigenvalues of A+

have real part larger than a, and note that all of the eigenvalues of A−

have real part less than b. Define an inner product 〈·, ·〉+ (and induced

norm ‖ · ‖+) on E+ such that

〈v,Av〉+ ≥ a‖v‖2
+

for all v ∈ E+, and define an inner product 〈·, ·〉− (and induced norm

‖ · ‖−) on E− such that

〈w,Aw〉− ≤ b‖w‖2
−

for all w ∈ E−. Define 〈·, ·〉 on E+ ⊕ E− to be the direct sum of 〈·, ·〉+
and 〈·, ·〉−; i.e., let

〈v1 +w1, v2 +w2〉 := 〈v1, v2〉+ + 〈w1,w2〉−

for all (v1,w1), (v2,w2) ∈ E+ ×E−. Let ‖ · ‖ be the induced norm, and

note that

‖v +w‖2 = ‖v‖2
+ + ‖w‖2

− = ‖v‖2 + ‖w‖2

for all (v,w) ∈ E+ ×E−.

Now, take (3.11) and project it onto E+ and E− to get the corre-

sponding system for (v,w) ∈ E+ ×E−



v̇ = A+v + R+(v,w)
ẇ = A−w + R−(v,w),

(3.16)

with ‖R±(v,w)‖/‖v +w‖ converging to 0 as ‖v +w‖ ↓ 0. Pick ε > 0

small enough that a− b− 2
√

2ε > 0, and pick r > 0 small enough that

‖R±(v,w)‖ ≤ ε‖v +w‖ whenever

v +w ∈ Br := {v +w ∈ E+ ⊕E−
∣∣ ‖v +w‖ < r}.
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w

vbb

Br

Kr

Figure 3.1: The truncated cone.

Consider the truncated cone

Kr := {v +w ∈ E+ ⊕E−
∣∣ ‖v‖ > ‖w‖}∩Br .

(See Figure 1.) Suppose x = v +w is a solution of (3.16) that starts in

Kr at time t = 0. For as long as the solution remains in Kr ,

d

dt
‖v‖2 = 2〈v, v̇〉 = 2〈v,A+v〉 + 2〈v,R+(v,w)〉

≥ 2a‖v‖2 − 2‖v‖ · ‖R+(v,w)‖ ≥ 2a‖v‖2 − 2ε‖v‖ · ‖v +w‖

= 2a‖v‖2 − 2ε‖v‖
(
‖v‖2 + ‖w‖2

)1/2 ≥ 2a‖v‖2 − 2
√

2ε‖v‖2

= 2(a−
√

2ε)‖v‖2,

and

d

dt
‖w‖2 = 2〈w, ẇ〉 = 2〈w,A−w〉 + 2〈w,R−(v,w)〉

≤ 2b‖w‖2 + 2‖w‖ · ‖R−(v,w)‖
≤ 2b‖w‖2 + 2ε‖w‖ · ‖v +w‖

= 2b‖w‖2 + 2ε‖w‖
(
‖v‖2 + ‖w‖2

)1/2

≤ 2b‖v‖2 + 2
√

2ε‖v‖2

= 2(b +
√

2ε)‖v‖2.
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3. Topological Dynamics

The first estimate says that as long as the solution stays in Kr , ‖v‖
grows exponentially, which means that the solution must eventually

leave Kr . Combining the first and second estimates, we have

d

dt
(‖v‖2 − ‖w‖2) ≥ 2(a− b − 2

√
2ε)‖v‖2 > 0,

so g(v + w) := ‖v‖2 − ‖w‖2 increases as t increases. But g is 0 on

the lateral surface of Kr and is strictly positive in Kr , so the solution

cannot leave Kr through its lateral surface. Thus, the solution leaves

Kr by leaving Br . Since this holds for all solutions starting in Kr , we

know that x0 must be an unstable equilibrium point for (3.11).

3.5 Lyapunov’s Direct Method

Another tool for determining stability of solutions is Lyapunov’s direct

method. While this method may actually seem rather indirect, it does

work directly on the equation in question instead of on its lineariza-

tion.

We will consider this method for equilibrium solutions of (possibly)

nonautonomous equations. Let Ω ⊆ Rn be open and contain the ori-

gin, and suppose that f : R ×Ω → Rn is a continuously differentiable

function. Suppose, furthermore, that f (t,0) = 0 for every t ∈ R, so

x(t) := 0 is a solution of the equation

ẋ = f (t, x). (3.17)

(The results we obtain in this narrow context can be applied to deter-

mine the stability of other constant solutions of (3.17) by translation.)

In this section, a subset of Ω that contains the origin in its interior

will be called a neighborhood of 0.

Definition Suppose that D is a neighborhood of 0 and that W : D → R

is continuous and satisfies W(0) = 0. Then:

• If W(x) ≥ 0 for every x ∈ D, then W is positive semidefinite.

• If W(x) > 0 for every x ∈ D \ {0}, then W is positive definite.

• If W(x) ≤ 0 for every x ∈ D, then W is negative semidefinite.
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Lyapunov’s Direct Method

• If W(x) < 0 for every x ∈ D\ {0}, then W is negative definite.

Definition Suppose that D is a neighborhood of 0 and that V : R×D →
R is continuous and satisfies V(t,0) = 0 for every t ∈ R. Then:

• If there is a positive semidefinite function W : D → R such that

V(t, x) ≥ W(x) for every (t, x) ∈ R × D, then V is positive

semidefinite.

• If there is a positive definite function W : D → R such that

V(t, x) ≥W(x) for every (t, x) ∈ R×D, then V is positive definite.

• If there is a negative semidefinite function W : D → R such that

V(t, x) ≤ W(x) for every (t, x) ∈ R × D, then V is negative

semidefinite.

• If there is a negative definite function W : D → R such that

V(t, x) ≤ W(x) for every (t, x) ∈ R ×D, then V is negative defi-

nite.

Definition If V : R × D is continuously differentiable then its orbital

derivative (with respect to (3.17)) is the function V̇ : R ×D → R given

by the formula

V̇ (t, x) := ∂V
∂t
(t, x)+ ∂V

∂x
(t, x) · f (t, x).

(Here “∂V(t, x)/∂x” represents the gradient of the function V(t, ·).)

Note that if x(t) is a solution of (3.17) then, by the chain rule,

d

dt
V(t, x(t)) = V̇ (t, x(t)).

A function whose orbital derivative is always nonpositive is sometimes

called a Lyapunov function.

Theorem (Lyapunov Stability) If there is a neighborhood D of 0 and a

continuously differentiable positive definite function V : R × D → R

whose orbital derivative V̇ is negative semidefinite, then 0 is a Lyapunov

stable solution of (3.17).
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Proof. Let ε > 0 and t0 ∈ R be given. Assume, without loss of gener-

ality, that B(0, ε) is contained in D. Pick a positive definite function

W : D→ R such that V(t, x) ≥ W(x) for every (t, x) ∈ R×D. Let

m := min
{
W(x)

∣∣ |x| = ε}.

Since W is continuous and positive definite,m is well-defined and pos-

itive. Pick δ > 0 small enough that δ < ε and

max
{
V(t0, x)

∣∣ |x| ≤ δ} <m.

(Since V is positive definite and continuous, this is possible.)

Now, if x(t) solves (3.17) and |x(t0)| < δ then V(t0, x(t0)) < m,

and
d

dt
V(t, x(t)) = V̇ (t, x(t)) ≤ 0,

for all t, so V(t, x(t)) < m for every t ≥ t0. Thus, W(x(t)) < m for

every t ≥ t0, so, for every t ≥ t0, |x(t)| ≠ ε. Since |x(t0)| < ε, this tells

us that |x(t)| < ε for every t ≥ t0.

Theorem (Asymptotic Stability) Suppose that there is a neighborhood D
of 0 and a continuously differentiable positive definite function V : R ×
D → R whose orbital derivative V̇ is negative definite, and suppose that

there is a positive definite function W : D→ R such that V(t, x) ≤ W(x)
for every (t, x) ∈ R ×D. Then 0 is an asymptotically stable solution of

(3.17).

Proof. By the previous theorem, 0 is a Lyapunov stable solution of

(3.17). Let t0 ∈ R be given. Assume, without loss of generality, that

D is compact. By Lyapunov stability, we know that we can choose

a neighborhood U of 0 such that if x(t) is a solution of (3.17) and

x(t0) ∈ U, then x(t) ∈ D for every t ≥ t0. We claim that, in fact, if

x(t) is a solution of (3.17) and x(t0) ∈ U, then x(t) → 0 as t ↑ ∞.

Verifying this claim will prove the theorem.

Suppose that V(t, x(t)) does not converge to 0 as t ↑ ∞. The nega-

tive definiteness of V̇ implies that V(·, x(·)) is nonincreasing, so, since

V ≥ 0, there must be a number c > 0 such that V(t, x(t)) ≥ c for every

t ≥ t0. Then W(x(t)) ≥ c > 0 for every t ≥ t0. Since W(0) = 0 and W

is continuous,

inf
{|x(t)|

∣∣ t ≥ t0
} ≥ ε (3.18)
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Lyapunov’s Direct Method

for some constant ε > 0. Pick a negative definite function Y : D → R

such that V̇ (t, x) ≤ Y(x) for every (t, x) ∈ R×D. The compactness of

D\ B(0, ε), along with (3.18), implies that

{
Y(x(t))

∣∣ t ≥ t0
}

is bounded away from 0. This, in turn, implies that

{
V̇ (t, x(t))

∣∣ t ≥ t0
}

is bounded away from 0. In other words,

d

dt
V(t, x(t)) = V̇ (t, x(t)) ≤ −δ (3.19)

for some constant δ > 0. Clearly, (3.19) contradicts the nonnegativity

of V for large t.

That contradiction implies that V(t, x(t)) → 0 as t ↑ ∞. Pick a

positive definite function W : D → R such that V(t, x) ≥ W(x) for

every (t, x) ∈ R×D, and note that W(x(t))→ 0 as t ↑ ∞.

Let r > 0 be given, and let

wr = min
{
W(p)

∣∣ p ∈ D\ B(0, r )},

which is defined and positive by the compactness of D and the conti-

nuity and positive definiteness ofW . SinceW(x(t))→ 0 as t ↑ ∞, there

exists T such that W(x(t)) < wr for every t > T . Thus, for t > T ,

it must be the case that x(t) ∈ B(0, r ). Hence, 0 is asymptotically

stable.

It may seem strange that we ned to bound V by a time-independent,

positive definite function W from above. Indeed, some textbooks (see,

e.g., Theorem 2.20 in Stability, Instability, and Chaos by Glendinning)

contain asymptotic stability theorems omitting this hypothesis. There

is a counterexample by Massera that demonstrates the necessity of the

hypothesis.
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3. Topological Dynamics

Exercise 14 Show, by means of a counterexample, that the the-

orem on asymptotic stability via Lyapunov’s direct method fails if

the hypothesis about W is dropped.

(You may, but do not have to, proceed as follows. Let g : R → R

be a function that is twice continuously differentiable and satisfies

g(t) ≥ e−t for every t ∈ R, g(t) ≤ 1 for every t ≥ 0, g(t) = e−t for

every

t ∉
⋃

n∈N

(n− 2−n, n+ 2−n),

and g(n) = 1 for every n ∈ N. Let f : R×R → R be the function

defined by the formula

f (t, x) := g
′(t)
g(t)

x,

and let V : R×R → R be the function defined by the formula

V(t, x) := x2

[g(t)]2

[
3−

∫ t

0
[g(τ)]2 dτ

]
.

Show that, for x near 0, V(t, x) is positive definite and V̇ (t, x) is

negative definite, but the solution 0 of (3.17) is not asymptotically

stable.)

3.6 LaSalle’s Invariance Principle

Linearization versus Lyapunov Functions

In the previous two lectures, we have talked about two different tools

that can be used to prove that an equilibrium point x0 of an autono-

mous system

ẋ = f (x) (3.20)

is asymptotically stable: linearization and Lyapunov’s direct method.

One might ask which of these methods is better. Certainly, lineariza-

tion seems easier to apply because of its straightforward nature: Com-

pute the eigenvalues ofDf(x0). The direct method requires you to find

an appropriate Lyapunov function, which doesn’t seem so straightfor-
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LaSalle’s Invariance Principle

ward. But, in fact, anytime linearization works, a simple Lyapunov

function works, as well.

To be more precise, suppose x0 = 0 and all the eigenvalues of A :=
Df(0) have negative real part. Pick an inner product 〈·, ·〉 and induced

norm ‖ · ‖ such that, for some c > 0,

〈x,Ax〉 ≤ −c‖x‖2

for all x ∈ Rn. Pick r > 0 small enough that ‖f (x)−Ax‖ ≤ (c/2)‖x‖
whenever ‖x‖ ≤ r , let

D = {x ∈ Rn
∣∣ ‖x‖ ≤ r},

and define V : R×D → R by the formula V(t, x) = ‖x‖2. Since ‖ · ‖ is

a norm, V is positive definite. Also

V̇ (t, x) = 2〈x, f (x)〉 = 2(〈x,Ax〉 + 〈x, f (x)−Ax〉)
≤ 2(−c‖x‖2 + ‖x‖‖f (x)−Ax‖) ≤ −c‖x‖2,

so V̇ is negative definite.

On the other hand, there are very simple examples to illustrate that

the direct method works in some cases where linearization doesn’t. For

example, consider ẋ = −x3 on R. The equilibrium point at the origin

is not hyperbolic, so linearization fails to determine stability, but it is

easy to check that x2 is positive definite and has a negative definite

orbital derivative, thus ensuring the asymptotic stability of 0.

A More Complicated Example

The previous example is so simple that it might make one question

whether the direct method is of any use on problems where stability

cannot be determined by linearization or by inspection. Thus, let’s

consider something more complicated. Consider the planar system




ẋ = −y − x3

ẏ = x5.

The origin is a nonhyperbolic equilibrium point, with 0 being the only

eigenvalue, so the principle of linearized stability is of no use. A sketch
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3. Topological Dynamics

of the phase portrait indicates that orbits circle the origin in the coun-

terclockwise direction, but it is not obvious whether they spiral in, spi-

ral out, or move on closed curves.

The simplest potential Lyapunov function that often turns out to be

useful is the square of the standard Euclidean norm, which in this case

is V := x2 +y2. The orbital derivative is

V̇ = 2xẋ + 2yẏ = 2x5y − 2xy − 2x4. (3.21)

For some points (x,y) near the origin (e.g., (δ, δ)) V̇ < 0, while for

other points near the origin (e.g., (δ,−δ)) V̇ > 0, so this function

doesn’t seem to be of much use.

Sometimes when the square of the standard Euclidean norm doesn’t

work, some other homogeneous quadratic function does. Suppose we

try V := x2 +αxy + βy2, with α and β to be determined. Then

V̇ = (2x + αy)ẋ + (αx + 2βy)ẏ

= −(2x +αy)(y + x3)+ (αx + 2βy)x5

= −2x4 +αx6 − 2xy − αx3y + 2βx5y − αy2.

Setting (x,y) = (δ,−δ2) for δ positive and small, we see that V̇ is not

going to be negative semidefinite, no matter what we pick α and β to

be.

If these quadratic functions don’t work, maybe something custom-

ized for the particular equation might. Note that the right-hand side

of the first equation in (3.21) sort of suggests that x3 and y should be

treated as quantities of the same order of magnitude. Let’s try V :=
x6 + αy2, for some α > 0 to be determined. Clearly, V is positive

definite, and

V̇ = 6x5ẋ + 2αyẏ = (2α− 6)x5y − 6x8.

If α ≠ 3, then V̇ is of opposite signs for (x,y) = (δ, δ) and for (x,y) =
(δ,−δ) when δ is small. Hence, we should set α = 3, yielding V̇ =
−6x8 ≤ 0. Thus V is positive definite and V̇ is negative semidefinite,

implying that the origin is Lyapunov stable.

Is the origin asymptotically stable? Perhaps we can make a minor

modification to the preceding formula for V so as to make V̇ strictly

negative in a deleted neighborhood of the origin without destroying

96



theoryofodes July 4, 2007 13:20 Page 97 �



�
	

�



�
	

�



�
	

�



�
	

LaSalle’s Invariance Principle

the positive definiteness of V . If we added a small quantity whose

orbital derivative was strictly negative when x = 0 and |y| is small and

positive, this might work. Experimentation suggests that a positive

multiple of xy3 might work, since this quantity changes from positive

to negative as we cross the y-axis in the counterclockwise direction.

Also, it is at least of higher order than 3y2 near the origin, so it has

the potential of preserving the positive definiteness of V .

In fact, we claim that V := x6 + xy3 + 3y2 is positive definite with

negative definite orbital derivative near 0. A handy inequality, some-

times called Young’s inequality, that can be used in verifying this claim

(and in other circumstances, as well) is given in the following lemma.

Lemma (Young’s Inequality) If a,b ≥ 0, then

ab ≤ a
p

p
+ b

q

q
, (3.22)

for every pair of numbers p,q ∈ (1,∞) satisfying

1

p
+ 1

q
= 1. (3.23)

Proof. Assume that (3.23) holds. Clearly (3.22) holds if b = 0, so as-

sume that b > 0, and fix it. Define g : [0,∞) by the formula

g(x) := x
p

p
+ b

q

q
− xb.

Note that g is continuous, and g′(x) = xp−1 − b for every x ∈ (0,∞).
Since limx↓0 g′(x) = −b < 0, limx↑∞ g′(x) = ∞, and g′ is increasing on

(0,∞), we know that g has a unique minimizer at x0 = b1/(p−1). Thus,

for every x ∈ [0,∞) we see, using (3.23), that

g(x) ≥ g(b1/(p−1)) = b
p/(p−1)

p
+ b

q

q
− bp/(p−1) =

(
1

p
+ 1

q
− 1

)
bq = 0.

In particular, g(a) ≥ 0, so (3.22) holds.

Now, let V = x6 + xy3 + 3y2. Applying Young’s inequality with

a = |x|, b = |y|3, p = 6, and q = 6/5, we see that

|xy3| = |x||y|3 ≤ |x|6
6

+ 5|y|18/5

6
≤ 1

6
x6 + 5

6
y2
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3. Topological Dynamics

if |y| ≤ 1, so

V ≥ 5

6
x6 + 13

6
y2

if |y| ≤ 1. Also,

V̇ = −6x8 +y3ẋ + 3xy2ẏ = −6x8 −y3(y + x3)+ 3x6y2

= −6x8 − x3y3 + 3x6y2 −y4.

Applying Young’s inequality to the two mixed terms in this orbital

derivative, we have

| − x3y3| = |x|3|y|3 ≤ 3|x|8
8

+ 5|y|24/5

8
≤ 3

8
x8 + 5

8
y4

if |y| ≤ 1, and

|3x6y2| = 3|x|6|y|2 ≤ 3

[
3|x|8

4
+ |y|

8

4

]
= 9

4
x8+ 3

4
y8 ≤ 9

4
x8+ 3

64
y4

if |y| ≤ 1/2. Thus,

V̇ ≤ −27

8
x8 − 21

64
y4

if |y| ≤ 1/2, so, in a neighborhood of 0, V is positive definite and V̇ is

negative definite, which implies that 0 is asymptotically stable.

LaSalle’s Invariance Principle

We would have saved ourselves a lot of work on the previous example if

we could have just stuck with the moderately simple function V = x6+
3y2, even though its orbital derivative was only negative semidefinite.

Notice that the set of points where V̇ was 0 was small (the y-axis) and

at most of those points the vector field was not parallel to the set.

LaSalle’s Invariance Principle, which we shall state and prove for the

autonomous system

ẋ = f (x), (3.24)

allows us to use such a V to prove asymptotic stability.

Theorem (LaSalle’s Invariance Principle) Suppose there is a neighbor-

hood D of 0 and a continuously differentiable (time-independent) posi-

tive definite function V : D→ R whose orbital derivative V̇ (with respect
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LaSalle’s Invariance Principle

to (3.24)) is negative semidefinite. Let I be the union of all complete

orbits contained in {
x ∈ D

∣∣ V̇ (x) = 0
}
.

Then there is a neighborhood U of 0 such that for every x0 ∈ U,

ω(x0) ⊆ I .

Before proving this, we note that when applying it to V = x6 + 3y2

in the previous example, the set I is a singleton containing the origin

and, since D can be assumed to be compact, each solution beginning

in U actually converges to 0 as t ↑ ∞.

Proof of LaSalle’s Invariance Principle. Let ϕ be the flow generated by

(3.24). By a previous theorem, 0 must be Lyapunov stable, so we can

pick a neighborhood U of 0 such that ϕ(t,x) ∈ D for every x0 ∈ U
and every t ≥ 0.

Let x0 ∈ U and y ∈ ω(x0) be given. By the negative semidefinite-

ness of V̇ , we know that V(ϕ(t,x0)) is a nonincreasing function of t.

By the positive definiteness of V , we know that V(ϕ(t,x0)) remains

nonnegative, so it must approach some constant c ≥ 0 as t ↑ ∞. By

continuity of V , V(z) = c for every z ∈ ω(x0). Since ω(x0) is invari-

ant, V(ϕ(t,y)) = c for every t ∈ R. The definition of orbital derivative

then implies that V̇ (ϕ(t,y)) = 0 for every t ∈ R. Hence, y ∈ I .

Exercise 15 Show that (x(t),y(t)) = (0,0) is an asymptotically

stable solution of 


ẋ = −x3 + 2y3

ẏ = −2xy2.
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Conjugacies

4.1 Hartman-Grobman Theorem: Part 1

The Principle of Linearized Stability indicates one way in which the flow

near a singular point of an autonomous ODE resembles the flow of its

linearization. The Hartman-Grobman Theorem gives further insight

into the extent of the resemblance; namely, there is a local topological

conjugacy between the two. We will spend the next 5 sections talking

about the various forms of this theorem and their proofs. This amount

of attention is justified not only by the significance of the theorem but

the general applicability of the techniques used to prove it.

Let Ω ⊆ Rn be open and let f : Ω → Rn be continuously differen-

tiable. Suppose that x0 ∈ Ω is a hyperbolic equilibrium point of the

autonomous equation

ẋ = f (x). (4.1)

Let B = Df(x0), and let ϕ be the (local) flow generated by (4.1). The

version of the Hartman-Grobman Theorem we’re primarily interested

in is the following.

Theorem (Local Hartman-Grobman Theorem for Flows) Let Ω, f , x0, B,

and ϕ be as described above. Then there are neighborhoods U and V
of x0 and a homeomorphism h : U→V such that

ϕ(t,h(x)) = h(x0 + etB(x − x0))

whenever x ∈ U and x0 + etB(x − x0) ∈ U.
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It will be easier to derive this theorem as a consequence of a global

theorem for maps than to prove it directly. In order to state that ver-

sion of the theorem, we will need to introduce a couple of function

spaces and a definition.

Let

C0
b(R

n) = {w ∈ C(Rn,Rn)
∣∣ sup
x∈Rn

|w(x)| <∞}.

When equipped with the norm

‖w‖0 := sup
x∈Rn

‖w(x)‖,

where ‖ · ‖ is some norm on Rn, C0
b(R

n) is a Banach space. (We shall

pick a particular norm ‖ · ‖ later.)

Let

C1
b(R

n) = {w ∈ C1(Rn,Rn)∩ C0
b(R

n)
∣∣ sup
x∈Rn

‖Dw(x)‖ < ∞},

where ‖ · ‖ is the operator norm corresponding to some norm on Rn.

Note that the functional

Lip(w) := sup
x1,x2∈R

n

x1≠x2

‖w(x1)−w(x2)‖
‖x1 − x2‖

is defined on C1
b(R

n). We will not define a norm on C1
b(R

n), but will

often use Lip, which is not a norm, to describe the size of elements of

C1
b(R

n).

Definition If A ∈ L(Rn,Rn) and none of the eigenvalues of A lie on the

unit circle, then A is hyperbolic.

Note that if x0 is a hyperbolic equilibrium point of (4.1) and A =
eDf(x0), then A is hyperbolic.

Theorem (Global Hartman-Grobman Theorem for Maps) Suppose that

the map A ∈ L(Rn,Rn) is hyperbolic and invertible. Then there exists

a number ε > 0 such that for every g ∈ C1
b(R

n) satisfying Lip(g) < ε

there exists a unique function v ∈ C0
b(R

n) such that

F(h(x)) = h(Ax)
for every x ∈ Rn, where F = A + g and h = I + v. Furthermore,

h : Rn → Rn is a homeomorphism.

102



theoryofodes July 4, 2007 13:20 Page 103 �



�
	

�



�
	

�



�
	

�



�
	

Hartman-Grobman Theorem: Part 2

4.2 Hartman-Grobman Theorem: Part 2

Subspaces and Norms

We start off with a lemma that is analogous to the lemma in Lecture

21, except this one will deal with the magnitude, rather than the real

part, of eigenvalues.

Lemma Let V be a finite-dimensional real vector space and let L ∈
L(V ,V ). If all the eigenvalues of L have magnitude less than c, then

there is a norm ‖ · ‖ on V such that

‖Lv‖ ≤ c‖v‖

for every v ∈ V .

Proof. As in the previous lemma, the norm will be the Euclidean norm

corresponding to the modification of the real canonical basis that gives

a matrix representation of L that has ε’s in place of the off-diagonal 1’s.

With respect to this basis, it can be checked that

LTL = D + R(ε),

where D is a diagonal matrix, each of whose diagonal entries is less

than c2, and R(ε) is a matrix whose entries converge to 0 as ε ↓ 0.

Hence, as in the proof of the earlier lemma, we can conclude that if ε

is sufficiently small then

‖Lv‖2 = 〈v,LTLv〉 ≤ c2‖v‖2

for every v ∈ V (where 〈·, ·〉 is the inner product that induces ‖·‖).

Note that if L is a linear operator, all of whose eigenvalues have

magnitude greater than c, then we get the reverse inequality

‖Lv‖ ≥ c‖v‖

for some norm ‖ · ‖. This follows trivially in the case when c ≤ 0, and

when c > 0 it follows by applying the lemma to L−1 (which exists, since

0 is not an eigenvalue of L).
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Now, suppose that A ∈ L(Rn,Rn) is hyperbolic. Then, since A has

only finitely many eigenvalues, there is a number a ∈ (0,1) such that

none of the eigenvalues of A are in the closed annulus

B(0, a−1) \ B(0, a).

Using the notation developed when we were deriving the real canonical

form, let

E− =




⊕

λ∈(−a,a)
N(A− λI)



⊕





⊕

|λ|<a
Imλ≠0

{
Reu

∣∣ u ∈ N(A− λI)}



⊕





⊕

|λ|<a
Imλ≠0

{
Imu

∣∣ u ∈ N(A− λI)}



,

and let

E+ =




⊕

λ∈(−∞,−a−1)∪(a−1,∞)
N(A− λI)



⊕





⊕

|λ|>a−1

Imλ≠0

{
Reu

∣∣ u ∈ N(A− λI)}



⊕





⊕

|λ|>a−1

Imλ≠0

{
Imu

∣∣ u ∈ N(A− λI)}



.

Then Rn = E−⊕E+, and E− and E+ are both invariant under A. Define

P− ∈ L(Rn,E−) and P+ ∈ L(Rn,E+) to be the linear operators that

map each x ∈ Rn to the unique elements P−x ∈ E− and P+x ∈ E+
such that P−x + P+x = x.

Let A− ∈ L(E−,E−) and A+ ∈ L(E+,E+) be the restrictions of A to

E− and E+, respectively. By the lemma and the discussion immediately

thereafter, we can find a norm ‖ · ‖− for E− and a norm ‖ · ‖+ for E+
such that

‖A−x‖− ≤ a‖x‖−
for every x ∈ E−, and

‖A+x‖+ ≥ a−1‖x‖+

for every x ∈ E+. Define a norm ‖ · ‖ on Rn by the formula

‖x‖ =max{‖P−x‖−,‖P+x‖+}. (4.2)
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Hartman-Grobman Theorem: Part 3

This is the norm on Rn that we will use throughout our proof of the

(global) Hartman-Grobman Theorem (for maps). Note that ‖x‖ = ‖x‖−
if x ∈ E−, and ‖x‖ = ‖x‖+ if x ∈ E+.

Recall that we equipped C0
b(R

n) with the norm ‖ · ‖0 defined by the

formula

‖w‖0 := sup
x∈Rn

‖w(x)‖.

The norm on Rn on the right-hand side of this formula is that given

in (4.2). Recall also that we will use the functional Lip defined by the

formula

Lip(w) := sup
x1,x2∈R

n

x1≠x2

‖w(x1)−w(x2)‖
‖x1 − x2‖

The norm on Rn on the right-hand side of this formula is also that

given in (4.2).

Let

C0
b(E−) =

{
w ∈ C(Rn,E−)

∣∣ sup
x∈Rn

‖w(x)‖− <∞
}
,

and let

C0
b(E+) =

{
w ∈ C(Rn,E+)

∣∣ sup
x∈Rn

‖w(x)‖+ <∞
}
.

Since Rn = E− ⊕E+, it follows that

C0
b(R

n) = C0
b(E−)⊕ C0

b(E+),

and the corresponding decomposition of an element w ∈ C0
b(R

n) is

w = P− ◦w + P+ ◦w.

We equip C0
b(E−) and C0

b(E+) with the same norm ‖ · ‖0 that we

used on C0
b(R

n), thereby making each of these two spaces a Banach

space. It is not hard to see that

‖w‖0 = max{‖P− ◦w‖0,‖P+ ◦w‖0}.

4.3 Hartman-Grobman Theorem: Part 3

Linear and Nonlinear Maps

Now, assume that A is invertible, so that

inf
x≠0

‖Ax‖
‖x‖ > 0.
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4. Conjugacies

Choose, and fix, a positive constant

ε <min

{
1− a, inf

x≠0

‖Ax‖
‖x‖

}
.

Choose, and fix, a function g ∈ C1
b(R

n) for which Lip(g) < ε. The

(global) Hartman-Grobman Theorem (for maps) will be proved by con-

structing a map Θ from C0
b(R

n) to C0
b(R

n) whose fixed points would be

precisely those objects v which, when added to the identity I, would

yield solutions h to the conjugacy equation

(A+ g) ◦ h = h ◦A, (4.3)

and then showing that Θ is a contraction (and that h is a homeomor-

phism).

Plugging h = I + v into (4.3) and manipulating the result, we can

see that that equation is equivalent to the equation

Lv = Ψ(v), (4.4)

where Ψ(v) := g ◦ (I + v) ◦A−1 and

Lv = v −A ◦ v ◦A−1 =: (id−A)v.

Since the composition of continuous functions is continuous, and the

composition of functions is bounded if the outer function in the com-

position is bounded, it is clear that Ψ is a (nonlinear) map from C0
b(R

n)

to C0
b(R

n). Similarly, A and, therefore, L are linear maps from C0
b(R

n)

to C0
b(R

n). We will show that L can be inverted and then apply L−1 to

both sides of (4.4) to get

v = L−1(Ψ(v)) =: Θ(v) (4.5)

as our fixed point equation.

Inverting L
Since A behaves significantly differently on E− than it does on E+, A
and, therefore, L behave significantly differently on C0

b(E−) than they

do on C0
b(E+). For this reason, we will analyze L by looking at its

restrictions to C0
b(E−) and to C0

b(E+). Note that C0
b(E−) and C0

b(E+)
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Hartman-Grobman Theorem: Part 3

are invariant under A and, therefore, under L. Therefore, it makes

sense to let A− ∈ L(C0
b(E−), C0

b(E−)) and A+ ∈ L(C0
b(E+), C0

b(E+))
be the restrictions of A to C0

b(E−) and C0
b(E+), respectively, and let

L− ∈ L(C0
b(E+), C0

b(E+)) and L+ ∈ L(C0
b(E+), C0

b(E+)) be the corre-

sponding restrictions of L. Then L will be invertible if and only if L−
and L+ are each invertible. To invert L− and L+ we use the following

general result about the invertibility of operators on Banach spaces.

Lemma Let X be a Banach space with norm ‖ · ‖X and corresponding

operator norm ‖ · ‖L(X,X). Let G be a linear map from X to X , and let

c < 1 be a constant. Then:

(a) If ‖G‖L(X,X) ≤ c, then id−G is invertible and

‖(id−G)−1‖L(X,X) ≤ 1

1− c .

(b) If G is invertible and ‖G−1‖L(X,X) ≤ c, then id−G is invertible and

‖(id−G)−1‖L(X,X) ≤ c

1− c .

Proof. The space of bounded linear maps from X to X is a Banach

space using the operator norm. In case (a), the bound on ‖G‖L(X,X),
along with the Cauchy convergence criterion, implies that the series

∞∑

k=0

Gk

converges to a bounded linear map from X to X ; call it H . In fact, we

see that (by the formula for the sum of a geometric series)

‖H‖L(X,X) ≤ 1

1− c .

It is not hard to check that H ◦ (id−G) = (id−G) ◦ H = id, so H =
(id−G)−1.

In case (b), we can apply the results of (a) with G−1 in place of G to

deduce that id−G−1 is invertible and that

‖(id−G−1)−1‖L(X,X) ≤
1

1− c .
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Since id−G = −G(id−G−1) = −(id−G−1)G, it is not hard to check that

−(id−G−1)−1G−1 is the inverse of id−G and that

‖ − (id−G−1)−1G−1‖L(X,X) ≤ c

1− c .

The first half of this lemma is useful for inverting small perturba-

tions of the identity, while the second half is useful for inverting large

perturbations of the identity. It should, therefore, not be too surprising

that we will apply the first half with G = A− and the second half with

G = A+ (since A compresses things in the E− direction and stretches

things in the E+ direction).

First, consider A−. If w ∈ C0
b(E−), then

‖A−w‖0 = ‖A ◦w ◦A−1‖0 = sup
x∈Rn

‖Aw(A−1x)‖ = sup
y∈Rn

‖Aw(y)‖

≤ a sup
y∈Rn

‖w(y)‖ = a‖w‖0,

so the operator norm of A− is bounded by a. Applying the first half

of the lemma with X = C0
b(E−), G = A−, and c = a, we find that L− is

invertible, and its inverse has operator norm bounded by (1− a)−1.

Next, consider A+. It is not hard to see that A+ is invertible, and

(A+)−1w = A−1 ◦w ◦A. If w ∈ C0
b(E+), then (because the eigenvalues

of the restriction of A−1 to E+ all have magnitude less than a)

‖(A+)−1w‖0 = ‖A−1 ◦w ◦A‖0 = sup
x∈Rn

‖A−1w(Ax)‖

= sup
y∈Rn

‖A−1w(y)‖ ≤ a sup
y∈Rn

‖w(y)‖ = a‖w‖0,

so the operator norm of (A+)−1 is bounded by a. Applying the second

half of the lemma with X = C0
b(E+), G = A+, and c = a, we find

that L+ is invertible, and its inverse has operator norm bounded by

a(1− a)−1.

Putting these two facts together, we see that L is invertible, and, in

fact,

L−1 = (L−)−1 ◦ P− + (L+)−1 ◦ P+.
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Hartman-Grobman Theorem: Part 4

If w ∈ C0
b(R

n), then

‖L−1w‖0 = sup
x∈Rn

‖L−1w(x)‖

= sup
x∈Rn

max{‖P−L−1w(x)‖,‖P+L−1w(x)‖}

= sup
x∈Rn

max{‖(L−)−1P−w(x)‖,‖(L+)−1P+w(x)‖}

≤ sup
x∈Rn

max

{
1

1− a‖w(x)‖,
a

1− a‖w(x)‖
}

= 1

1− a sup
x∈Rn

‖w(x)‖ = 1

1− a‖w‖0,

so the operator norm of L−1 is bounded by (1− a)−1.

4.4 Hartman-Grobman Theorem: Part 4

The Contraction Map

Recall that we are looking for fixed points v of the map Θ := L−1 ◦ Ψ ,

where Ψ(v) := g ◦ (I+v) ◦A−1. We have established that L−1 is a well-

defined linear map from C0
b(R

n) to C0
b(R

n) and that its operator norm

is bounded by (1−a)−1. This means that Θ is a well-defined (nonlinear)

map from C0
b(R

n) to C0
b(R

n); furthermore, if v1, v2 ∈ C0
b(R

n), then

‖Θ(v1)−Θ(v2)‖0 = ‖L−1(Ψ(v1)−Ψ(v2))‖0 ≤
1

1− a‖Ψ(v1)−Ψ(v2)‖0

= 1

1− a‖g ◦ (I + v1) ◦A−1 − g ◦ (I + v2) ◦A−1‖0

= 1

1− a sup
x∈Rn

‖g(A−1x + v1(A
−1x))− g(A−1x + v2(A

−1x))‖

≤ ε

1− a sup
x∈Rn

‖(A−1x + v1(A
−1x))− (A−1x + v2(A

−1x))‖

= ε

1− a sup
x∈Rn

‖v1(A
−1x)− v2(A

−1x)‖

= ε

1− a sup
y∈Rn

‖v1(y)− v2(y)‖ =
ε

1− a‖v1 − v2‖0.

This shows that Θ is a contraction, since ε was chosen to be less than

1 − a. By the contraction mapping theorem, we know that Θ has a
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4. Conjugacies

unique fixed point v ∈ C0
b(R

n); the function h := I+v satisfies F ◦h =
h◦A, where F := A+g. It remains to show that h is a homeomorphism.

Injectivity

Before we show that h itself is injective, we show that F is injective.

Suppose it weren’t. Then we could choose x1, x2 ∈ Rn such that x1 ≠

x2 but F(x1) = F(x2). This would mean that Ax1 + g(x1) = Ax2 +
g(x2), so

‖A(x1 − x2)‖
‖x1 − x2‖

= ‖Ax1 −Ax2‖
‖x1 − x2‖

= ‖g(x1)− g(x2)‖
‖x1 − x2‖

≤ Lip(g)

< ε inf
x≠0

‖Ax‖
‖x‖ ,

which would be a contradiction.

Now we show that h is injective. Let x1, x2 ∈ Rn satisfying h(x1) =
h(x2) be given. Then

h(Ax1) = F(h(x1)) = F(h(x2)) = h(Ax2),

and, by induction, we have h(Anx1) = h(Anx2) for every n ∈ N. Also,

F(h(A−1x1)) = h(AA−1x1) = h(x1) = h(x2) = h(AA−1x2)

= F(h(A−1x2)),

so the injectivity of F implies that h(A−1x1) = h(A−1x2); by induction,

h(A−nx1) = h(A−nx2) for every n ∈ N. Set z = x1−x2. Since I = h−v,

we know that for any n ∈ Z

‖Anz‖ = ‖Anx1 −Anx2‖
= ‖(h(Anx1)− v(Anx1))− (h(Anx2)− v(Anx2))‖
= ‖v(Anx1)− v(Anx2)‖ ≤ 2‖v‖0.

Because of the way the norm was chosen, we then know that for n ≥ 0

‖P+z‖ ≤ an‖AnP+z‖ ≤ an‖Anz‖ ≤ 2an‖v‖0 → 0,

as n ↑ ∞, and we know that for n ≤ 0

‖P−z‖ ≤ a−n‖AnP−z‖ ≤ a−n‖Anz‖ ≤ 2a−n‖v‖0 → 0,

as n ↓ −∞. Hence, z = P−z + P+z = 0, so x1 = x2.
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Surjectivity

It may seem intuitive that a map like h that is a bounded perturbation

of the identity is surjective. Unfortunately, there does not appear to

be a way of proving this that is simultaneously elementary, short, and

complete. We will therefore rely on the following topological theorem

without proving it.

Theorem (Invariance of Domain) Every continuous injective map from

Rn to Rn maps open sets to open sets.

In particular, this theorem implies that h(Rn) is open. If we can

show that h(Rn) is closed, then (since h(Rn) is clearly nonempty) this

will mean that h(Rn) = Rn, i.e., h is surjective.

So, suppose we have a sequence (h(xk)) of points in h(Rn) that

converges to a point y ∈ Rn. Without loss of generality, assume that

‖h(xk)−y‖ ≤ 1

for every k. This implies that ‖h(xk)‖ ≤ ‖y‖+1, which in turn implies

that ‖xk‖ ≤ ‖y‖ + ‖v‖0 + 1. Thus, the sequence (xk) is bounded

and therefore has a subsequence (xkℓ) converging to some point x0 ∈
Rn. By continuity of h, (h(xkℓ)) converges to h(x0), which means that

h(x0) = y . Hence, h(Rn) is closed.

Continuity of the Inverse

The bijectivity of h implies that h−1 is defined. To complete the ver-

ification that h is a homeomorphism, we need to confirm that h−1 is

continuous. But this is an immediate consequence of the the Invariance

of Domain Theorem.

4.5 Hartman-Grobman Theorem: Part 5

Modifying the Vector Field

Consider the continuously differentiable autonomous ODE

ẋ = f (x) (4.6)
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4. Conjugacies

with an equilibrium point that, without loss of generality, is located at

the origin. For x near 0, f (x) ≈ Bx, where B = Df(0). Our goal is

to come up with a modification f̃ of f such that f̃ (x) = f (x) for x

near 0 and f̃ (x) ≈ Bx for all x. If we accomplish this goal, whatever

information we obtain about the relationship between the equations

ẋ = f̃ (x) (4.7)

and

ẋ = Bx (4.8)

will also hold between (4.6) and (4.8) for x small.

Pick β : [0,∞)→ [0,1] to be a C∞ function satisfying

β(s) =





1 if s ≤ 1

0 if s ≥ 2,

and let C = sups∈[0,∞) |β′(s)|. Given ε > 0, pick r > 0 so small that

‖Df(x)− B‖ < ε

2C + 1

whenever ‖x‖ ≤ 2r . (We can do this since Df(0) = B and Df is

continuous.) Define f̃ by the formula

f̃ (x) = Bx + β
(‖x‖
r

)
(f (x)− Bx).

Note that f̃ is continuously differentiable, agrees with f for ‖x‖ ≤ r ,

and agrees with B for ‖x‖ ≥ 2r . We claim that f̃ − B has Lipschitz

constant less than ε. Assuming, without loss of generality, that ‖x‖
and ‖y‖ are less than or equal to 2r , we have (using the Mean Value

Theorem)

‖(f̃ (x)− Bx)− (f̃ (y)− By)‖

=
∥∥∥∥β
(‖x‖
r

)
(f (x)− Bx)− β

(‖y‖
r

)
(f (y)− By)

∥∥∥∥

≤ β
(‖x‖
r

)
‖(f (x)− Bx)− (f (y)− By)‖

+
∣∣∣∣β
(‖x‖
r

)
− β

(‖y‖
r

)∣∣∣∣‖f (y)− By‖

≤ ε

2C + 1
‖x −y‖ + C |‖x‖ − ‖y‖|

r
‖y‖ ε

2C + 1

≤ ε‖x −y‖.
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Hartman-Grobman Theorem: Part 5

Now, consider the difference between eB and ϕ(1, ·), where ϕ is

the flow generated by f̃ . Let g(x) = ϕ(1, x)− eBx. Then, since f̃ (x) =
B(x) for all large x, g(x) = 0 for all large x. Also, g is continuously

differentiable, so g ∈ C1
b(R

n). If we apply the variation of constants

formula to (4.7) rewritten as

ẋ = Bx + (f̃ (x)− Bx),

we find that

g(x) =
∫ 1

0
e(1−s)B[f̃ (ϕ(s,x))− Bϕ(s,x)]ds,

so

‖g(x)− g(y)‖

≤
∫ 1

0
‖e(1−s)B‖‖(f̃ (ϕ(s,x))−Bϕ(s,x))− (f̃ (ϕ(s,y))−Bϕ(s,y))‖ds

≤ ε
∫ 1

0
‖e(1−s)B‖‖ϕ(s,x)−ϕ(s,y)‖ds

≤ ‖x −y‖ε
∫ 1

0
‖e(1−s)B‖‖e(‖B‖+ε)s − 1‖ds,

by continuous dependence on initial conditions. Since

ε

∫ 1

0
‖e(1−s)B‖‖e(‖B‖+ε)s − 1‖ds → 0

as ε ↓ 0, we can make the Lipschitz constant of g as small as we want

by making ε small (through shrinking the neighborhood of the origin

on which f̃ and f agree).

Conjugacy for t = 1

If 0 is a hyperbolic equilibrium point of (4.6) (and therefore of (4.7))

then none of the eigenvalues of B are imaginary. Setting A = eB , it

is not hard to show that the eigenvalues of A are the exponentials of

the eigenvalues of B, so none of the eigenvalues of A have modulus 1;

i.e., A is hyperbolic. Also, A is invertible (since A−1 = e−B ), so we can
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apply the global Hartman-Grobman Theorem for maps and conclude

that there is a homeomorphism h : Rn → Rn such that

ϕ(1, h(x)) = h(eBx) (4.9)

for every x ∈ Rn (where ϕ is the flow corresponding to (4.7)).

Conjugacy for t ≠ 1

For the Hartman-Grobman Theorem for flows, we need

ϕ(t,h(x)) = h(etBx)

for every x ∈ Rn and every t ∈ R. Fix t ∈ R, and consider the function

h̃ defined by the formula

h̃(x) =ϕ(t,h(e−tBx)). (4.10)

As the composition of homeomorphisms, h̃ is a homeomorphism. Fur-

thermore, the fact that h satisfies (4.9) implies that

ϕ(1, h̃(x)) = ϕ(1,ϕ(t, h(e−tBx))) = ϕ(t,ϕ(1, h(e−tBx)))
= ϕ(t,h(eBe−tBx)) =ϕ(t,h(e−tBeBx))) = h̃(eBx),

so (4.9) holds if h is replaced by h̃.

Now,

h̃− I =ϕ(t, ·) ◦h ◦ e−tB − I
= (ϕ(t, ·)− etB) ◦ h ◦ e−tB + etB ◦ (h− I) ◦ e−tB =: v1 + v2.

The fact that ϕ(t,x) and etBx agree for large x implies that ϕ(t, ·) −
etB is bounded, so v1 is bounded, as well. The fact that h−I is bounded

implies that v2 is bounded. Hence, h̃− I is bounded.

The uniqueness part of the global Hartman-Grobman Theorem for

maps now implies that h and h̃ must be the same function. Using this

fact and substituting y = e−tBx in (4.10) yields

h(etBy) = ϕ(t,h(y))

for every y ∈ Rn and every t ∈ Rn. This means that the flows gen-

erated by (4.8) and (4.7) are globally topologically conjugate, and the

flows generated by (4.8) and (4.6) are locally topologically conjugate.

114



theoryofodes July 4, 2007 13:20 Page 115 �



�
	

�



�
	

�



�
	

�



�
	

Constructing Conjugacies

4.6 Constructing Conjugacies

The Hartman-Grobman Theorem gives us conditions under which a

conjugacy between certain maps or between certain flows may exist.

Some limitations of the theorem are:

• The conditions it gives are sufficient, but certainly not necessary,

for a conjugacy to exist.

• It doesn’t give a simple way to construct a conjugacy (in closed

form, at least).

• It doesn’t indicate how smooth the conjugacy might be.

These shortcomings can be addressed in a number of different ways,

but we won’t really go into those here. We will, however, consider some

aspects of conjugacies.

Differentiable Conjugacies of Flows

Consider the autonomous differential equations

ẋ = f (x) (4.11)

and

ẋ = g(x), (4.12)

generating, respectively, the flows ϕ and ψ. Recall that the conjugacy

equation for ϕ and ψ is

ϕ(t,h(x)) = h(ψ(t,x)) (4.13)

for every x and t. Not only is (4.13) somewhat complicated, it appears

to require you to solve (4.11) and (4.12) before you can look for a con-

jugacy h. Suppose, however, that h is a differentiable conjugacy. Then,

we can differentiate both sides of (4.13) with respect to t to get

f (ϕ(t,h(x))) = Dh(ψ(t,x))g(ψ(t, x)). (4.14)

Substituting (4.13) into the left-hand side of (4.14) and then replacing

ψ(t,x) by x, we get the equivalent equation

f (h(x)) = Dh(x)g(x). (4.15)
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Note that (4.15) involves the functions appearing in the differential

equations, rather than the formulas for the solutions of those equa-

tions. Note, also, that (4.15) is the same equation you would get if you

took a solution x of (4.12) and required the function h ◦ x to satisfy

(4.11).

An Example for Flows

As the simplest nontrivial example, let a,b ∈ R be distinct constants

and consider the equations

ẋ = ax (4.16)

and

ẋ = bx (4.17)

for x ∈ R. Under what conditions on a and b does there exist a topo-

logical conjugacy h taking solutions of (4.17) to solutions of (4.16)?

Equation (4.15) tells us that if h is differentiable then

ah(x) = h′(x)bx. (4.18)

If b ≠ 0, then separating variables in (4.18) implies that on intervals

avoiding the origin h must be given by the formula

h(x) = C|x|a/b (4.19)

for some constant C. Clearly, (4.19) does not define a topological con-

jugacy for a single constant C, because it fails to be injective on R;

however, the formula

h(x) =




x|x|a/b−1 if x ≠ 0

0 if x = 0,
(4.20)

which is obtained from (4.19) by taking C = 1 for positive x and C = −1

for negative x, defines a homeomorphism if ab > 0. Even though the

function defined in (4.20) may fail to be differentiable at 0, substitution

of it into

etah(x) = h(etbx), (4.21)

which is (4.13) for this example, shows that it does, in fact, define a

topological conjugacy when ab > 0. (Note that in no case is this a

C1-conjugacy, since either h′(0) or (h−1)′(0) does not exist.)
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Now, suppose that ab ≤ 0. Does a topological (possibly nondif-

ferentiable) conjugacy exist? If ab = 0, then (4.21) implies that h is

constant, which violates injectivity, so suppose that ab < 0. In this

case, substituting x = 0 and t = 1 into (4.21) implies that h(0) = 0.

Fixing x ≠ 0 and letting t sgnb ↓ −∞ in (4.21), we see that the continu-

ity of h implies that h(x) = 0, also, which again violates injectivity.

Summarizing, for a ≠ b there is a topological conjugacy of (4.16)

and (4.17) if and only if ab > 0, and these are not C1-conjugacies.

An Example for Maps

Let’s try a similar analysis for maps. Let a,b ∈ R be distinct constants,

and consider the maps F(x) = ax and G(x) = bx (for x ∈ R). For what

(a, b)-combinations does there exist a homeomorphism h : R → R such

that

F(h(x)) = h(G(x)) (4.22)

for every x ∈ R? Can h and h−1 be chosen to be differentiable?

For these specific maps, the general equation (4.22) becomes

ah(x) = h(bx). (4.23)

If a = 0 or b = 0 or a = 1 or b = 1, then injectivity is immediately

violated. Note that, by induction, (4.23) gives

anh(x) = h(bnx) (4.24)

for every n ∈ Z. In particular, a2h(x) = h(b2x), so the cases when

a = −1 or b = −1 cause the same problems as when a = 1 or b = 1.

So, from now on, assume that a,b ∉ {−1,0,1}. Observe that:

• Setting x = 0 in (4.23) yields h(0) = 0.

• If |b| < 1, then fixing x ≠ 0 in (4.24) and letting n ↑ ∞, we have

|a| < 1.

• If |b| > 1, we can, similarly, let n ↓ −∞ to conclude that |a| > 1.

• If b > 0 and a < 0, then (4.23) implies that h(1) and h(b) have

opposite signs even though 1 and b have the same sign; conse-

quently, the Intermediate Value Theorem yields a contradiction

to injectivity.
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• If b < 0 and a > 0, then (4.23) gives a similar contradiction.

Thus, the only cases where we could possibly have conjugacy is if

a and b are both in the same component of

(−∞,−1)∪ (−1,0)∪ (0,1)∪ (1,∞).

When this condition is met, experimentation (or experience) suggests

trying h of the form h(x) = x|x|p−1 for some constant p > 0 (with

h(0) = 0). This is a homeomorphism from R to R, and plugging it into

(4.23) shows that it provides a conjugacy if a = b|b|p−1 or, in other

words, if

p = log |a|
log |b| .

Since a ≠ b, either h or h−1 fails to be differentiable at 0. Is there

some other formula that provides a C1-conjugacy? No, because if there

were we could differentiate both sides of (4.23) with respect to x and

evaluate at x = 0 to get h′(0) = 0, which would mean that (h−1)′(0) is

undefined.

Exercise 16 Define F : R2 → R2 by the formula

F

([
x

y

])
=
[
−x/2

2y + x2

]
,

and let A = DF(0).

(a) Show that the maps F and A are topologically conjugate.

(b) Show that the flows generated by the differential equations

ż = F(z)

and

ż = Az

are topologically conjugate.

(Hint: Try quadratic conjugacy functions.)
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Smooth Conjugacies

4.7 Smooth Conjugacies

The examples we looked at last time showing that topological conjuga-

cies often cannot be chosen to be differentiable all involved two maps

or vector fields with different linearizations at the origin. What about

when, as in the Hartman-Grobman Theorem, we are looking for a con-

jugacy between a map (or flow) and its linearization? An example of

Hartman shows that the conjugacy cannot always be chosen to be C1.

Hartman’s Example

Consider the system





ẋ = αx
ẏ = (α− γ)y + εxz
ż = −γz,

where α > γ > 0 and ε ≠ 0. We will not cut off this vector field but will

instead confine our attention to x,y, z small. A calculation shows that

the time-1 map F =ϕ(1, ·) of this system is given by

F






x

y

z





 =




ax

ac(y + εxz)
cz


 ,

where a = eα and c = e−γ . Note that a > ac > 1 > c > 0. The time-1

map B of the linearization of the differential equation is given by

B



x

y

y


 =



ax

acy

cz


 .

A local conjugacy H = (f , g,h) of B with F must satisfy

af(x,y, z) = f (ax,acy, cz)

ac[g(x,y, z) + εf (x,y, z)h(x,y, z)] = g(ax,acy, cz)

ch(x,y, z) = h(ax,acy, cz)
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4. Conjugacies

for every x,y, z near 0. Writing k(x, z) for k(x,0, z), where k ∈
{f , g,h}, we have

af(x, z) = f (ax, cz) (4.25)

ac[g(x, z)+ εf (x, z)h(x, z)] = g(ax, cz) (4.26)

ch(x, z) = h(ax, cz) (4.27)

for every x, z near 0.

Before proceeding further, we state and prove a lemma.

Lemma Suppose that j is a continuous real-valued function of a real

variable, defined on an open interval U centered at the origin. Suppose

that there are constants α,β ∈ R such that

αj(u) = j(βu) (4.28)

whenever u,βu ∈ U. Then if |β| < 1 < |α| or |α| < 1 < |β|, j(u) = 0

for every u ∈ U.

Proof. If |β| < 1 < |α|, fix u ∈ U and apply (4.28) inductively to get

αnj(u) = j(βnu) (4.29)

for every n ∈ N. Letting n ↑ ∞ in (4.29), we see that j(u) must be zero.

If |α| < 1 < |β|, substitute v = βu into (4.28) to get

αj(β−1v) = j(v) (4.30)

for every v,β−1v ∈ U. Fix v ∈ U, and iterate (4.30) to get

αnj(β−nv) = j(v) (4.31)

for every n ∈ N. Letting n ↑ N in (4.31), we get j(v) = 0.

Setting x = 0 in (4.25) and applying the Lemma gives

f (0, z) = 0 (4.32)

for every z near zero. Setting z = 0 in (4.27) and applying the Lemma

gives

h(x,0) = 0 (4.33)
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Smooth Conjugacies

for every x near zero. Setting x = 0 in (4.26), using (4.32), and applying

the Lemma gives

g(0, z) = 0 (4.34)

for every z near zero. If we set z = 0 in (4.26), use (4.33), and then dif-

ferentiate both sides with respect to x, we get cgx(x,0) = gx(ax,0);
applying the Lemma yields

gx(x,0) = 0 (4.35)

for every x near zero. Setting z = 0 in (4.34) and using (4.35), we get

g(x,0) = 0 (4.36)

for every x near zero.

Now, using (4.26) and mathematical induction, it can be verified

that

ancn[g(x, z)+nεf(x, z)h(x, z)] = g(anx, cnz) (4.37)

for every n ∈ N. Similarly, mathematical induction applied to (4.25)

gives

f (x, z) = a−nf (anx, cnz) (4.38)

for every n ∈ N. If we substitute (4.38) into (4.37), divide through by

cn, and replace x by a−nx we get

ang(a−nx, z)+nεf(x, cnz)h(a−nx, z) = c−ng(x, cnz) (4.39)

for every n ∈ N.

The existence of gx(0, z) and gz(x,0) along with equations (4.34)

and (4.36) imply that ang(a−nx, z) and c−ng(x, cnz) stay bounded as

n ↑ ∞. Using this fact, and letting n ↑ ∞ in (4.39), we get

f (x,0)h(0, z) = 0,

so f (x,0) = 0 or h(0, z) = 0. If f (x,0) = 0, then, in combination with

(4.33) and (4.36), this tells us that H is not injective in a neighborhood

of the origin. Similarly, if h(0, z) = 0 then, in combination with (4.32)

and (4.34), this implies a violation of injectivity, as well.
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4. Conjugacies

Poincaré’s Linearization Theorem

Suppose that f : Rn → Rn is analytic and satisfies f (0) = 0. It is possi-

ble to establish conditions under which there is an analytic change of

variables that will turn the nonlinear equation

ẋ = f (x) (4.40)

into its linearization

u̇ = Df(0)u. (4.41)

Definition Let λ1, λ2, . . . , λn be the eigenvalues of Df(0), listed accord-

ing to multiplicity. We say that Df(0) is resonant if there are non-

negative integers m1,m2, . . . ,mn and a number s ∈ {1,2, . . . , n} such

that
n∑

k=1

mk ≥ 2

and

λs =
n∑

k=1

mkλk.

If Df(0) is not resonant, we say that it is nonresonant.

Note that in Hartman’s example there is resonance. A study of nor-

mal forms reveals that nonresonance permits us to make changes of

variable that remove nonlinear terms up to any specified order in the

right-hand side of the differential equation. In order to be able to guar-

antee that all nonlinear terms may be removed, some extra condition

beyond nonresonance is required.

Definition We say that (λ1, λ2, . . . , λn) ∈ Cn satisfy a Siegel condition if

there are constants C > 0 and ν > 1 such that
∣∣∣∣∣∣
λs −

n∑

k=1

mkλk

∣∣∣∣∣∣
≥ C

(
∑n
k=1mk)ν

for all nonnegative integers m1,m2, . . . ,mn satisfying

n∑

k=1

mk ≥ 2.
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Smooth Conjugacies

Theorem (Poincaré’s Linearization Theorem) Suppose that f is analytic,

and that all the eigenvalues of Df(0) are nonresonant and either all lie

in the open left half-plane, all lie in the open right half-plane, or satisfy

a Siegel condition. Then there is a change of variables u = g(x) that is

analytic near 0 and that turns (4.40) into (4.41) near 0.
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5

Invariant Manifolds

5.1 Stable Manifold Theorem: Part 1

The Hartman-Grobman Theorem states that the flow generated by a

smooth vector field in a neighborhood of a hyperbolic equilibrium

point is topologically conjugate with the flow generated by its lineariza-

tion. Hartman’s counterexample shows that, in general, the conjugacy

cannot be taken to be C1. However, the Stable Manifold Theorem will

tell us that there are important structures for the two flows that can

be matched up by smooth changes of variable. In this section, we will

discuss the Stable Manifold Theorem on an informal level and discuss

two different approaches to proving it.

Let f : Ω ⊆ Rn → Rn be C1, and let ϕ : R × Ω → Ω be the flow

generated by the differential equation

ẋ = f (x). (5.1)

Suppose that x0 is a hyperbolic equilibrium point of (5.1).

Definition The (global) stable manifold of x0 is the set

W s(x0) :=
{
x ∈ Ω

∣∣∣ lim
t↑∞
ϕ(t,x) = x0

}
.

Definition The (global) unstable manifold of x0 is the set

Wu(x0) :=
{
x ∈ Ω

∣∣∣ lim
t↓−∞

ϕ(t,x) = x0

}
.

Definition Given a neighborhood U of x0, the local stable manifold of
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5. Invariant Manifolds

x0 (relative to U) is the set

W s
loc(x0) :=

{
x ∈ U

∣∣∣ γ+(x) ⊂ U and lim
t↑∞
ϕ(t,x) = x0

}
.

Definition Given a neighborhood U of x0, the local unstable manifold

of x0 (relative to U) is the set

Wu
loc(x0) :=

{
x ∈ U

∣∣∣ γ−(x) ⊂ U and lim
t↓−∞

ϕ(t,x) = x0

}
.

Note that:

• W s
loc(x0) ⊆W s(x0), and Wu

loc(x0) ⊆ Wu(x0).

• W s
loc(x0) andWu

loc(x0) are both nonempty, since they each contain

x0.

• W s(x0) and Wu(x0) are invariant sets.

• W s
loc(x0) is positively invariant, and Wu

loc(x0) is negatively invari-

ant.

• W s
loc(x0) is not necessarily W s(x0) ∩U, and Wu

loc(x0) is not nec-

essarily Wu(x0)∩U.

W s
loc(x0) is not necessarily invariant, since it might not be negatively

invariant, and Wu
loc(x0) is not necessarily invariant, since it might not

be positively invariant. They do, however, possess what is known as

relative invariance.

Definition A subset A of a set B is positively invariant relative to B if

for every x ∈ A and every t ≥ 0, ϕ(t,x) ∈ A whenever ϕ([0, t], x) ⊆
B.

Definition A subset A of a set B is negatively invariant relative to B if

for every x ∈ A and every t ≤ 0, ϕ(t,x) ∈ A whenever ϕ([t,0], x) ⊆
B.

Definition A subset A of a set B is invariant relative to B if it is nega-

tively invariant relative to B and positively invariant relative to B.
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Stable Manifold Theorem: Part 1

W s
loc(x0) is negatively invariant relative toU and is therefore invari-

ant relative to U. Wu
loc(x0) is positively invariant relative to U and is

therefore invariant relative to U.

Recall that a (k-)manifold is a set that is locally homeomorphic to

an open subset of Rk. Although the word “manifold” appeared in the

names of W s
loc(x0), W

u
loc(x0), W s(x0), and Wu(x0), it is not obvious

from the defintions of these sets that they are, indeed, manifolds. One

of the consequences of the Stable Manifold Theorem is that, if U is

sufficiently small, W s
loc(x0) and Wu

loc(x0) are manifolds. (W s(x0) and

Wu(x0) are what are known as immersed manifolds.)

For simplicity, let’s now assume that x0 = 0. Let Es be the stable

subspace of Df(0), and let Eu be the unstable subspace of Df(0). If

f is linear, then W s(0) = Es and Wu(0) = Eu. The Stable Manifold

Theorem says that in the nonlinear case not only are the Stable and

Unstable Manifolds indeed manifolds, but they are tangent to Es and

Eu, respectively, at the origin. This is information that the Hartman-

Grobman Theorem does not provide.

More precisely there are neighborhoods Us of the origin in Es and

Uu of the origin in Eu and smooth maps hs : Us →Uu and hu :Uu →
Us such that hs(0) = hu(0) = 0 and Dhs(0) = Dhu(0) = 0 and the

local stable and unstable manifolds of 0 relative to Us ⊕Uu satisfy

W s
loc(0) =

{
x + hs(x)

∣∣ x ∈ Us}

and

Wu
loc(0) =

{
x + hu(x)

∣∣ x ∈ Uu}.
Furthermore, not only do solutions of (5.1) in the stable manifold con-

verge to 0 as t ↑ ∞, they do so exponentially quickly. (A similar state-

ment can be made about the unstable manifold.)

Liapunov-Perron Approach

This approach to proving the Stable Manifold Theorem rewrites (5.1)

as

ẋ = Ax + g(x), (5.2)

where A = Df(0). The Variation of Parameters formula gives

x(t2) = e(t2−t1)Ax(t1)+
∫ t2
t1
e(t2−s)Ag(x(s))ds, (5.3)
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5. Invariant Manifolds

for every t1, t2 ∈ R. Setting t1 = 0 and t2 = t, and projecting (5.3) onto

Es yields

xs(t) = etAsxs(0)+
∫ t

0
e(t−s)Asgs(x(s))ds,

where the subscript s attached to a quantity denotes the projection

of that quantity onto Es . If we assume that the solution x(t) lies on

W s(0), set t2 = t, let t1 ↑ ∞, and project (5.3) onto Eu, we get

xu(t) = −
∫∞

t
e(t−s)Augu(x(s))ds.

Hence, solutions of (5.2) in W s(0) satisfy the integral equation

x(t) = etAsxs(0)+
∫ t

0
e(t−s)Asgs(x(s))ds −

∫∞

t
e(t−s)Augu(x(s))ds.

Now, fix as ∈ Es , and define a functional T by

(Tx)(t) = etAsas +
∫ t

0
e(t−s)Asgs(x(s))ds −

∫∞

t
e(t−s)Augu(x(s))ds.

A fixed point x of this functional will solve (5.2), will have a range

contained in the stable manifold, and will satisfy xs(0) = as . If we set

hs(as) = xu(0) and define hs similarly for other inputs, the graph of

hs will be the stable manifold.

Hadamard Approach

The Hadamard approach uses what is known as a graph transform.

Here we define a functional not by an integral but by letting the graph

of the input function move with the flow ϕ and selecting the output

function to be the function whose graph is the image of the original

graph after, say, 1 unit of time has elapsed.

More precisely, suppose h is a function from Es to Eu. Define its

graph transform F[h] to be the function whose graph is the set

{
ϕ(1, ξ + h(ξ))

∣∣ ξ ∈ Es}. (5.4)

(That (5.4) is the graph of a function from Es to Eu—if we identify

Es×Eu with Es⊕Eu—is, of course, something that needs to be shown.)

Another way of putting this is that for each ξ ∈ Es ,

F[h]((ϕ(1, ξ + h(ξ)))s) = (ϕ(1, ξ + h(ξ)))u;
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Stable Manifold Theorem: Part 2

in other words,

F[h] ◦πs ◦ϕ(1, ·) ◦ (id+h) = πu ◦ϕ(1, ·) ◦ (id+h),
where πs and πu are projections onto Es and Eu, respectively. A fixed

point of the graph transform functional F will be an invariant manifold,

and it can be show that it is, in fact, the stable manifold.

5.2 Stable Manifold Theorem: Part 2

Statements

Given a normed vector space X and a positive number r , we let X(r)
stand for the closed ball of radius r centered at 0 in X .

The first theorem refers to the differential equation

ẋ = f (x). (5.5)

Theorem (Stable Manifold Theorem) Suppose that Ω is an open neigh-

borhood of the origin in Rn, and f : Ω → Rn is a Ck function (k ≥ 1)

such that 0 is a hyperbolic equilibrium point of (5.5). Let Es ⊕Eu be the

decomposition of Rn corresponding to the matrix Df(0). Then there is a

norm ‖ · ‖ on Rn, a number r > 0, and a Ckfunction h : Es(r)→ Eu(r)
such that h(0) = 0 and Dh(0) = 0 and such that the local stable mani-

fold W s
loc(0) of 0 relative to B(r) := Es(r)⊕Eu(r) is the set

{
vs + h(vs)

∣∣ vs ∈ Es(r)
}
.

Moreover, there is a constant c > 0 such that

W s
loc(0) =

{
v ∈ B(r)

∣∣∣ γ+(v) ⊂ B(r) and lim
t↑∞
ectϕ(t, v) = 0

}
.

Two immediate and obvious corollaries, which we will not state ex-

plicitly, describe the stable manifolds of other equilibrium points (via

translation) and describe unstable manifolds (by time reversal).

We will actually prove this theorem by first proving an analogous

theorem for maps (much as we did with the Hartman-Grobman Theo-

rem). Given a neighborhood U of a fixed point p of a map F , we can

define the local stable manifold of p (relative to U) as

W s
loc(p) :=

{
x ∈ U

∣∣∣ Fj(x) ∈ U for every j ∈ N and lim
j↑∞
Fj(x) = p

}
.
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Theorem (Stable Manifold Theorem for Maps) Suppose that Ω is an open

neighborhood of the origin in Rn, and F : Ω → Ω is an invertible Ck

function (k ≥ 1) for which F(0) = 0 and the matrix DF(0) is hyperbolic

and invertible. Let Es ⊕ Eu(= E− ⊕ E+) be the decomposition of Rn

corresponding to the matrix DF(0). Then there is a norm ‖ · ‖ on Rn,

a number r > 0, a number µ̃ ∈ (0,1), and a Ckfunction h : Es(r) →
Eu(r) such that h(0) = 0 and Dh(0) = 0 and such that the local stable

manifold W s
loc(0) of 0 relative to B(r) := Es(r)⊕Eu(r) satisfies

W s
loc(0) =

{
vs + h(vs)

∣∣ vs ∈ Es(r)
}

=
{
v ∈ B(r)

∣∣∣ Fj(v) ∈ B(r) for every j ∈ N
}

=
{
v ∈ B(r)

∣∣∣ Fj(v) ∈ B(r) and ‖Fj(v)‖ ≤ µ̃j‖v‖ for all j ∈ N
}
.

Preliminaries

The proof of the Stable Manifold Theorem for Maps will be broken up

into a series of lemmas. Before stating and proving those lemmas, we

need to lay a foundation by introducing some terminology and notation

and by choosing some constants.

We know that F(0) = 0 andDF(0) is hyperbolic. Then Rn = Es⊕Eu,

πs and πu are the corresponding projection operators, Es and Eu are

invariant under DF(0), and there are constants µ < 1 and λ > 1 such

that all of the eigenvalues of DF(0)|Es have magnitude less than µ and

all of the eigenvalues of DF(0)|Eu have magnitude greater than λ.

When we deal with a matrix representation of DF(q), it will be with

respect to a basis that consists of a basis for Es followed by a basis for

Eu. Thus,

DF(q) =



Ass(q) Asu(q)

Aus(q) Auu(q)


 ,

where, for example,Asu(q) is a matrix representation of πsDF(q)|Eu in

terms of the basis for Eu and the basis for Es . Note that, by invariance,

Asu(0) = Aus(0) = 0. Furthermore, we can pick our basis vectors so

that, with ‖ · ‖ being the corresponding Euclidean norm of a vector in

Es or in Eu,

‖Ass(0)‖ := sup
vs≠0

‖Ass(0)vs‖
‖vs‖

< µ
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Stable Manifold Theorem: Part 2

and

m(Auu(0)) := inf
vu≠0

‖Auu(0)vu‖
‖vu‖

> λ.

(The functional m(·) defined implicitly in the last formula is some-

times called the minimum norm even though it is not a norm.) For

a vector in v ∈ Rn, let ‖v‖ = max{‖πsv‖,‖πuv‖}. This will be

the norm on Rn that will be used throughout the proof. Note that

B(r) := Es(r) ⊕ Eu(r) is the closed ball of radius r in Rn by this

norm.

Next, we choose r . Fix α > 0. Pick ε > 0 small enough that

µ + εα+ ε < 1 < λ− ε/α− 2ε.

Pick r > 0 small enough that if q ∈ B(r) then

‖Ass(q)‖ < µ,
m(Auu(q)) > λ,

‖Asu(q)‖ < ε,
‖Aus(q)‖ < ε,

‖DF(q)−DF(0)‖ < ε,

and DF(q) is invertible. (We can do this since F is C1, so DF(·) is

continuous.)

Now, define

W s
r :=

∞⋂

j=0

F−j(B(r)),

and note that W s
r is the set of all points in B(r) that produce forward

semiorbits (under the discrete dynamical system generated by F ) that

stay in B(r) for all forward iterates. By definition, W s
loc(0) ⊆ W s

r ; we

will show that these two sets are, in fact, equal.

Two other types of geometric sets play vital roles in the proof: cones

and disks. The cones are of two types: stable and unstable. The stable

cone (of “slope” α) is

Cs(α) := {v ∈ Rn
∣∣ ‖πuv‖ ≤ α‖πsv‖

}
,

and the unstable cone (of “slope” α) is

Cu(α) := {v ∈ Rn
∣∣ ‖πuv‖ ≥ α‖πsv‖

}
.
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5. Invariant Manifolds

An unstable disk is a set of the form

{
vu +ψ(vu)

∣∣ vu ∈ Eu(r)
}

for some Lipschitz continuous function ψ : Eu(r) → Es(r) with Lips-

chitz constant (less than or equal to) α−1.

5.3 Stable Manifold Theorem: Part 3

The Action of DF(p) on the Unstable Cone

The first lemma shows that if the derivative of the map is applied to a

point in the unstable cone, the image is also in the unstable cone.

Lemma (Linear Invariance of the Unstable Cone) If p ∈ B(r), then

DF(p)Cu(α) ⊆ Cu(α).

Proof. Let p ∈ B(r) and v ∈ Cu(α). Then, if we let vs = πsv and

vu = πuv, we have ‖vu‖ ≥ α‖vs‖, so

‖πuDF(p)v‖ = ‖Aus(p)vs +Auu(p)vu‖
≥ ‖Auu(p)vu‖ − ‖Aus(p)vs‖
≥m(Auu(p))‖vu‖ − ‖Aus(p)‖‖vs‖ ≥ λ‖vu‖ − ε‖vs‖
≥ (λ− ε/α)‖vu‖,

and

‖πsDF(p)v‖ = ‖Ass(p)vs +Asu(p)vu‖ ≤ ‖Ass(p)vs‖ + ‖Asu(p)vu‖
≤ ‖Ass(p)‖‖vs‖ + ‖Asu(p)‖‖vu‖ ≤ µ‖vs‖ + ε‖vu‖
≤ (µ/α+ ε)‖vu‖.

Since λ− ε/α ≥ α(µ/α+ ε),

‖πuDF(p)v‖ ≥ α‖πsDF(p)v‖,

so DF(p)v ∈ Cu(α).

The Action of F on Moving Unstable Cones

The main part of the second lemma is that moving unstable cones are

positively invariant. More precisely, if two points are in B(r) and one
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of the two points is in a translate of the unstable cone that is centered

at the second point, then their images under F satisfy the same re-

lationship. The lemma also provides estimates on the rates at which

the stable and unstable parts of the difference between the two points

contract or expand, respectively.

In this lemma (and later) we use the convention that if X and Y are

subsets of a vector space, then

X +Y := {x +y
∣∣ x ∈ X and y ∈ Y}.

Lemma (Moving Unstable Cones) If p,q ∈ B(r) and q ∈ {p} + Cu(α),
then:

(a) ‖πs(F(q)− F(p))‖ ≤ (µ/α+ ε)‖πu(q − p)‖;

(b) ‖πu(F(q)− F(p))‖ ≥ (λ− ε/α− ε)‖πu(q − p)‖;

(c) F(q) ∈ {F(p)} + Cu(α).

Proof. We will write differences as integrals (using the Fundamental

Theorem of Calculus) and use our estimates on DF(v), for v ∈ B(r),
to estimate these integrals.

Since B(r) is convex,

‖πs(F(q)− F(p))‖ =
∥∥∥∥∥

∫ 1

0

d

dt
πsF(tq + (1− t)p)dt

∥∥∥∥∥

=
∥∥∥∥∥

∫ 1

0
πsDF(tq + (1− t)p)(q − p)dt

∥∥∥∥∥

=
∥∥∥∥∥

∫ 1

0
Ass(tq + (1− t)p)πs(q − p)dt

+
∫ 1

0
Asu(tq + (1− t)p)πu(q − p)dt

∥∥∥∥∥

≤
∫ 1

0
‖Ass(tq + (1− t)p)‖‖πs(q − p)‖dt

+
∫ 1

0
‖Asu(tq + (1− t)p)‖‖πu(q − p)‖dt

≤
∫ 1

0
[µ‖πs(q − p)‖ + ε‖πu(q − p)‖]dt ≤ (µ/α + ε)‖πu(q − p)‖.

This gives (a).
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5. Invariant Manifolds

Similarly,

‖πu(F(q)− F(p))‖

=
∥∥∥∥∥

∫ 1

0
Aus(tq + (1− t)p)πs(q − p)dt

+
∫ 1

0
Auu(tq + (1− t)p)πu(q − p)dt

∥∥∥∥∥

≥
∥∥∥∥∥

∫ 1

0
Auu(0)πu(q − p)dt

∥∥∥∥∥−
∥∥∥∥∥

∫ 1

0
[Aus(tq + (1− t)p)πs(q − p)dt

∥∥∥∥∥

−
∥∥∥∥∥

∫ 1

0
(Auu(tq + (1− t)p)−Auu(0))πu(q − p)dt

∥∥∥∥∥

≥m(Auu(0))‖πu(q − p)‖ −
∫ 1

0
‖Aus(tq + (1− t)p)‖‖πs(q − p)‖dt

−
∫ 1

0
‖Auu(tq + (1− t)p)−Auu(0)‖‖πu(q − p)‖dt

≥ λ‖πu(q − p)‖ − ε‖πs(q − p)‖ − ε‖πu(q − p)‖
≥ (λ− ε/α− ε)‖πu(q − p)‖.

This gives (b).

From (a), (b), and the choice of ε, we have

‖πu(F(q)− F(p))‖ ≥ (λ− ε/α− ε)‖πu(q − p)‖
≥ (µ + εα)‖πu(q − p)‖
≥ α‖πs(F(q)− F(p))‖,

so F(q)− F(p) ∈ Cu(α), which means that (c) holds.

5.4 Stable Manifold Theorem: Part 4

Stretching of C1 Unstable Disks

The next lemma shows that if F is applied to a C1 unstable disk (i.e.,

an unstable disk that is the graph of a C1 function), then part of the

image gets stretched out of B(r), but the part that remains in is again

a C1 unstable disk.
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Stable Manifold Theorem: Part 4

Lemma (Unstable Disks) Let D0 be a C1 unstable disk, and recursively

define

Dj = F(Dj−1)∩B(r)

for each j ∈ N. Then each Dj is a C1 unstable disk, and

diam


πu

j⋂

i=0

F−i(Di)

 ≤ 2(λ− ε/α− ε)−jr (5.6)

for each j ∈ N.

Proof. Because of induction, we only need to handle the case j = 1.

The estimate on the diameter of the πu projection of the preimage

of D1 under F is a consequence of part (b) of the lemma on moving

invariant cones. That D1 is the graph of an α−1-Lipschitz function ψ1

from a subset of Eu(r) to Es(r) is a consequence of part (c) of that

same lemma. Thus, all we need to show is that dom(ψ1) = Eu(r) and

that ψ1 is C1.

Let ψ0 : Eu(r)→ Es(r) be the C1 function (with Lipschitz constant

less than or equal to α−1) such that

D0 =
{
vu +ψ0(vu)

∣∣ vu ∈ Eu(r)
}
.

Define g : Eu(r) → Eu by the formula g(vu) = πuF(vu +ψ0(vu)). If

we can show that for each y ∈ Eu(r) there exists x ∈ Eu(r) such that

g(x) = y, (5.7)

then we will know that dom(ψ1) = Eu(r).
Let y ∈ Eu(r) be given. Let L = Auu(0). Since m(L) > λ, we

know that L−1 ∈ L(Eu,Eu) exists and that ‖L−1‖ ≤ 1/λ. Define G :

Eu(r) → Eu by the formula G(x) = x − L−1(g(x) − y), and note that

fixed points of G are solutions of (5.7), and vice versa. We shall show

that G is a contraction and takes the compact set Eu(r) into itself and

that, therefore, (5.7) has a solution x ∈ Eu(r).
Note that

Dg(x) = πuDF(x +ψ0(x))(I +Dψ0(x))

= Auu(x +ψ0(x))+Aus(x +ψ0(x))Dψ0(x),
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5. Invariant Manifolds

so

‖DG(x)‖ = ‖I − L−1Dg(x)‖ ≤ ‖L−1‖‖L−Dg(x)‖

≤ 1

λ
(‖Auu(x +ψ0(x))−Auu(0)‖

+ ‖Aus(x +ψ0(x))‖‖Dψ0(x)‖)

≤ ε + ε/α
λ

< 1.

The Mean Value Theorem then implies that G is a contraction.

Now, suppose that x ∈ Eu(r). Then

‖G(x)‖ ≤ ‖G(0)‖ + ‖G(x)−G(0)‖

≤ ‖L−1‖(‖g(0)‖ + ‖y‖)+ ε + ε/α
λ

‖x‖

≤ 1

λ
(‖g(0)‖ + r + (ε + ε/α)r).

Let ρ : Es(r) → Eu(r) be defined by the formula ρ(vs) = πuF(vs).
Since ρ(0) = 0 and, for any vs ∈ Es(r), ‖Dρ(vs)‖ = ‖Aus(vs)‖ ≤ ε,
the Mean Value Theorem tells us that

‖g(0)‖ = ‖πuF(ψ0(0))‖ = ‖ρ(ψ0(0))‖ ≤ ε‖ψ0(0)‖ ≤ εr . (5.8)

Plugging (5.8) into the previous estimate, we see that

‖G(x)‖ ≤ 1

λ
(εr + r + (ε + ε/α)r) = 1+ ε/α+ 2ε

λ
r < r,

so G(x) ∈ Eu(r).
That completes the verification that (5.7) has a solution for each

y ∈ Eu(r) and, therefore, that dom(ψ1) = Eu(r). To finish the proof,

we need to show thatψ1 is C1. Let g̃ be the restriction of g to g−1(D1),

and observe that

ψ1 ◦ g̃ = πs ◦ F ◦ (I +ψ0). (5.9)

We have shown that g̃ is a bijection of g−1(D1) with D1 and, by the

Inverse Function Theorem, g̃−1 is C1. Thus, if we rewrite (5.9) as

ψ1 = πs ◦ F ◦ (I +ψ0) ◦ g̃−1

we can see that ψ1, as the composition of C1 functions, is indeed C1.
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W sr is a Lipschitz Manifold

Recall that W s
r was defined to be all points in the box B(r) that pro-

duced forward orbits that remain confined within B(r). The next

lemma shows that this set is a manifold.

Lemma (Nature of W s
r ) W s

r is the graph of a function h : Es(r)→ Eu(r)
that satisfies h(0) = 0 and that has a Lipschitz constant less than or

equal to α.

Proof. For each vs ∈ Eu(r), consider the set

D := {vs} + Eu(r).

D is a C1 unstable disk, so by the lemma on unstable disks, the subset

Sj of D that stays in B(r) for at least j iterations of F has a diameter

less than or equal to 2(λ − ε/α − ε)−jr . By the continuity of F , Sj is

closed. Hence, the subset S∞ of D that stays in B(r) for an unlim-

ited number of iterations of F is the intersection of a nested collection

of closed sets whose diameters approach 0. This means that S∞ is a

singleton. Call the single point in S∞ h(vs).
It should be clear that W s

r is the graph of h. That h(0) = 0 follows

from the fact that 0 ∈ W s
r , since F(0) = 0. If h weren’t α-Lipschitz,

then there would be two points p,q ∈ W s
r such that p ∈ {q} + Cu(α).

Repeated application of parts (b) and (c) of the lemma on moving un-

stable cones would imply that either Fj(p) or Fj(q) is outside of B(r)
for some j ∈ N, contrary to definition.

W sloc(0) is a Lipschitz Manifold

Our next lemma shows that W s
loc(0) = W s

r and that, in fact, orbits in

this set converge to 0 exponentially. (The constant µ̃ in the statement

of the theorem can be chosen to be µ + ε if α ≤ 1.)

Lemma (Exponential Decay) If α ≤ 1, then for each p ∈W s
r ,

‖Fj(p)‖ ≤ (µ + ε)j‖p‖. (5.10)

In particular, W s
r = W s

loc(0).
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5. Invariant Manifolds

Proof. Suppose that α ≤ 1 and p ∈ W s
r . By mathematical induction

(and the positive invariance of W s
r ), it suffices to verify (5.10) for j = 1.

Since α ≤ 1 the last lemma implies thatW s
r is the graph of a 1-Lipschitz

function. Since F(p) ∈W s
r , we therefore know that

‖F(p)‖ = max
{‖πsF(p)‖,‖πuF(p)‖

} = ‖πsF(p)‖.
Using this and estimating, we find that

‖F(p)‖ =
∥∥∥∥∥

∫ 1

0

d

dt
πsF(tp)dt

∥∥∥∥∥ =
∥∥∥∥∥

∫ 1

0
πsDF(tp)pdt

∥∥∥∥∥

=
∥∥∥∥∥

∫ 1

0
[Ass(tp)πsp +Asu(tp)πup]dt

∥∥∥∥∥

≤
∫ 1

0
[‖Ass(tp)‖‖πsp‖ + ‖Asu(tp)‖‖πup‖]dt

≤ µ‖πsp‖ + ε‖πup‖ ≤ (µ + ε)‖p‖.

5.5 Stable Manifold Theorem: Part 5

W sloc(0) is C1

Lemma (Differentiability) The function h : Es(r)→ Eu(r) for which

W s
loc(0) =

{
vs + h(vs)

∣∣ vs ∈ Es(r)
}

is C1, and Dh(0) = 0.

Proof. Let q ∈ W s
r be given. We will first come up with a candidate for

a plane that is tangent to W s
r at q, and then we will show that it really

works.

For each j ∈ N and each p ∈ W s
r , define

Cs,j(p) := [D(Fj)(p)]−1Cs(α),

and let

Cs,0(p) := Cs(α).
By definition (and by the invertibility of DF(v) for all v ∈ B(r)),
Cs,j(p) is the image of the stable cone under an invertible linear trans-

formation. Note that

Cs,1(p) = [DF(p)]−1Cs(α) ⊂ Cs(α) = Cs,0(p)
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Stable Manifold Theorem: Part 5

by the (proof of the) lemma on linear invariance of the unstable cone.

Similarly,

Cs,2(p) = [D(F2)(p)]−1Cs(α) = [DF(F(p))DF(p)]−1Cs(α)

= [DF(p)]−1[DF(F(p))]−1Cs(α) = [DF(p)]−1Cs,1(F(p))

⊂ [DF(p)]−1Cs(α) = Cs,1(p)

and

Cs,3(p) = [D(F3)(p)]−1Cs(α) = [DF(F2(p))DF(F(p))DF(p)]−1Cs(α)

= [DF(p)]−1[DF(F(p))]−1[DF(F2(p))]−1Cs(α)

= [DF(p)]−1[DF(F(p))]−1Cs,1(F2(p))

⊂ [DF(p)]−1[DF(F(p))]−1Cs(α) = Cs,2(p).

Recursively, we find that, in particular,

Cs,0(q) ⊃ Cs,1(q) ⊃ Cs,2(q) ⊃ Cs,3(q) ⊃ · · · .

The plane that we will show is the tangent plane to W s
r at q is the

intersection

Cs,∞(q) :=
∞⋂

j=0

Cs,j(q)

of this nested sequence of “cones”.

First, we need to show that this intersection is a plane. Suppose

that x ∈ Cs,j(q). Then x ∈ Cs(α), so

‖πsDF(q)x‖ = ‖Ass(q)πsx +Asu(q)πux‖
≤ ‖Ass(q)‖‖πsx‖ + ‖Asu(q)‖‖πux‖ ≤ (µ + εα)‖πsx‖.

Repeating this sort of estimate, we find that

‖πsD(Fj)(q)x‖ = ‖πsDF(Fj−1(q))DF(Fj−2(q)) · · ·DF(q)x‖
≤ (µ + εα)j‖πsx‖.

On the other hand, if y is also in Cs,j(q) and πsx = πsy , then repeated

applications of the estimates in the lemma on linear invariance of the

unstable cone yield

‖πuD(Fj)(q)x −πuD(Fj)(q)y‖ ≥ (λ− ε/α)j‖πux −πuy‖.
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Since D(Fj)(q)Cs,j(q) = Cs(α), it must, therefore, be the case that

(λ− ε/α)j‖πux −πuy‖
(µ + εα)j‖πsx‖

≤ 2α.

This implies that

‖πux −πuy‖ ≤ 2α

(
µ + εα
λ− ε/α

)j
‖πsx‖. (5.11)

Letting j ↑ ∞ in (5.11), we see that for each vs ∈ Es there can be no

more than 1 point x in Cs,∞(q) satisfying πsx = vs . On the other

hand, each Cs,j(q) contains a plane of dimension dim(Es) (namely, the

preimage of Es under D(Fj)(q)), so (since the set of planes of that

dimension passing through the origin is a compact set in the natural

topology), Cs,∞(q) contains a plane, as well. This means that Cs,∞(q)
is a plane Pq that is the graph of a linear function Lq : Es → Eu.

Before we show that Lq = Dh(q), we make a few remarks.

(a) Because Es ⊂ Cs,j(0) for every j ∈ N, P0 = Es and L0 = 0.

(b) The estimate (5.11) shows that the size of the largest angle between

two vectors in Cs,j(q) having the same projection onto Es goes

to zero as j ↑ ∞.

(c) Also, the estimates in the proof of the lemma on linear invariance

of the unstable cone show that the size of the minimal angle be-

tween a vector in Cs,1(Fj(q)) and a vector outside of Cs,0(Fj(q))

is bounded away from zero. Since

Cs,j(q) = [D(Fj)(q)]−1Cs(α) = [D(Fj)(q)]−1Cs,0(Fj(q))

and

Cs,j+1(q) = [D(Fj+1)(q)]−1Cs(α)

= [D(Fj)(q)]−1[DF(Fj(q))]−1Cs(α)

= [D(Fj)(q)]−1Cs,1(Fj(q)),

this means that the size of the minimal angle between a vector

in Cs,j+1(q) and a vector outside of Cs,j(q) is also bounded away

from zero (for fixed j).
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(d) Thus, since Cs,j+1(q) depends continuously on q,

Pq′ ∈ Cs,j+1(q′) ⊂ Cs,j(q)

for a given j if q′ is sufficiently close to q. This means that Pq
depends continuously on q.

Now, we show that DF(q) = Lq. Let ε > 0 be given. By remark (b)

above, we can choose j ∈ N such that

‖πuv − Lqπsv‖ ≤ ε‖πsv‖ (5.12)

whenever v ∈ Cs,j(q). By remark (c) above, we know that we can

choose ε′ > 0 such that if w ∈ Cs,j+1(q) and ‖r‖ ≤ ε′‖w‖, then

w+r ∈ Cs,j(q). Because of the differentiability of F−j−1, we can choose

η > 0 such that

‖F−j−1(Fj+1(q)+v)−q−[D(F−j−1)(Fj+1(q))]v‖ ≤ ε′

‖D(Fj+1)(q)‖‖v‖
(5.13)

whenever ‖v‖ ≤ η. Define the truncated stable cone

Cs(α,η) := Cs(α)∩π−1
s Es(η).

From the continuity of F and the α-Lipschitz continuity of h, we know

that we can pick δ > 0 such that

Fj+1(vs + h(vs)) ∈ {Fj+1(q)} + Cs(α,η). (5.14)

whenever ‖vs −πsq‖ < δ.

Now, suppose that v ∈ Cs(α,η). Then (assuming α ≤ 1) we know

that ‖v‖ ≤ η, so (5.13) tells us that

F−j−1(Fj+1(q)+ v) = q + [D(F−j−1)(Fj+1(q))]v + r
= q + [D(Fj+1)(q)]−1v + r

(5.15)

for some r satisfying

‖r‖ ≤ ε′

‖D(Fj+1)(q)‖‖v‖.

Let w = [D(Fj+1)(q)]−1v. Since v ∈ Cs(α), w ∈ Cs,j+1(q). Also,

‖w‖ = ‖[D(Fj+1)(q)]−1v‖ ≥m([D(Fj+1)(q)]−1)‖v‖

= ‖v‖
‖D(Fj+1)(q)‖ ,
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so ‖r‖ ≤ ε′‖w‖. Thus, by the choice of ε′, w + r ∈ Cs,j(q) . Conse-

quently, (5.15) implies that

F−j−1(Fj+1(q)+ v) ∈ {q} + Cs,j(q).

Since v was an arbitrary element of Cs(α,η), we have

F−j−1({Fj+1(q)} + Cs(α,η)) ⊆ {q} + Cs,j(q). (5.16)

Set qs := πsq, and suppose that vs ∈ Es(r) satisfies ‖vs − qs‖ ≤ δ.

By (5.14),

Fj+1(vs + h(vs)) ∈ {Fj+1(q)} + Cs(α,η).

This, the invertibility of F , and (5.16) imply

vs + h(vs) ∈ {q} + Cs,j(q),

or, in other words,

vs + h(vs)− qs − h(qs) ∈ Cs,j(q).

The estimate (5.12) then tells us that

‖h(vs)− h(qs)− Lq(vs − qs)‖ ≤ ε‖vs − qs‖,

which proves that Dh(q) = Lq (since ε was arbitrary).

Remark (d) above implies that Dh(q) depends continuously on q,

so h ∈ C1. Remark (a) above implies that Dh(0) = 0.

5.6 Stable Manifold Theorem: Part 6

Higher Differentiability

Lemma (Higher Differentiability) If F is Ck, then h is Ck.

Proof. We’ve already seen that this holds for k = 1. We show that it

is true for all k by induction. Let k ≥ 2, and assume that the lemma

works for k − 1. Define a new map H : Rn × Rn → Rn × Rn by the

formula

H

([
p

v

])
:=
[
F(p)

DF(p)v

]
.
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Stable Manifold Theorem: Part 6

Since F is Ck, H is Ck−1. Note that

H2

([
p

v

])
=
[

F(F(p))

DF(F(p))DF(p)v

]
=
[

F2(p)

D(F2)(p)v

]
,

H3

([
p

v

])
=
[

F(F2(p))

DF(F2(p))D(F2)(p)v

]
=
[

F3(p)

D(F3)(p)v

]
,

and, in general,

Hj
([
p

v

])
=
[

Fj(p)

D(Fj)(p)v

]
.

Also,

DH

([
p

v

])
=




DF(p) 0

D2F(p)v DF(p)


 ,

so

DH

([
0

0

])
=



DF(0) 0

0 DF(0)


 ,

which is hyperbolic and invertible, since DF(0) is. Applying the induc-

tion hypothesis, we can conclude that the fixed point of H at the origin

(in Rn × Rn) has a local stable manifold W that is Ck−1.

Fix q ∈W s
r , and note that Fj(q)→ 0 as j ↑ ∞ and

Pq =
{
v ∈ Rn

∣∣∣ lim
j↑∞
D(Fj)(q)v = 0

}
.

This means that

Pq =
{
v ∈ Rn

∣∣∣∣∣

[
q

v

]
∈W

}
.

Since W has a Ck−1 dependence on q, so does Pq . Hence, h is Ck.

Flows

Now we discuss how the Stable Manifold Theorem for maps implies the

Stable Manifold Theorem for flows. Given f : Ω→ Rn satisfying f (0) =
0, let F = ϕ(1, ·), where ϕ is the flow generated by the differential

equation

ẋ = f (x). (5.17)
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If f is Ck, so is F . Clearly, F is invertible and F(0) = 0. Our earlier

discussion on differentiation with respect to initial conditions tells us

that
d

dt
Dxϕ(t,x) = Df(ϕ(t,x))Dxϕ(t,x)

and Dxϕ(0, x) = I, where Dx represents differentiation with respect

to x. Setting

g(t) = Dxϕ(t,x)|x=0 ,

this implies, in particular, that

d

dt
g(t) = Df(0)g(t)

and g(0) = I, so

g(t) = etDf(0).

Setting t = 1, we see that

eDf(0) = g(1) = Dxϕ(1, x)|x=0 = DxF(x)|x=0 = DF(0).

Thus, DF(0) is invertible, and if (5.17) has a hyperbolic equilibrium at

the origin then DF(0) is hyperbolic.

Since F satisfies the hypotheses of the Stable Manifold Theorem for

maps, we know that F has a local stable manifold W s
r on some box

B(r). Assume that α < 1 and that r is small enough that the vector

field of (5.17) points into B(r) on Cs(α) ∩ ∂B(r). (See the estimates

in Section 3.4.) The requirements for a point to be in W s
r are no more

restrictive then the requirements to be in the local stable manifold W s
r

of the origin with respect to the flow, so W s
r ⊆ W s

r .

We claim that, in fact, these two sets are equal. Suppose they are

not. Then there is a point q ∈W s
r \W s

r . Let x(t) be the solution of (5.17)

satisfying x(0) = q. Since limj↑∞ Fj(q) = 0 and, in a neighborhood of

the origin, there is a bound on the factor by which x(t) can grow in 1

unit of time, we know that x(t)→ 0 as t ↑ ∞. Among other things, this

implies that

(a) x(t) ∉ W s
r for some t > 0, and

(b) x(t) ∈W s
r for all t sufficiently large.
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Center Manifolds

SinceW s
r is a closed set and x is continuous, (a) and (b) say that we can

pick t0 to be the earliest time such that x(t) ∈ W s
r for every t ≥ t0.

Now, consider the location of x(t) for t in the interval [t0 − 1, t0).

Since x(0) ∈ W s
r , we know that x(j) ∈ W s

r for every j ∈ N. In particu-

lar, we can choose t1 ∈ [t0 − 1, t0) such that x(t1) ∈ W s
r . By definition

of t0, we can choose t2 ∈ (t1, t0) such that x(t2) ∉ W s
r . By the continu-

ity of x and the closedness of W s
r , we can pick t3 to the be the last time

before t2 such that x(t3) ∈ W s
r . By definition of W s

r , if t ∈ [t0 − 1, t0)

and x(t) ∉ W s
r , then x(t) ∉ B(r); hence, x(t) must leave B(r) at time

t = t3. But this contradicts the fact that the vector field points into

B(r) at x(t3), since x(t3) ∈ Cs(α)∩ ∂B(r). This contradiction implies

that no point q ∈ W s
r \W s

r exists; i.e., W s
r =W s

r .

The exponential decay of solutions of the flow on the local stable

manifold is a consequence of the similar decay estimate for the map,

along with the observation that, near 0, there is a bound to the factor

by which a solution can grown in 1 unit of time.

5.7 Center Manifolds

Definition

Recall that for the linear differential equation

ẋ = Ax (5.18)

the corresponding invariant subspaces Eu, Es , and Ec had the charac-

terizations

Eu =
⋃

c>0

{
x ∈ Rn

∣∣∣ lim
t↓−∞

|e−ctetAx| = 0
}
,

Es =
⋃

c>0

{
x ∈ Rn

∣∣∣ lim
t↑∞

|ectetAx| = 0
}
,

and

Ec =
⋂

c>0

{
x ∈ Rn

∣∣∣ lim
t↓−∞

|ectetAx| = lim
t↑∞

|e−ctetAx| = 0
}
.

The Stable Manifold Theorem tells us that for the nonlinear differential

equation

ẋ = f (x), (5.19)
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5. Invariant Manifolds

with f (0) = 0, the stable manifold W s(0) and the unstable manifold

Wu(0) have characterizations similar to Es and Eu, respectively:

W s(0) =
⋃

c>0

{
x ∈ Rn

∣∣∣ lim
t↑∞

|ectϕ(t,x)| = 0
}
,

and

Wu(0) =
⋃

c>0

{
x ∈ Rn

∣∣∣ lim
t↓−∞

|e−ctϕ(t,x)| = 0
}
,

where ϕ is the flow generated by (5.19). (This was only verified when

the equilibrium point at the origin was hyperbolic, but a similar result

holds in general.)

Is there a useful way to modify the characterization of Ec similarly

to get a characterization of a center manifold W c(0)? Not really. The

main problem is that the characterizations of Es and Eu only depend

on the local behavior of solutions when they are near the origin, but

the characterization of Ec depends on the behavior of solutions that

are, possibly, far from 0.

Still, the idea of a center manifold as some sort of nonlinear ana-

logue of Ec(0) is useful. Here’s one widely-used definition:

Definition Let A = Df(0). A center manifold W c(0) of the equilbrium

point 0 of (5.19) is an invariant manifold whose dimension equals the

dimension of the invariant subspace Ec of (5.18) and which is tangent

to Ec at the origin.

Nonuniqueness

While the fact that stable and unstable manifolds are really manifolds

is a theorem (namely, the Stable Manifold Theorem), a center manifold

is a manifold by definition. Also, note that we refer to the stable mani-

fold and the unstable manifold, but we refer to a center manifold. This

is because center manifolds are not necessarily unique. An extremely

simple example of nonuniqueness (commonly credited to Kelley) is the

planar system



ẋ = x2

ẏ = −y.
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Center Manifolds

Clearly, Ec is the x-axis, and solving the system explicitly reveals that

for any constant c ∈ R the curve

{
(x,y) ∈ R2

∣∣ x < 0 and y = ce1/x
}∪ {(x,0) ∈ R2

∣∣ x ≥ 0
}

is a center manifold.

Existence

There is a Center Manifold Theorem just like there was a Stable Man-

ifold Theorem. However, the goal of the Center Manifold Theorem is

not to characterize a center manifold; that is done by the definition.

The Center Manifold Theorem asserts the existence of a center mani-

fold.

We will not state this theorem precisely nor prove it, but we can give

some indication how the proof of existence of a center manifold might

go. Suppose that none of the eigenvalues of Df(0) have real part equal

to α, where α is a given real number. Then we can split the eigenval-

ues up into two sets: Those with real part less than α and those with

real part greater than α. Let E− be the vector space spanned by the

generalized eigenvectors corresponding to the first set of eigenvalues,

and let E+ be the vector space spanned by the generalized eigenvec-

tors corresponding to the second set of eigenvalues. If we cut off f so

that it is stays nearly linear throughout Rn, then an analysis very much

like that in the proof of the Stable Manifold Theorem can be done to

conclude that there are invariant manifolds called the pseudo-stable

manifold and the pseudo-unstable manifold that are tangent, respec-

tively, to E− and E+ at the origin. Solutions x(t) in the first manifold

satisfy e−αtx(t) → 0 as t ↑ ∞, and solutions in the second manifold

satisfy e−αtx(t)→ 0 as t ↓ −∞.

Now, suppose that α is chosen to be negative but larger than the

real part of the eigenvalues with negative real part. The corresponding

pseudo-unstable manifold is called a center-unstable manifold and is

written W cu(0). If, on the other hand, we choose α to be between

zero and all the positive real parts of eigenvalues, then the resulting

pseudo-stable manifold is called a center-stable manifold and is written

W cs(0). It turns out that

W c(0) :=W cs(0)∩W cu(0)
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5. Invariant Manifolds

is a center manifold.

Center Manifold as a Graph

Since a center manifold W c(0) is tangent to Ec at the origin it can, at

least locally, be represented as the graph of a function h : Ec → Es⊕Eu.

Suppose, for simplicity, that (5.19) can be rewritten in the form



ẋ = Ax + F(x,y)
ẏ = By +G(x,y),

(5.20)

where x ∈ Ec , y ∈ Es ⊕ Eu, the eigenvalues of A all have zero real

part, all of the eigenvalues of B have nonzero real part, and F and G are

higher order terms. Then, for points x + y lying on W c(0), y = h(x).
Inserting that into (5.20) and using the chain rule, we get

Dh(x)[Ax + F(x,h(x))] = Dh(x)ẋ = ẏ = Bh(x)+G(x,h(x)).

Thus, if we define an operator M by the formula

(Mφ)(x) := Dφ(x)[Ax + F(x,φ(x))]− Bφ(x)−G(x,φ(x)),

the function h whose graph is the center manifold is a solution of the

equation Mh = 0.

5.8 Computing and Using Center Manifolds

Approximation

Recall that we projected our equation onto Ec and onto Es ⊕Eu to get

the system 


ẋ = Ax + F(x,y)
ẏ = By +G(x,y),

(5.21)

and that we were looking for a function h : Ec → Es ⊕ Eu satisfying

(Mh) ≡ 0, where

(Mφ)(x) := Dφ(x)[Ax + F(x,φ(x))]− Bφ(x)−G(x,φ(x)).

Except in the simplest of cases we have no hope of trying to get an

explicit formula for h, but because of the following theorem of Carr we

can approximate h to arbitrarily high orders.
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Computing and Using Center Manifolds

Theorem (Carr) Let φ be a C1 mapping of a neighborhood of the origin

in Rn into Rn that satisfies φ(0) = 0 and Dφ(0) = 0. Suppose that

(Mφ)(x) = O(|x|q)

as x → 0 for some constant q > 1. Then

|h(x)−φ(x)| = O(|x|q)

as x → 0.

Stability

If we put y = h(x) in the first equation in (5.20), we get the reduced

equation

ẋ = Ax + F(x,h(x)), (5.22)

which describes the evolution of the Ec coordinate of solutions on

the center manifold. Another theorem of Carr’s states that if all the

eigenvalues of Df(0) are in the closed left half-plane, then the stability

type of the origin as an equilibrium solution of (5.21) (Lyapunov stable,

asymptotically stable, or unstable) matches the stability type of the

origin as an equilibrium solution of (5.22).

These results of Carr are sometimes useful in computing the stabil-

ity type of the origin. Consider, for example, the following system:




ẋ = xy + ax3 + by2x

ẏ = −y + cx2 + dx2y,

where x and y are real variables and a, b, c, and d are real parameters.

We know that there is a center manifold, tangent to the x-axis at the

origin, that is (locally) of the form y = h(x). The reduced equation on

the center manifold is

ẋ = xh(x)+ ax3 + b[h(x)]2x. (5.23)

To determine the stability of the origin in (5.23) (and, therefore, in the

original system) we need to approximate h. Therefore, we consider the

operator M defined by

(Mφ)(x) = φ′(x)[xφ(x)+ax3+b(φ(x))2x]+φ(x)−cx2−dx2φ(x),
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5. Invariant Manifolds

and seek polynomial φ (satisfying φ(0) = φ′(0) = 0) for which the

quantity (Mφ)(x) is of high order in x. By inspection, if φ(x) = cx2

then (Mφ)(x) = O(x4), so h(x) = cx2 +O(x4), and (5.23) becomes

ẋ = (a+ c)x3 +O(x5).

Hence, the origin is asymptotically stable if a + c < 0 and is unstable

if a+ c > 0. What about the borderline case when a+ c = 0? Suppose

that a + c = 0 and let’s go back and try a different φ, namely, one of

the form φ(x) = cx2 + kx4. Plugging this in, we find that (Mφ)(x) =
(k − cd)x4 + O(x6), so if we choose k = cd then (Mφ)(x) = O(x6);

thus, h(x) = cx2 + cdx4 +O(x6). Inserting this in (5.23), we get

ẋ = (cd+ bc2)x5 +O(x7),

so the origin is asymptotically stable if cd + bc2 < 0 (and a + c = 0)

and is unstable if cd+ bc2 > 0 (and a+ c = 0).

What if a + c = 0 and cd + bc2 = 0? Suppose that these two

conditions hold, and consider φ of the form φ(x) = cx2 + cdx4+kx6

for some k ∈ R yet to be determined. Calculating, we discover that

(Mφ)(x) = (k − b2c3)x6 + O(x8), so by choosing k = b2c3, we see

that h(x) = cx2 + cdx4 + b2c3x6 +O(x8). Inserting this in (5.23), we

see that (if a+ c = 0 and cd+ bc2 = 0)

ẋ = −b2c3x7 +O(x9).

Hence, if a + c = cd+ bc2 = 0 and b2c3 > 0 then the origin is asymp-

totically stable, and if a+c = cd+bc2 = 0 and b2c3 < 0 then the origin

is unstable.

It can be checked that in the remaining borderline case a + c =
cd + bc2 = b2c3 = 0, h(x) ≡ cx2 and the reduced equation is sim-

ply ẋ = 0. Hence, in this case, the origin is Lyapunov stable, but not

asymptotically stable.

Bifurcation Theory

Bifurcation theory studies fundamental changes in the structure of the

solutions of a differential equation or a dynamical system in response

to change in a parameter. Consider the parametrized equation

ẋ = F(x, ε), (5.24)
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Computing and Using Center Manifolds

where x ∈ Rn is a variable and ε ∈ Rp is a parameter. Suppose that

F(0, ε) = 0 for every ε, that the equilibrium solution at x = 0 is stable

when ε = 0, and that we are interested in the possibility of persis-

tent structures (e.g., equilibria or periodic orbits) bifurcating out of

the origin as ε is made nonzero. This means that all the eigenvalues

of DxF(0,0) have nonpositive real part, so we can project (5.24) onto

complementary subspaces of Rn and get the equivalent system




u̇ = Au+ f (u,v, ε)
v̇ = Bv + g(u,v, ε),

with the eigenvalues of A lying on the imaginary axis and the eigen-

values of B lying in the open right half-plane. Since the parameter ε

does not depend on time, we can append the equation ε̇ = 0 to get the

expanded system 



u̇ = Au+ f (u,v, ε)
v̇ = Bv + g(u,v, ε)
ε̇ = 0.

(5.25)

The Center Manifold Theorem asserts the existence of a center mani-

fold for the origin that is locally given by points (u,v, ε) satisfying an

equation of the form

v = h(u, ε).

Furthermore, a theorem of Carr says that every solution (u(t), v(t), ε)

of (5.25) for which (u(0), v(0), ε) is sufficiently close to zero converges

exponentially quickly to a solution on the center manifold as t ↑ ∞. In

particular, no persistent structure near the origin lies off the center

manifold of this expanded system. Hence, it suffices to consider per-

sistent structures for the lower-dimensional equation

u̇ = Au+ f (u,h(u, ε), ε).
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Periodic Orbits

6.1 Poincaré-Bendixson Theorem

Definition A periodic orbit of a continuous dynamical system ϕ is a set

of the form {
ϕ(t,p)

∣∣ t ∈ [0, T ]}

for some time T and point p satisfying ϕ(T ,p) = p. If this set is a

singleton, we say that the periodic orbit is degenerate.

Theorem (Poincaré-Bendixson) Every nonempty, compact ω-limit set of

a C1 planar flow that does not contain an equilibrium point is a nonde-

generate periodic orbit.

We will prove this theorem by means of 4 lemmas. Throughout

our discussion, we will be referring to a C1 planar flow ϕ and the

corresponding vector field f .

Definition If S is a line segment in R2 and p1, p2, . . . is a (possibly fi-

nite) sequence of points lying on S, then we say that this sequence is

monotone on S if (pj − pj−1) · (p2 − p1) ≥ 0 for every j ≥ 2.

Definition A (possibly finite) sequence p1, p2, . . . of points on a trajec-

tory (i.e., an orbit) T ofϕ is said to be monotone on T if we can choose

a point p and times t1 ≤ t2 ≤ · · · such that ϕ(tj , p) = pj for each j.

Definition A transversal of ϕ is a line segment S such that f is not

tangent to S at any point of S.
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6. Periodic Orbits

Lemma If a (possibly finite) sequence of points p1, p2, . . . lies on the in-

tersection of a transversal S and a trajectory T , and the sequence is

monotone on T , then it is monotone on S.

Proof. Let p be a point on T . Since S is closed and f is nowhere tan-

gent to S, the times t at whichϕ(t,p) ∈ S form an increasing sequence

(possibly biinfinite). Consequently, if the lemma fails then there are

times t1 < t2 < t3 and distinct points pi = ϕ(ti, p) ∈ S, i ∈ {1,2,3},
such that

{p1, p2, p3} =ϕ([t1, t3], p)∩ S

and p3 is between p1 and p2. Note that the union of the line segment

p1p2 from p1 to p2 with the curve ϕ([t1, t2], p) is a simple closed

curve in the plane, so by the Jordan Curve Theorem it has an “inside” I
and an “outside” O. Assuming, without loss of generality, that f points

into I all along the “interior” of p1p2, we get a picture something like:

p1

p2

I

O

b

b

Note that

I ∪ p1p2 ∪ϕ([t1, t2], p)

is a positively invariant set, so, in particular, it contains ϕ([t2, t3], p).

But the fact that p3 is between p1 and p2 implies that f (p3) points
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into I , so ϕ(t3 − ε,p) ∈ O for ε small and positive. This contradiction

implies that the lemma holds.

The proof of the next lemma uses something called a flow box. A

flow box is a (topological) box such that f points into the box along

one side, points out of the box along the opposite side, and is tangent

to the other two sides, and the restriction of ϕ to the box is conjugate

to unidirectional, constant-velocity flow. The existence of a flow box

around any regular point of ϕ is a consequence of the Cr -rectification

Theorem.

Lemma No ω-limit set intersects a transversal in more than one point.

Proof. Suppose that for some point x and some transversal S, ω(x)

intersects S at two distinct points p1 and p2. Since p1 and p2 are

on a transversal, they are regular points, so we can choose disjoint

subintervals S1 and S2 of S containing, respectively, p1 and p2, and,

for some ε > 0, define flow boxes B1 and B2 by

Bi := {ϕ(t,x)
∣∣ t ∈ [−ε, ε], x ∈ Si

}
.

Now, the fact that p1, p2 ∈ ω(x) means that we can pick an in-

creasing sequence of times t1, t2, . . . such that ϕ(tj , x) ∈ B1 if j is

odd and ϕ(tj , x) ∈ B2 if j is even. In fact, because of the nature of

the flow in B1 and B2, we can assume that ϕ(tj , x) ∈ S for each j.

Although the sequence ϕ(t1, x),ϕ(t2, x), . . . is monotone on the tra-

jectory T := γ(x), it is not monotone on S, contradicting the previous

lemma.

Definition An ω-limit point of a point p is an element of ω(p).

Lemma Every ω-limit point of an ω-limit point lies on a periodic orbit.

Proof. Suppose that p ∈ ω(q) and q ∈ ω(r). If p is a singular point,

then it obviously lies on a (degenerate) periodic orbit, so suppose that

p is a regular point. Pick S to be a transversal containing p in its

“interior”. By putting a suitable flow box around p, we see that, since

p ∈ ω(q), the solution beginning at q must repeatedly cross S. But
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6. Periodic Orbits

q ∈ ω(r) and ω-limit sets are invariant, so the solution beginning at

q remains confined within ω(r). Since ω(r)∩ S contains at most one

point, the solution beginning at q must repeatedly cross S at the same

point; i.e., q lies on a periodic orbit. Since p ∈ω(q), p must lie on this

same periodic orbit.

Lemma If an ω-limit set ω(x) contains a nondegenerate periodic orbit

P, thenω(x) = P.

Proof. Fix q ∈ P. Pick T > 0 such that ϕ(T , q) = q. Let ε > 0 be given.

By continuous dependence, we can pick δ > 0 such that |ϕ(t,y) −
ϕ(t, q)| < ε whenever t ∈ [0,3T/2] and |y −q| < δ. Pick a transversal

S of length less than δ with q in its “interior”, and create a flow box

B := {ϕ(t,u)
∣∣ u ∈ S, t ∈ [−ρ,ρ]}

for some ρ ∈ (0, T/2]. By continuity of ϕ(T , ·), we know that we can

pick a subinterval S′ of S that contains q and that satisfies ϕ(T ,S′) ⊂
B. Let tj be the jth smallest element of

{
t ≥ 0

∣∣ϕ(t,x) ∈ S′}.

Because S′ is a transversal and q ∈ ω(x), the tj are well-defined and

increase to infinity as j ↑ ∞. Also, by the lemma on monotonicity,

|ϕ(tj , x)− q| is a decreasing function of j.

Note that for each j ∈ N, ϕ(T ,ϕ(tj , x)) ∈ B, so, by construction of

S and B, ϕ(t,ϕ(T ,ϕ(tj, x))) ∈ S for some t ∈ [−T/2, T/2]. Pick such

a t. The lemma on monotonicity implies that

ϕ(t,ϕ(T ,ϕ(tj, x))) ∈ S′.

This, in turn, implies that t + T + tj ∈ {t1, t2, . . .}, so

tj+1 − tj ≤ t + T ≤ 3T/2. (6.1)

Now, let t ≥ t1 be given. Then t ∈ [tj , tj+1) for some j ≥ 1. For this

j,

|ϕ(t,x)−ϕ(t − tj , q)| = |ϕ(t − tj ,ϕ(tj , x))−ϕ(t − tj , q)| < ε,

since, by (6.1), |t−tj| < |tj+1−tj| < 3T/2 and since, becauseϕ(tj , x) ∈
S′ ⊆ S, |q −ϕ(tj , x)| < δ.
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Since ε was arbitrary, we have shown that

lim
t↑∞
d(ϕ(t,x),P) = 0.

Thus, P =ω(x), as was claimed.

Now, we get to the proof of the Poincaré-Bendixson Theorem itself.

Supposeω(x) is compact and nonempty. Pick p ∈ω(x). Since γ+(p)
is contained in the compact set ω(x), we know ω(p) is nonempty, so

we can pick q ∈ ω(p). Note that q is an ω-limit point of an ω-limit

point, so, by the third lemma, q lies on a periodic orbit P. Since ω(p)

is invariant, P ⊆ω(p) ⊆ω(x). Ifω(x) contains no equilibrium point,

then P is nondegenerate, so, by the fourth lemma,ω(x) = P.

6.2 Lienard’s Equation

Suppose we have a simple electrical circuit with a resistor, an inductor,

and a capacitor as shown.

b b

b

C

RL

iC

iRiL

Kirchhoff’s current law tells us that

iL = iR = −iC , (6.2)
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6. Periodic Orbits

and Kirchhoff’s voltage law tells us that the corresponding voltage

drops satisfy

VC = VL + VR. (6.3)

By definition of the capacitance C,

C
dVC
dt

= iC , (6.4)

and by Faraday’s Law

L
diL
dt

= VL, (6.5)

where L is the inductance of the inductor. We assume that the resistor

behaves nonlinearly and satisfies the generalized form of Ohm’s Law:

VR = F(iR). (6.6)

Let x = iL and f (u) := F ′(u). By (6.5),

ẋ = 1

L
VL,

so by (6.3), (6.4), (6.6), and (6.2)

ẍ = 1

L

dVL
dt

= 1

L
(V̇C − V̇R) = 1

L

(
1

C
iC − F ′(iR)diR

dt

)

= 1

L

(
1

C
(−x)− f (x)ẋ

)

Hence,

ẍ + 1

L
f(x)ẋ + 1

LC
x = 0.

By rescaling f and t (or, equivalently, by choosing units judiciously),

we get Lienard’s Equation:

ẍ + f (x)ẋ + x = 0.

We will study Lienard’s Equation under the following assumptions

on F and f :

(i) F(0) = 0;

(ii) f is Lipschitz continuous;

(iii) F is odd;
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(iv) F(x)→∞ as x ↑ ∞;

(v) for some β > 0, F(β) = 0 and F is positive and increasing on (β,∞);

(vi) for some α > 0, F(α) = 0 and F is negative on (0, α).

Assumption (vi) corresponds to the existence of a region of nega-

tive resistance. Apparently, there are semiconductors called “tunnel

diodes” that behave this way.

By setting y = ẋ + F(x), we can rewrite Lienard’s Equation as the

first-order system 


ẋ = y − F(x)
ẏ = −x.

(6.7)

Definition A limit cycle for a flow is a nondegenerate periodic orbit P
that is theω-limit set or the α-limit set of some point q ∉ P.

Theorem (Lienard’s Theorem) The flow generated by (6.7) has at least

one limit cycle. If α = β then this limit cycle is the only nondegenerate

periodic orbit, and it is theω-limit set of all points other than the origin.

The significance of Lienard’s Theorem can be seen by comparing

Lienard’s Equation with the linear equation that would have resulted

if we had assumed a linear resistor. Such linear RCL circuits can have

oscillations with arbitrary amplitude. Lienard’s Theorem says that, un-

der suitable hypotheses, a nonlinear resistor selects oscillations of one

particular amplitude.

We will prove the first half of Lienard’s Theorem by finding a com-

pact, positively invariant region that does not contain an equilibrium

point and then using the Poincaré-Bendixson Theorem. Note that the

origin is the only equilibrium point of (6.7). Since

d

dt
(x2 +y2) = 2(xẋ +yẏ) = −2xF(x),

assumption (vi) implies that for ε small, R2 \ B(0, ε) is positively in-

variant.

The nullclines x = 0 and y = F(x) of (6.7) (i.e. curves along which

the flow is either vertical or horizontal) separate the plane into four
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6. Periodic Orbits

regions A, B, C, and D, and the general direction of flow in those

regions is as shown below. Note that away from the origin, the speed of

trajectories is bounded below, so every solution of (6.7) except (x,y) =
(0,0) passes through A, B, C, and D in succession an infinite number

of times as it circles around the origin in a clockwise direction.

A

BC

D

We claim that if a solution starts at a point (0, y0) that is high

enough up on the positive y-axis, then the first point (0, ỹ0) it hits

on the negative y-axis is closer to the origin then (0, y0) was. Assume,

for the moment, that this claim is true. Let S1 be the orbit segment

connecting (0, y0) to (0, ỹ0). Because of the symmetry in (6.7) implied

by Assumption (iii), the set

S2 := {(x,y) ∈ R2
∣∣ (−x,−y) ∈ S1

}

is also an orbit segment. Let

S3 := {(0, y) ∈ R2
∣∣ −ỹ0 < y < y0

}
,

S4 := {(0, y) ∈ R2
∣∣ −y0 < y < ỹ0

}
,

and let

S5 := {(x,y) ∈ R2
∣∣ x2 + y2 = ε2

}
,
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Lienard’s Theorem

for some small ε. Then it is not hard to see that ∪5
i=1Si is the bound-

ary of a compact, positively invariant region that does not contain an

equilibrium point.

y0

−ỹ0

ỹ0

−y0

To verify the claim, we will use the function R(x,y) := (x2+y2)/2,

and show that if y0 is large enough (and ỹ0 is as defined above) then

R(0, y0) > R(0, ỹ0).

6.3 Lienard’s Theorem

Recall, that we’re going to estimate the change of R(x,y) := (x2 +
y2)/2 along the orbit segment connecting (0, y0) to (0, ỹ0). Notice

that if the point (a, b) and the point (c, d) lie on the same trajectory

then

R(c,d)− R(a,b) =
∫ (c,d)

(a,b)
dR.

(The integral is a line integral.) Since Ṙ = −xF(x), if y is a function of

x along the orbit segment connecting (a, b) to (c, d), then

R(c,d)− R(a,b) =
∫ c

a

Ṙ

ẋ
dx =

∫ c

a

−xF(x)
y(x)− F(x) dx. (6.8)
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6. Periodic Orbits

If, on the other hand, x is a function of y along the orbit segment

connecting (a, b) to (c, d), then

R(c,d)− R(a,b) =
∫ d

b

Ṙ

ẏ
dy =

∫ d

b

−x(y)F(x(y))
−x(y) dy

=
∫ d

b
F(x(y))dy. (6.9)

We will chop the orbit segment connecting (0, y0) to (0, ỹ0) up into

pieces and use (6.8) and (6.9) to estimate the change ∆R in R along

each piece and, therefore, along the whole orbit segment.

Let σ = β+ 1, and let

B = sup
0≤x≤σ

|F(x)|.

Consider the region

R := {(x,y) ∈ R2
∣∣ x ∈ [0, σ],y ∈ [B + σ,∞)}.

In R,

∣∣∣∣
dy

dx

∣∣∣∣ =
x

y − F(x) ≤
σ

σ
= 1;

hence, if y0 > B + 2σ , then the corresponding trajectory must exit R
through its right boundary, say, at the point (σ ,yσ ). Similarly, if ỹ0 <

−B−2σ , then the trajectory it lies on must have last previously hit the

line x = σ at a point (σ , ỹσ ). Now, assume that as y0 → ∞, ỹ0 → −∞.

(If not, then the claim clearly holds.) Based on this assumption we

know that we can pick a value for y0 and a corresponding value for ỹ0

that are both larger than B + 2σ in absolute value, and conclude that

the orbit segment connecting them looks qualitatively like:
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Lienard’s Theorem

(0, y0)

(0, ỹ0)

(σ ,yσ )

(σ , ỹσ )

We will estimate ∆R on the entire orbit segment from (0, y0) to

(0, ỹ0) by considering separately, the orbit segment from (0, y0) to

(σ ,yσ ), the segment from (σ ,yσ ) to (σ , ỹσ ), and the segment from

(σ , ỹσ ) to (0, ỹ0).

First, consider the first segment. On this segment, the y-coordinate

is a function y(x) of the x-coordinate. Thus,

|R(σ ,yσ )− R(0, y0)| =
∣∣∣∣∣

∫ σ

0

−xF(x)
y(x)− F(x) dx

∣∣∣∣∣

≤
∫ σ

0

∣∣∣∣∣
−xF(x)

y(x)− F(x)

∣∣∣∣∣ dx ≤
∫ σ

0

σB

y0 − B − σ
dx

= σ 2B

y0 − B − σ
→ 0

as y0 →∞. A similar estimate shows that |R(0, ỹ0)−R(σ , ỹσ )| → 0 as

y0 →∞.

On the middle segment, the x-coordinate is a function x(y) of the

y-coordinate y . Hence,

R(σ , ỹσ )− R(σ ,yσ ) =
∫ ỹσ
yσ
F(x(y))dy ≤ −|yσ − ỹσ |F(σ)→ −∞

as y0 →∞.

Putting these three estimates together, we see that

R(0, ỹ0)− R(0, y0)→ −∞
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6. Periodic Orbits

as y0 → ∞, so |ỹ0| < |y0| if y0 is sufficiently large. This shows that

the orbit connecting these two points forms part of the boundary of a

compact, positively invariant set that surrounds (but omits) the origin.

By the Poincaré-Bendixson Theorem, there must be a limit cycle in this

set.

Now for the second half of Lienard’s Theorem. We need to show

that if α = β (i.e., if F has a unique positive zero) then the limit cycle

whose existence we’ve deduced is the only nondegenerate periodic or-

bit and it attracts all points other than the origin. If we can show the

uniqueness of the limit cycle, then the fact that we can make our com-

pact, positively invariant set as large as we want and make the hole cut

out of its center as small as we want will imply that it attracts all points

other than the origin. Note also, that our observations on the general

direction of the flow imply that any nondegenerate periodic orbit must

circle the origin in the clockwise direction.

So, suppose that α = β and consider, as before, orbit segments that

start on the positive y-axis at a point (0, y0) and end on the negative

y-axis at a point (0, ỹ0). Such orbit segments are “nested” and fill

up the open right half-plane. We need to show that only one of them

satisfies ỹ0 = −y0. In other words, we claim that there is only one

segment that gives

R(0, ỹ0)− R(0, y0) = 0.

Now, if such a segment hits the x-axis on [0, β], then x ≤ β all along

that segment, and F(x) ≤ 0 with equality only if (x,y) = (β,0). Let

x(y) be the x-coordinate as a function of y and observe that

R(0, ỹ0)− R(0, y0) =
∫ ỹ0

y0

F(x(y))dy > 0. (6.10)

We claim that for values of y0 generating orbits intersecting the x-axis

in (β,∞), R(0, ỹ0)− R(0, y0) is a strictly decreasing function of y0. In

combination with (6.10) (and the fact that R(0, ỹ0)−R(0, y0) < 0 if y0

is sufficiently large), this will finish the proof.

Consider 2 orbits (whose coordinates we denote (x,y) and (X, Y))

that intersect the x-axis in (β,∞) and contain selected points as shown

in the following diagram.
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Lienard’s Theorem

(0, Y0)

(0, y0)

(0, ỹ0)

(0, Ỹ0)

(β,yβ)

(β, ỹβ)

(β, Yβ)

(β, Ỹβ)

(λ,yβ)

(µ, ỹβ)

b

b

b

b

b

b

b

b

b

b

Note that

R(0, Ỹ0)− R(0, Y0) = R(0, Ỹ0)− R(β, Ỹβ)
+ R(β, Ỹβ)− R(µ, ỹβ)
+ R(µ, ỹβ)− R(λ,yβ)
+ R(λ,yβ)− R(β, Yβ)
+ R(β, Yβ)− R(0, Y0)

=: ∆1 +∆2 +∆3 +∆4 +∆5.

(6.11)

Let X(Y) and x(y) give, respectively, the first coordinate of a point

on the outer and inner orbit segments as a function of the second co-

ordinate. Similarly, let Y(X) and y(x) give the second coordinates as

functions of the first coordinates (on the segments where that’s possi-

ble). Estimating, we find that

∆1 =
∫ 0

β

−XF(X)
Y(X)− F(X) dX <

∫ 0

β

−xF(x)
y(x)− F(x) dx = R(0, ỹ0)− R(β, ỹβ),

(6.12)

∆2 =
∫ Ỹβ
ỹβ
F(X(Y))dY < 0, (6.13)

∆3 =
∫ ỹβ
yβ
F(X(Y))dY <

∫ ỹβ
yβ
F(x(y))dy = R(β, ỹβ)−R(β,yβ), (6.14)
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6. Periodic Orbits

∆4 =
∫ yβ
Yβ
F(X(Y))dY < 0, (6.15)

and

∆5 =
∫ β

0

−XF(X)
Y(X)− F(X) dX <

∫ β

0

−xF(x)
y(x)− F(x) dx = R(β,yβ)− R(0, y0).

(6.16)

By plugging, (6.12), (6.13), (6.14), (6.15), and (6.16) into (6.11), we see

that

R(0, Ỹ0)− R(0, Y0)

< [R(0, ỹ0)− R(β, ỹβ)]+ 0

+ [R(β, ỹβ)− R(β,yβ)]+ 0

+ [R(β,yβ)− R(0, y0)]

= R(0, ỹ0)− R(0, y0).

This gives the claimed monotonicity and completes the proof.
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