Homework 8

- 1. Problems 6.16,6.17,6.19 in Teschl (sections 6.5,6.6)
- 2. The following odes have Hamiltonian structure, that, is $f_x + g_y = 0$ for there is a function H(x,y) such that $f = H_y$ and $g = -H_x$. Find H(x,y) for the following systems
 - (a) $x' = x^2y + y^2$, $y' = -xy^2 + x^3$
 - (b) x' = q(y), y' = -r(x)
 - (c) Sketch the phase-space picture for x' = y, $y' = x(1 x^2)$.
- 3. Use $V = x^2 + y^2$ to analyze the following planar ODEs. What stability conclusions can be drawn.
 - (a) $x' = -x^3 + 2y^3$, $y' = -2xy^2$
 - (b) $x' = -x^3 + 2xy^2, y' = -2x^2y y^3$
 - (c) $x' = y x^3, y' = -x$
 - (d) $x' = -y, y' = x + y^5 2y$

Determine the stability of the origin for the system, $x' = y^2 - x^2$, y' = xy.

4. Analyze y'' + f(y)y' + h(y) where f(y) > 0 and yh(y) > 0 for $y \neq 0$ and such that f, g are continuous. (Hint: convert this to a system of 2 odes and find a suitable Lyapunoby function.) Additionally, show that if

$$\lim_{|y| \to \infty} \int_0^y h(s) \ ds = +\infty$$

then all solutions to this ODE are bounded.

5. The Lorenz equation has the form:

$$x' = \sigma(y - x)$$

$$y' = rx - y - xz$$

$$z' = xy - bz$$

where σ, r, b are positive parameters. Show that $V = x^2 + \sigma y^2 + \sigma z^2$ is a strict Liapunov function for r < 1 and thus the origin is globally aymptotically stable.