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The dipole distribution is frequently represented as A = —§' since ¢'(0) =
lim. 0 ﬂi);—f(-——e) = lim 0 o= ({6—c, ®) — (8¢, ¢)) but since & is not a func-
tion it is certainly not differentiable in the usual sense. We shall define the
derivative of § momentarily.

One often sces the notation [ 6(z —t)¢(t)dt = ¢(z). It should always
be kept in mind that this is simply a notational device to represent the dis-
tribution (6;,¢) and is in no way meant to represent an actual integral or
that §(z —t) is an actual function. The notation §(z —t) is a “SYMBOLIC
FUNCTION?” for the delta distribution.

The correct way to view 6, is as an operator on the set of test functions.
We should never refer to pointwise values of é, since it is not a function, but
an operator on functions. The operation (65,¢) = #(0) makes perfectly good
sense and we have violated no rules of integration or function theory to make
this definition.

The fact that some operators can be viewed as being generated by func-
tions through normal integration should not confuse the issue. &, is not such
an operator. Another operator that is operator valued but not pointwise val-
ued is the operator (not a linear functional) L = d/dz. We know that d/dz
cannot be evaluated at the point & = 3 for example, but d/dz can be evalu-
ated pointwise only after it has first acted on a differentiable function u(z).
Thus, du/dz = u'(z) can be evaluated at = = 3, only after the operand u(z)
is known. Similarly, (65, ¢) can be evaluated only after ¢ is known.

Although distributions are not always representable as integrals, their
properties are nonetheless always defined to be consistent with the corre-
sponding property of inner products. The following are some properties of
distributions that result from this association.

1. If t is a distribution and f € C* then ft is a distribution whose action s
defined by (ft, ¢) = (t, f¢). For example, if f is continuous f(z)6 = f(0)6.
If f is continuously differentiable at 0, f6" = —f"(0)6+ f(0)¢’. This follows
since

(f8',8) = (6, f8) = —(F9) |,o= = F'(0)(0) = F(0)¢'(0)-

2. Two distributions ¢; and ¢ are said to be equal on the interval a < z < b
if for all test functions ¢ with support in [a,b], (t1,8) = (t2, ¢). Therefore
it is often said (and this is unfortunately misleading) that 6(z) = 0 for
& == 1),

3. The usual rules of integration are always assumed to hold. For example,
by change of scale t(«) we mean

and the shift of axes t(z — &) is taken to mean
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(t(x - f),qﬁ) = <t)¢(‘7: +£)> )
even though pointwise values of ¢ may not have meaning. It follows for
example that §(z — &) = & and §(az) = 6(z)/|al.

. The derivative ¢’ of a distribution ¢ is defined by (¢, ¢} = — (¢, ¢') for all
test functions ¢ € D. This definition is natural since, for differentiable
functions

umw:[ff@wwwx=~[ffwwuwx:—ww»

Since ¢(z) has compact support, the integration by parts has no boundary
contributions at ¢ = +oo.

Iftis a distribution, then ¢/ is also a distribution. If {¢, } is a zero sequence
in D, then {¢/ } is also a zero sequence, so that

(t',¢,) = —(t,¢,)—0 as n — oo.

n

It follows that for any distribution ¢, the nth distributional derivative ()
exists and its action is

(1,6) = (=17 {t,6™).

Thus any L? function has distributional derivatives of all orders.

Examples

1. The IHeaviside distribution (7, ¢) = fom ¢(x)dz has derivative

(6 / ¢ (x)dz = 6(0)

since ¢ has compact support, so that H' = éq.

2. The derivative of the é-distribution is

(6/1 ¢> = - <(S7 ¢/) = _¢’(0)

which is the negative of the dipole distribution.

3. Suppose f is continuously differentiable except at the points 1, z2,..., 2,
at which f has jump discontinuities Afy, Afs, ..., Af,, respectively.
Its distribution has derivative given by

(8 = %ﬁ%z—[%ﬂ@Wx@
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It follows that the distributional derivative of fis
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where df /dz is the usual calculus derivative of f, wherever it exists.

4. For f(z) = |z, the distributional derivative of f has action

g = e =- [ e
[ [ s

_ _/;w)csz o(x)da
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so that f/= -1+ 2H(z), and ' = 260.
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