G. W. Stewart, Introduction to Matrix Computations, Academic Press,
New York, 1980,

G. E. Forsythe, M. A. Malcolm and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1977,

G. H. Golub and C. F. Van Loan, Mairix Computations, 31d ed., Johns
Hopkins University Press, Baltimore, 1996,

L. N. Trefethen and D. Bau, Numerical Linear Algebra, STAM, Philadel-
phia, 1997,

and for least squares problems in

¢ C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, STAM,
Philadelphia, 1995,

while many usable programs are described in

* W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Nu-
merical Recipes in Fortran 77: The Art of Computing, Cambridge Uni-
versity Press, Cambridge, 1992,

This book (in its many editions and versions) is the best selling mathematics
baook of all time. A

The best and easiest way to do numerical computations for matrices is with
Matiab. Learn how to use Matlah! For example,

¢ D. Hanselman and B. Littlefield, Mastering Matlab, Prentice-Hall, Upper
Saddle River, NJ, 1996.

While you are at it, you should also learn Maple or Mathematica.
¢ B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan,

and S. M. Watt, Maple V Language Reference Manual, Springer-Verlag,
New York, 1991,

s A Heck, Introduction to amb,ﬁm“ 2nd ed., Springer-Verlag, New York, 1996.
e 5. Woliram, Mathematica, 3rd ed., Addison-Wesley, Reading, MA, 1996.

Finally, the ranking of football teams using a variety of matrix algorithms
is summarized in

¢ J. P. Keener, The Perron Frobenius Theorem and the ranking of football
tearns, STAM Rev., 35, 80-93, 1993.

Problems for Chapter 1

Problem Section 1.1

.z
@ Prove that every basis in a finite dimensional space has the same number
of elements.

m. Show that in any inner product space
iz +yll® + iz - ¢l = 2jjal* + 2/|y]>
Interpret this geometrically in IR

.\_/J .
@ {a) Verify that in an inner product space,
1 2 2
Re (z,9) = (= +]I° = llz ~ 9l).

(b) Show that in any real inner product space there is at most one inner
product which generates the same induced norm.

(¢} In IR™ with n > 1, show that [|zll, = (17_, |zx/?)"/" can be induced
by an inner product if and only if p = 2.

4. Suppoese f(z) and g(z) are continuous real valued function defined for
z € [0,1]. Define vectors in IR", F = (f(z1}, f(z2),..., f(zn)) and G =
(9(z2}, g(22), -, 9{wn)), where z), = k/n. Why is

H i
(F,Gha = [(ax)oles)
k=1
with x, = ,M., not an inner product for the space of continuous functions?

5. Show that

(fig) = ,\ou TA@@;. %AHV.QAHVV dz.

is an inner product for continuougly differentiable functions on the interval
0,1

A

m;mewos that any set of mutually orthogonal vectors is linearly independent.

7. (a) Show that JR"™ with the supremam norm ||#{je = mexy{jz]} is a
normed linear vector space.

(b) Show that JR” with norm ||z||; = 3",_, |2x! is 2 normed linsar vector.

8. Verify that the choice v = __w__ﬂ minimizes |jz~~y||?. Show that |{z,y)|* =

[1z]|* - [ly}|* if and only if x and y are linearly dependent.




9. B Starting with the set {1,z,2%,..., 2%,...}, use the Gram-Schmidt pro-
cedure and the inner product

b
g = \ f@e@wl)dz,  w() >0

ok

& um.wﬂwp =-1,b=1, w(z) =1 (Legendre polynomiais)
(B) a=-1,b=1, w(z) = (1 — 22)~1/? (Chebyshev polynomials)

fmmu\wa =0, b = 00, w(z) = e~ (Laguerre polynomials)

to find the first five orthogonal vo@sogmwum when
Y

{(d) a =00, b=o0, w(x)=e*" (Hermite polynomials)
Remark: All of these polynomials are known by Maple.
10. B Starting with the set {1,z,2°,...,2",...} use the Gram-Schmidt pro-

cedure and the inner product

i
(1.0 = | (1@al@) + F@)g'(z)da
to find the first five orthogonal polynomials.

muwozmbp Section 1.2

ﬁ%@

Represent the transformation whose matrix representation with re-
spect to the natural basis is

11 2
A=12 1 3
101
relative to the basis {(1,1,0)7,(0,1,1)7,(1,0,1)T}.

(b) The representation of a transformation with respect to the basis
{(1,4,2)7,(1,2,3)7, (3,4, 1)7} is

111
A=] 2 1 3
101
Find the representation of this transformation with respect to the

basis {(1,0,0)7, (0,1, -1)7,(0,1,1)T}.

2. (a) Prove that two symmetric matrices are equivalent if and only if they
have the same eigenvalues (with the same multiplicities).

(b) Show that if A4 and B are equivalent, then

det A = det B.

H
4
4
Y

e A

(¢) Ts the converse true?

\
@w (a) Show that if 4 is an n X m matrix and B is an m x n matrix, then
AB and B A have the same nonzero eigenvatues.
Y .
AWm Show that the eigenvalues of a real skew-symmetric (4 = —A7) matrix
are imaginary.

(b) Show that the eigenvalues of AA* are real and non-negative.

5. Find a basis for the range and null space of the following mairices:

(a)

N

H
R
[ JOR Y

(b)

A=

oLy
[ e
b W

6. Find an invertible matrix T and a diagonal matrix A so that A = TAT?
for each of the following matrices A:

(a}
1 0 0
1/4 1/4 1/2
0o 0 1

(b)
0 1
(20)

()
10 0
120
2 1 3

(d)
110
01 0



(e)

1/2 172 /3/6
/2 1/2 /3/6
Vv3/6 3/6 5/6

7. Find the speciral representation of the matrix

(23)

Nlustrate how Az = b can be solved geometrically using the appropriately
chosen coordinate system on a piece of graph paper.

A

8. Suppose P is the matrix that projects (orthogonally) any vector onto a
manifold M. Find all eigenvalues and eigenvectors of P.

9. The sets of vectors {¢;}2;, {¥:}2, are said to be biorthogonal if
(:,%5) = di;. Suppose {¢:}1,

and {y;}}_; are biorthogonal.
{a) Show that {¢;}7,

and {ts}],
(b) Show that any vector in IR™ can be written as a linear combination

each form a linearly independent set.

of {¢:} as
7
2= oud;
=1
where a; = {z,¢;).
(c) Express (b) in matrix form; that is, show that
T
= M ._mnun
i=1
where P; are projection matrices with the properties that P? = P
and P, F; = 0 for { # j. Express the matrix P; in terms of the vectors
®; and ;. .
10. (a) Suppose the eigenvalues of A all have algebraic multiplicity one.
Show that the eigenvectors of A and the eigenvectors of A* form
a biorthogonal set.

QUV mcﬁ.@Omm Abﬂv« = \/mﬁm and h*@m = Mﬂ.@? i = H_.u M, ..., and that
A; # A; for i # j. Prove that 4 = Y1 | A;P; where F; = dip? is a
projection matrix. Remark: This is an alternate way to express the
spectral decomposition theorem for a matrix A.

(¢) Express the matrices ' and C~?, where A = CAC~2, in terms of ¢;
and @m.

(d) Suppose A¢ = Ap and Ay = Xy and the geometric multiplicity of A

is one. Show that it is not necessary that (¢, v) # 0.

E 4

‘ - Show that

Problem Section 1.3

1. Use the minimax principle to show that the matrix

4 5 1

2 1 3

1 60 12

3 12 48

o s D

has an eigenvalue A4 < 2.1 and an eigenvalue A; > 67.4.

efore and after one of its diagonal elements is increased.

. I 2. @ﬁuném an inequality relating the elgenvalues of a symmetric matrix
- A w b

(b) Use this inequality and the minimax principle to show that the small-
est eigenvalue of
8 4 4
= 4 8 —4
-4 3

A

is smaller than —1/3.

3. Use the minimax principle to show that the intermediate eigenvalue Xy of

LN oV I
e B b2
Lo v Lo

is not positive.

4. The moment of inertia of any solid object about an axis along the unit
vector x is defined by

Iz} = \m dZ (y) pdV,

where d,(y) is the perpendicular distance from the point y to the axis
along x, p is the density of the material, and R is the region occupied by
the object. Show that I(z) is a quadratic function of z, I{z) = =T Az
where A is a symmetric 3 X 3 matrix.

5. Suppose A is a symmetric matrix with eigenvalues A; > g > X > ...

max,,yy—o{Au, ) + (4v,v} = X + Ao

where {fu|| = |jv]| = L.

Problem Section 1.4

1. Under what conditions do the matrices of Problem 1.2.5 have solutions
Az = b? Are they unique?



- 2. Suppose P projects vectors in IR™ (orthogonally) onto a linear manifold

M. What is the solvability condition for the equation Pz = b?

3.1Show that the matrix A = (ai;) where a;; = {¢;, ¢;) is invertible if and

only if the vectors ¢; are linearly independent.

4 A square matrix A (with real entries) is positive-definite if (Ax,z) > 0 for

all z # 0. Use the Fredholm alternative to prove that a positive definite
matrix is invertible.

Problem Section 1.5

1. Use any of the algorithms in the text to find the least squares pseudo-

inverse for the following mairices:

(a)
100
010
110
(b)
3 ~1
11
-1 3
(c)
31 2
(312)
(d)
-1 0 1
1 2/3 2/3
-1 -2/3 7/3

(e) 2. The linear algebra package of Maple has procedures to calculate
the range, null space, etc. of a matrix and to augment a matrix with
another. Use these features of Maple to develop a program that uses
exact computations to find A4’ using the Gaussian elimination method
(Method 1), and use this program to find A’ for each of the above
matrices,

2. Verify that the least squares pseudo-inverse of an m x n diagonal matrix

D with di; = 00;; is the n x m diagonal matrix D' with di; = %m&
whenever o; # 0 and d}; = 0 otherwise.

3.

(a) For any two vectors z,y € IR™ with ||z|| = ||y|! find the Householder
(orthogonal) transformation U that satisfies Uz = y.

(b) Verify that a Householder transformation U/ saiisfies U7*U = I.

. Use the Gram-Schunidt procedure (even though Householder transforma-

tions are generally preferable) to find the QR representation of the mairix

21 3
A= 4 2 1
9 1 2

5 -3
s=(6 %)

illustrate on a piece of graph paper how the singular value decomposition

. For the matrix

A = UZV* transforms a vector z onto Azx. Compare this with how

A =TAT! transforms a vector z onto Az.

12
=2 1)

illustrate on a piece of graph paper how the least squares pseudo-inverse
A" = Q7TAQ transforms a vector b into the least squares solution of
Az =05

. For the matrix

. &L For each of the matrices in Problem 1.2.6, use the QR algorithm to

form the iterates Apiq = Q1 An@Qn, where 4, = Q. R,. Examine a few _

of the iterates to determine why the iteration works and what it converges

to.
11
4=(0 o)

A= m 1.002 0.998 v_

. For the matrices

and

1.999 2.001

illustrate on a piece of graph paper how the least squares pseudo-inverse
A" = VEU* transforms a vector b onto the least squares solution of
Az = b. For the second of these matrices, show how setiing the smallest
singular value to zero stabilizes the inversion process.

. For a nonsymmetric matrix A = T7'AT, with A a diagonal matrix, it is

not true in general that A’ = TA'T is the pseudo-inverse. Find a 2 x 2
example which illustrates geometrically what goes wrong.



