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Abstract

We study a class of swarming problems wherein particles evolve dynamically via pairwise interaction potentials and a velocity selection
mechanism. We find that the swarming system undergoes various changes of state as a function of the self-propulsion and interaction potential
parameters. In this paper, we utilize a procedure which connects a class of individual-based models to their continuum formulations and determine
criteria for the validity of the latter. H -stability of the interaction potential plays a fundamental role in determining both the validity of the
continuum approximation and the nature of the aggregation state transitions. We perform a linear stability analysis of the continuum model and
compare the results to the simulations of the individual-based one.
c� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The collective behaviors of aggregating organisms are
of interest in various fields, including biology, engineering,
mathematics, and physics [1–10]. There are primarily two
classes of pertinent models: individual-based and continuum
ones. In the first case, one considers a collection of N individual
entities, so that the system is defined on the “microscopic”
scale. Such models are particularly useful for the study and
algorithmic design of small-size aggregates such as artificial
swarms of autonomous vehicles. Larger discrete systems are
adaptive to statistical analysis [1,8,11–22]. Continuum models
typically describe swarms through a density function ⇢ (Er) and
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a velocity vector field Eu (Er). These obey appropriate non-
linear and often non-local equations. One may presume these
equations are derived from, or at least connected back to, the
original microscopic system. Continuum models are useful for
theoretical analysis of swarming systems [2,3,15,16,23–27].
Both individual-based and continuum models, stochastic or
not, have been used to study various swarming problems. The
connection between the two has also been especially analyzed
for kinematic and orientational models [28–32]. However, the
individual-to-continuum connections for models that adopt
dynamic descriptions [11,12,14,16,18,19,22,33] have not been
well established. A primary purpose of this paper is to better
unify the two approaches, for this particular class of models,
following the classical statistical studies of fluids [34]. We
investigate the validity of the continuum model by a detailed
comparison with the associated individual based one. In
particular, for certain interaction forms, the two descriptions
yield the same morphological patterns. Furthermore, and
perhaps more importantly, we are able to explain why the
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continuum model fails qualitatively for the other cases, where
discrepancies exist.

In Ref. [33], a criterion from classical statistical mechanics
known as H -stability was applied to individual based swarming
models. A system of N interacting particles is said to be
H -stable if the potential energy per particle is bounded below
by a constant which is independent of the number of particles
present [35]. H -stability is a necessary and sufficient condition
for the existence of thermodynamics. Indeed, a system without
this stability will, in the thermodynamic limit, collapse onto
itself; such systems are called catastrophic. In Ref. [33],
numerical simulations strongly suggest that a specific non-
Hamiltonian swarming system exhibits the same stability trends
observed in classical Hamiltonian many-body systems. In
this paper, we show that H -stability also plays an important
role in determining the correct passage to the continuum
limit.

This paper is organized as follows. In Section 2,
the individual-based model is presented. As in Refs.
[7,12,14,16–19,22,26,33], we focus our attention on localized
swarming patterns rather than on unbounded formations as
in Refs. [1,2,11,31,32]. We study various aggregation states
and transitions between them via numerical simulations. In
Section 3, a continuum model is derived. In Section 4, we
quantitatively compare steady states of both continuum and
discrete models. We show that, while the proposed continuum
model works well in the catastrophic regime, discrepancies
arise for large H -stable systems. In Section 5, the stability of
the homogeneous solution of the continuum model is studied
and compared to the numerical results of the individual-based
model. In Section 6, we discuss the choices between soft-core
and hard-core interaction potentials.

2. The individual-based model

2.1. Background

Common swarming patterns have been observed and
reported in various species in nature. One example is a coherent
flock formation involving a polarized group moving in the same
direction. Another example is a single rotating mill pattern,
with a rather stationary center of mass, as in Fig. 1 (left).
The rotating-mill pattern is frequently observed in both two
and three dimensions among many species and across different
sizes [5,7,36]. Various individual-based models have been able
to reproduce these patterns within certain parameter ranges [14,
16–19,22]. An unusual pattern of overlapping double mills is
also reported in Ref. [16], similar to the simulation shown in
Fig. 1 (right). The double-mill phenomenon is observed in the
early stages of aggregation of Myxococcus xanthus, a single-
cell bacteria driven by self-propelling motors [37]. We show
that this configuration can be obtained using the same swarming
mechanism that produces the single-mill pattern but exists in a
different parameter regime. The rarity of the double-mill state
is discussed in Section 6.

Fig. 1. Left: The swarming pattern of a single mill. Right: The swarming
pattern of two interlocking mills.

2.2. Equations of motion

The swarming model we present in this paper is described
by the following equations of motion

dExi

dt
= Evi , mi

dEvi

dt
= ↵Evi � � |Evi |2 Evi � ErUi , (1)

where mi , Exi and Evi are, respectively, the mass, position, and
velocity of particle i . The terms ↵Evi and �� |Evi |2 Evi define the
mechanism of self-acceleration and deceleration which give the
particles a tendency to approach an equilibrium speed veq =p

↵/�. This Rayleigh-type dissipation was originally proposed
in Ref. [38] and is often used in the literature as a velocity-
selecting mechanism [2,11,14,18,19,22,39]. The potential Ui
describes the interaction of particle i with the other particles.
One common choice is the following [16,19,24,33]

Ui ⌘ U (Exi ) =
X

j 6=i
V
���Exi � Ex j

���

=
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j 6=i
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!
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Eq. (2) assumes that only pairwise interactions are significant
and ignores N -body interactions with N � 3. The pairwise
interaction consists of an attraction and a repulsion with Ca , Cr
specifying their respective strengths and `a , `r their effective
interaction length scales. Similar behaviors are also observed
with other functional forms of interaction potential that are
characteristically similar to Eq. (2). Note that to simplify the
analysis, our model is deterministic. Stochastic forces appear
in many other models [1,8,11,14,18,19,22]. In our simulations,
we use Gaussian-type noise and observe that noise affects
the swarming patterns only beyond certain thresholds. Its
consequences are not investigated.

We can non-dimensionalize the equations of motion by
substituting t 0 = �

mi/`a
2�
�

t , Ex 0
i = Exi/`a , and thus, Ev0
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Fig. 2. The H -stability diagram of the interaction potential in Eq. (2) [33]. The
shaded region is the so-called biologically relevant region where the interaction
consists of a long-range attraction and a short-range repulsion.

where ↵0 = �
↵�`a

2� /mi
2, mi

0 = mi
3/
�
�2Ca`a

2�, C =
Cr/Ca , and ` = `r/`a ; hence, the model is essentially a
4-parameter one. In Ref. [33] the effects of varying C and
`, which affect H -stability, are explored. In this paper we
investigate the role of ↵0, the relative strength of the self-driving
force with respect to the interaction. The parameter mi

0 affects
the time scale of the particle interaction and is fixed during
our investigations. Note that the dimensional parameter ↵ only
appears in the dimensionless parameter ↵0, which allows us
to vary ↵, thus changing ↵0, without affecting the other three
independent parameters, provided that �, `a , and mi are fixed
during the process. To preserve the original meaning of the
model parameters, our results are presented in the dimensional
form by using Eqs. (1) and (2). Only the biologically relevant
cases that consist of a long-range attraction and a short-range
repulsion are studied. In other words, we confine our analysis
to the parameter space where C > 1 and ` < 1, which is shown
by the shaded region of the H -stability phase diagram in Fig. 2.
The extremely collapsing cases reported in [33], such as the
ring formations and the clump formations illustrated in other
regions, do not change morphology with respect to ↵0.

2.3. Swarming states

We use the fourth order Runge–Kutta and the four step
Adam–Bashforth methods for the numerical simulation of Eqs.
(1) and (2) [40]. We impose free boundary conditions to the
model allowing particles to move freely on an unbounded
space, and initiate the simulation with random distributions of
particle position and velocity. Fig. 1 shows two typical patterns
akin to those observed in various natural swarms. On the left
panel is the single-mill state, where every particle travels at the
same speed veq around an empty core at the center of the swarm.
On the right panel is the double-mill state, in which particles
travel in both clockwise and counterclockwise directions, also
at a uniform speed veq. In this second example, when viewed as
two superimposed mills, the cores of each mill do not exactly
coincide but rather fluctuate near each other. Another two states
are shown in Fig. 3. On the left panel is the coherent flock
state. All particles travel at a unified velocity (i.e., with the

Fig. 3. Left: The coherent flock state. Right: The rigid-body rotation state.

same speed and direction) while self-organizing into a stable
formation. On the right panel is the rigid-body rotation state.
The flock formation closely resembles that of the coherent
flock, but instead of traveling at the same velocity, the particles
circulate around the swarm center defining a constant angular
velocity !. Unlike the single and double-mill state, where
particles swim freely within the swarm, both the coherent flock
and the rigid-body rotation states bind particles at fixed relative
positions, exhibiting a lattice-type formation. Hence, we also
use the term lattice states to refer to both the coherent flock and
the rigid-body rotation states. Note that the coherent flock is a
traveling wave solution of the model, and thus a solution of the
following Euler–Lagrange equation

ErUi = Er
X

j 6=i
V
���Exi � Ex j

��� = 0.

It is interesting to note that this equation arises in the context
of a gradient flow algorithm for autonomous vehicle control [9,
41]. Thus the flock formations have the shape and structure as
equilibria of the gradient flow problem with the same potential.

The coherent flock and the single-mill states are among
the most common patterns observed in biological swarms [5,
7,36]. The double-mill pattern is also occasionally seen; an
example is the M. xanthus bacteria at the onset of fruiting
body formation [37]. On the other hand, natural occurrences
of rigid-body rotation, to the best of our knowledge, have not
been reported in the literature. Indeed, the rigid-body rotation,
where every particle travels at a constant angular velocity !,
does not define a rotationally symmetric solution for Eqs. (1)
and (2) and the swarm is observed to drift randomly due to
the unbalanced self-driving mechanism. The random drift may
eventually break the rotational symmetry and turn the swarm
into a coherent flock after a transient period. Thus, we speculate
that this pattern may only be a meta-stable or a transient
state. In addition to the above aggregation states, the particles
may simply escape from the collective potential field, and no
aggregation is observed. We name it the dispersed state.

Using numerical simulations, we find that the H -stable
swarms undergo a different state transition process from that of
the non-H -stable swarms. For both H -stable and catastrophic
interactions, the lattice states, as shown in Fig. 3, emerge
for low values of ↵, and thus, of low veq. In this case,
the confining interaction potential is stronger than the kinetic
energy of individual particles and tends to bind the particles
at specific “crystal” lattice sites. Most initial conditions lead to
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Fig. 4. Time variation of the numbers of particles rotating in different
directions: The triangles represent the number of CCW particles while the
circles are of CW ones. (Top) ↵ = 1.5. (Middle) ↵ = 4.0. (Lower) ↵ = 6.0.
The fixed parameters are � = 0.5, Ca = 0.5, Cr = 1.0, `a = 2.0, `r = 0.5,
and N = 500. All parameters here and throughout the paper are in arbitrary
units.

the coherent flock state while some occasions result in the rigid-
body rotation state. The state transition of H -stable swarms is
simpler. As ↵ increases, the particles eventually gain enough
kinetic energy to dissolve the aggregation.

The state transition of catastrophic swarms is characterized
by more behavioral stages. Starting from the lattice states and
upon increasing ↵, the particles gain more kinetic energy from
the environment to reach veq and are able to break away from
the crystal lattice sites. However, unlike H -stable swarms, the
interaction potential in the catastrophic regime is still strong
enough to aggregate medium-speed particles within a swarm.
In this regime, core-free mill states emerge, as shown in Fig. 1.
Since all particles travel at a non-zero uniform speed, the
centripetal force provided by the collective interaction potential
is not strong enough to sustain such particles too close to
the rotational center. As a result, the mill core is a particle-
free region. At moderate ↵, a single mill state emerges. At
slightly higher ↵, we observe both single mills and double mills
as possible states. In the latter case, the interaction potential
gradually loses its effectiveness to unify the clockwise (CW)
and counterclockwise (CCW) rotational directions; particles
traveling in the opposite direction with respect to the majority
tend to not change their direction of motion, and double mills
can emerge. The transition from single to double mill is a
gradual process. Fig. 4 shows the number of particles in each
rotational direction for various values of ↵. In the single-
mill regime, particles traveling at one direction are quickly
assimilated into the other (Fig. 4, top). Upon increasing ↵,
the particles no longer settle into a unified rotational direction
(Fig. 4, middle), and for large enough ↵, approximately the

Fig. 5. ↵esc versus the total number of particles in an H -stable swarm (� = 0.5,
Ca = 0.5, Cr = 1.0, `a = 2.0, `r = 1.5, dashed line) compared to that of a
catastrophic swarm (� = 0.5, Ca = 0.5, Cr = 1.0, `a = 2.0, `r = 0.5, dotted
line). The solid line is the curve estimated by Eq. (5).

same number of particles travel in each of the CW and CCW
directions (Fig. 4, bottom). The presence of either a velocity
alignment rule or a hard-core repulsive interaction will destroy
this double-mill state. The latter case is because hard-cores
always provide a system with H -stability. Thus, it is clear that
for sufficiently many particles, the double mills will ultimately
break apart. Notwithstanding, it appears that the double mills
are especially sensitive to hard-cores and, even for small
cores and moderate N , we have not observed these structures.
As for the coherent flock state, it still remains a possibility
in this regime where the mill states occur. However, the
basin of attraction is greatly reduced, and only very polarized
initial conditions can lead to the coherent flock formation. As
↵ increases beyond the double-mill regime, particle kinetic
energy eventually becomes high enough to break up the swarm.
This is the dispersed state, and no aggregation can be found.

Upon fixing the other parameters, the threshold between the
aggregation and the dispersed states is described by a critical
escape value of ↵, denoted by ↵esc. Fig. 5 shows ↵esc of an
H -stable swarm versus a catastrophic one, in which single-
mill states are generated and ↵ is increased until the dispersed
regime is attained. For the H -stable case, ↵esc does not vary
significantly with respect to the total particle number of the
swarm, denoted by N , due to the fact that the nearest neighbor
distance (�NND) does not change as N increases. As a result,
the binding potential energy of the interaction force acting over
each particle is independent of N . On the other hand, ↵esc of the
catastrophic swarm varies linearly with respect to N . From our
numerical simulations, we observe that the outer and the inner
radii of the catastrophic swarm remain approximately fixed
with respect to N while ↵ . ↵esc. Based on this observation,
we can derive a semi-empirical formula to estimate the value
of ↵esc by assuming that particles are uniformly distributed in
a doughnut shape domain. By balancing the centripetal and the
interaction forces, we obtain

m↵esc

2�
= N

2⇡
�
R2

out � R2
in
�
Z Rout

Rin

V
���Er � Rout x̂

��� dEr , (5)

where Rin and Rout denote the inner and the outer radii of the
single mill, respectively, and x̂ is an arbitrary unit vector. This
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estimate predicts that ↵esc should scale linearly with N , which
is clearly illustrated in Fig. 5, where we use the numerically
simulated Rout = 5.2 and Rin = 1.2 for a quantitative
comparison.

2.4. State transitions of H-stable and catastrophic swarms

In order to quantitatively determine whether the swarm is
in a coherent flock state or a single-mill state, Couzin et al.
have proposed two measures [17]: the polarity, P , and the
(normalized) angular momentum, M , defined as follows

P =

���������

NP
i=1

Evi

NP
i=1

|Evi |

���������

, M =

���������

NP
i=1

Eri ⇥ Evi

NP
i=1

|Eri | |Evi |

���������

, (6)

where Eri ⌘ Exi � ExCM, and ExCM is the position of the center of
mass. A perfect coherent flock results in P = 1 and M = 0
while a perfect single-mill pattern results in M = 1 and P = 0.
In order to distinguish the double-mill pattern, we propose
an additional measure by modifying the normalized angular
momentum

Mabs =

���������

NP
i=1

|Eri ⇥ Evi |
NP

i=1
|Eri | |Evi |

���������

. (7)

If a double-mill pattern has perfectly equal numbers of particles
going in each direction with the centers of mass of both
directions exactly overlapping, Mabs = 1 and M = 0; both
M and Mabs equal to 1 for a single mill.

Although the presence of the coherent flock that yields P '
1 allows us to use P to quantify the transition from lattice to
single-mill state, the co-existing rigid-body rotation state, for
which P ' 0, introduces spurious events. Since the rigid body
state has a much smaller basin of attraction than the coherent
flock, one choice is discarding all rigid-body rotation events and
selecting only the coherent flock ones. However, the boundary
between a rigid body rotation and a single mill is ambiguous,
as shown in Fig. 6, where a rigid-body rotation transforms to a
single mill by increasing ↵. Since a constant tangential speed
indicates a milling formation, and a constant angular velocity
(i.e., a linear tangential speed against r ) characterizes a rigid-
body rotation, we can see from the figure that two states are
mixed during the transition: the outer part of the swarm begins
to exhibit the milling phenomena while the inner part still
remains a rigid body. Indeed, the collective interaction potential
is stronger in the inner part of the swarm, and particles need
a higher kinetic energy injection from the self-driving terms
to escape the binding potential. Since the lattice formation of
the rigid-body rotation has an ordered particle distribution, and
the milling formation exhibits a more disordered distribution,
we propose an ordering factor of period Q to quantitatively

Fig. 6. Emergence of a rotating single-mill structure from a rigid-body rotation
in the catastrophic regime. The left panel shows the ensemble averaged
tangential velocity, hv(r)itang, of particles at a distance r from the center of
mass. Each hv(r)itang figure corresponds to the swarm structure of different
values of ↵ on the right panel: from top to bottom are ↵ = 0.003, ↵ = 0.03,
↵ = 0.1, and ↵ = 0.5. The other parameters are � = 0.5, Ca = 0.5, Cr = 1.0,
`a = 2.0, `r = 0.5, and N = 500.

distinguish these two states

O(Q) ⌘ 1
Nµ

�����

NX

i=1

µX

j
cos

⇣
Q · �

(i)
j, j+1

⌘����� , (8)

where �
(i)
j, j+1 is the angle between Exi, j and Exi, j+1 with Exi, j

defined as Ex j � Exi . The summation index j here represents the
j-th nearest neighbor of particle i , and µ denotes the number of
neighbors that are taken into consideration for each particle. We
also define Exi,µ+1 ⌘ Exi,1 to simplify the formula. If all �

(i)
j, j+1

are distributed at 2⇡k/Q where k < Q is a positive integer,
O(Q) = 1, and the particles are distributed on a lattice of period
Q. On the other hand, if the distribution is completely random,
cancellation occurs in the summation of cosines, and O(Q) ' 0
for all Q. The number of nearest neighbors of each particle i can
be arbitrarily chosen for µ � 2. However, note that µ cannot be
too large; otherwise, second layer neighbors may be counted,
which results in an incorrect Q. For the sake of definiteness, we
choose µ = 3. In order to avoid incorrect estimations due to
the dispersed state, we also impose that a particle pair must be
separated by a distance no larger than 2`a for the particles to
qualify as neighbors. Fig. 7(b) shows the distribution of �

(i)
j, j+1
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Fig. 7. (a) The ordering factor of period 6 versus ↵ and an illustration showing
the definition of �

(i)
j, j+1. The triangles are data points of the catastrophic case

while the squares represent the H -stable case. The parameters other than ↵ for
both cases are the same as those in Fig. 5 with N = 200. (b) The distribution
of �

(i)
j, j+1 for all i and j . (c) Comparison of the ordering factors of different

periods Q.

collected for all i and j on a rigid-body formation. Peaks are
observed at k⇡/3 (1  k  5), indicating that the formation is
a hexagonal lattice. Fig. 7(c) shows O(Q) versus Q for the same
rigid-body formation. As expected for a hexagonal lattice, the
curve peaks at Q = 6. Therefore, O(6) can be used to explore
the transition from a hexagonal lattice to a non-lattice mill
state.

Using the quantities defined in Eqs. (6)–(8), different
swarming states can be classified. Dramatic changes in P ,
M , Mabs, and O(Q) are observed upon modifying specific
parameters in the model and indicate a change in the swarming
state. Fig. 7(a) shows the transition from lattice to single-mill
states for catastrophic swarms as O(6) gradually decreases with
respect to increasing ↵. Also shown in the figure are the same
quantities for an H -stable swarm; note that as ↵ increases, O(6)

suddenly drops to zero, corresponding to the sudden dissolution
of the hexagonal lattice structure into a dispersed state. The
larger value of O(6) in the H -stable swarm indicates a more
regular hexagonal lattice formation.

For higher values of ↵, we further consider P , M , and
Mabs to differentiate the coherent state and the two mill states.
Additionally, in order to distinguish the dispersed state from the
rest, we calculate the aggregation fraction, fagg, defined as the
fraction of the N initial particles that aggregate as a swarm. In
Fig. 8, we show how H -stable swarms differ from catastrophic
ones during the transition between states. Fig. 8(a) shows that
the H -stable swarm is a coherent flock for small ↵, indicated
by P ' 1. For increasing ↵, the swarm disperses and fagg = 0.
Note that P remains close to one when fagg 6= 0, indicating that
the aggregate goes from the coherent lattice state directly to the
dispersed one. Fig. 8(b) shows the transition of a catastrophic
swarm, which displays a full four-stage transition: in the small
↵ regime, particles arrange as a coherent lattice with P ' 1;
as ↵ keeps increasing, the single-mill state appears (P ' 0
and M ' 1), followed by the double-mill state (Mabs ' 1 and
M ' 0) until the dispersed state ( fagg = 0) is reached.

Drawing an analogy from the state transition of swarming
patterns to the phase transition of materials, the lattice states

Fig. 8. The state transition diagram of (a) an H -stable swarm and (b) a
catastrophic swarm. The fixed parameters are the same as those in Fig. 5 with
N = 200.

can be regarded as “solid” since interparticle distances are kept
constant. The milling state allows particles to “swim” within a
finite volume without being bound to a fixed lattice site; thus,
it can be regarded as “liquid”. Finally, in the dispersed state,
particles escape, similarly to a “gas”. Upon increasing ↵, a
catastrophic swarm undergoes the solid–liquid and liquid–gas
transitions, which resemble the processes of melting and
vaporization. On the other hand, an H -stable swarm goes from
the solid state directly to the gas one, which is more similar to
sublimation. Phase transitions in swarming systems have been
also investigated in Refs. [8,42–44]. As in Ref. [8], we use
the mid-point values fagg = 0.5 and O(6) = max O(6)/2 as
state transition points and draw a state transition diagram in
Fig. 9. The ambiguity between states during the transition is
expressed by the error bars. The figure shows that our model
has distinguishable solid–liquid–gas states in the catastrophic
regime. In the H -stable regime, the transition points of melting
and vaporization are effectively indistinguishable, and a solid
state directly sublimates into a gas state. This result is different
from what is presented in Ref. [8], where liquid states are
found in the presence of an H -stable interaction potential. In
the above reference, however, periodic boundary conditions
are implemented which prevent agents from escaping the
computational domain. The confined gaseous particles may
provide enough pressure to sustain the existence of liquid, or
even solid-like formations. The goal of the present paper, on
the other hand, is to study isolated aggregation patterns in
free space. We do not include geometrical constraints, allowing
our individual agents to escape to infinity, thus producing no
pressure. The above Ref. [8] explores the “zero-density” limit
by increasing the box size L ! 1. Indeed, the asymptotic limit
in Ref. [8] shows that while the solid–liquid phase transition
point does not depend on domain size, the liquid–gas phase
transition does. While L ! 1 data is not available in Ref. [8]
for the liquid–gas curve, we suggest that if the two transition
points, solid–liquid and liquid–gas, become asymptotically
indistinguishable as L ! 1, the liquid state essentially
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Fig. 9. (a) The phase transition diagram of our model of Eqs. (1) and (2).
(b) The same phase diagram where the region ↵  0.41 is magnified to
better illustrate the transition in the H -stable regime. The H -stability properties
are determined by the parameter ` while ↵ affects particle speed. The fixed
parameters are the same as those in Fig. 5 with N = 200.

vanishes and we may have an agreement between Ref. [8] in
the unbounded domain limit and the current results.

Consistently with granular media models [45], we may
define a “temperature” analog using the variation of the
individual particle velocity among the flock: Ts ⌘

D
(Ev � hEvi)2

E
.

Note that hEvi is the velocity of the center of mass, and thus,
Ts ' 0 for the coherent flock pattern, while Ts ' ↵/� for the
steady mill states. The swarming patterns change from one state
to another by varying Ts.

While different aggregation morphologies can be studied
using the individual-based model, the large number of degrees
of freedom involved pose a difficulty for analyzing the
dynamics of large N systems. In the following section, we
therefore develop and investigate a continuum model consistent
with the microscopic description of Eqs. (1) and (2).

3. Continuum model

The continuum approach is widely adopted for modeling
swarming systems, especially on the ecological scale where
massive movements of populations are considered [2,3,23,
24,26,27]. It is also more suitable for theoretical analysis
especially in the large N limit. Due to the lack of connections
between individual rules and continuum “fluxes”, most
continuum models in the literature are constructed on the basis
of heuristic arguments. Many attempts have been made to
bridge the gap. For example in Ref. [28], a continuum kinematic
one-dimensional advection–diffusion model is derived based on
a biased random walk process of a set of Poisson-distributed
particles. This work is extended to higher dimensions and to
more general kinematic rules in Refs. [29,30]. Other efforts
include models that follow orientational rules with fixed
speeds [31,32]. However, our model is based on full dynamic
rules and the corresponding continuum limit is much more

difficult to justify. In Ref. [15], a continuum model is derived
from a class of dynamic individual-based descriptions by
using a Fokker–Planck approach. In order for the flux term
to be amenable to analytic investigations, the Fokker–Planck
equations have to be closed under several assumptions, but
these assumptions, such as that the preferred velocity which
particles tend to reach is small with respect to noise terms, are
not applicable to our model.

In this paper, we derive a continuum model by explicitly
calculating the ensemble average the model of Eq. (1) using
a probability distribution function. This classical procedure
is described in Ref. [34] where continuum hydrodynamics
equations are derived starting from a microscopic collection of
N particles. Let

f = f (Ex1, Ex2, . . . , ExN ; Ep1, Ep2, . . . , EpN ; t) (9)

be the probability distribution function on the phase space,
defined by position and momentum (Exi , Epi ), 1  i  N , at
time t . The mass density ⇢ (Ex, t), the ensemble velocity field
Eu (Ex, t), and the continuum interaction force EFV (Ex, t) can be
defined as

⇢ (Ex, t) = m
NX

i=1
h� (Exi � Ex) ; f i , (10)

Eu (Ex, t) = Ep (Ex, t)
⇢ (Ex, t)

=

NP
i=1

h Epi� (Exi � Ex) ; f i
⇢ (Ex, t)

, (11)

EFV (Ex, t) =
NX

i=1

D
�ErExi U (Exi ) � (Exi � Ex) ; f

E
. (12)

We consider the case of identical masses, mi ⌘ m. The function
� (Ex) is the Dirac delta function, and U (Exi ) the collective
interaction potential acting on particle i . Using the generalized
Liouville theorem that incorporates the deformation of phase
space due to the non-Hamiltonian nature of the system at
hand [46], we obtain the continuum equations of motion

@⇢

@t
+ Er · (⇢ Eu) = 0, (13)

@

@t
(⇢ Eu) + Er · (⇢ EuEu) + Er · �̂K = ↵⇢ Eu � 2�EK Eu � 2� EqK

+ 2� Eu · �̂K + EFV . (14)

The first is the equation of continuity, and the second is
the momentum transport equation. Here, EK = ⇢ |Eu|2 /2
is the kinetic energy. The terms EqK (Ex, t) and �̂K (Ex, t) are
mathematically defined as

EqK (Ex, t) =
NX

i=1

*
m
2

����
Epi

m
� Eu

����
2 ✓ Epi

m
� Eu

◆
� (Exi � Ex) ; f

+

,

�̂K (Ex, t) =
NX

i=1
m
⌧✓ Epi

m
� Eu

◆✓ Epi

m
� Eu

◆
� (Exi � Ex) ; f

�
,

and represent the energy flux and the stress tensor due to local
fluctuations in particle velocities with respect to Eu (Ex, t). The
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derivation of the term Er · �̂K can be found in Ref. [34] while the
other terms related to EqK and �̂K are derived in Appendix. By
simulating the discrete model, we estimate the magnitude of EqK
and �̂K and find that both fluctuation terms become negligible
with respect to the other terms on the RHS of Eq. (14) in the
lattice, single-mill, and the dispersed states. Thus, neglecting
the fluctuation terms, we obtain

@⇢

@t
+ Er · (⇢ Eu) = 0, (15)

@

@t
(⇢ Eu) + Er · (⇢ EuEu) = ↵⇢ Eu � 2�EK Eu + EFV . (16)

3.1. Continuum interaction force

In Eq. (16), the continuum interaction force can be obtained
by substituting the explicit form of the interaction potential
equation (2) into Eq. (12)

EFV (Ex, t) =
NX

i=1

NX

j=1

D
�ErExi V

�Exi � Ex j
�
� (Exi � Ex) ; f

E
. (17)

Using the fact that an arbitrary function F
�Ex j
�8Ex j 2 Rd can

be written as

F
�Ex j
� =

Z

Rd
F (Ey) �

�Ex j � Ey� dEy,

we can rewrite Eq. (17) as

EFV (Ex, t) =
NX

i=1

NX

j=1

Z

Rd
dEy

⇥
D
�ErExi V (Exi � Ey) � (Exi � Ex) �

�Ex j � Ey� ; f
E

=
Z

Rd
�ErEx V (Ex � Ey)

NX

i=1

NX

j=1

⇥ ⌦
�
�Ex j � Ey� � (Exi � Ex) ; f

↵
dEy

=
Z

Rd
�ErEx V (Ex � Ey) ⇢(2) (Ex, Ey, t) dEy, (18)

where the ⇢(2) is the pair density

⇢(2) (Ex, Ey, t) ⌘
NX

i=1

NX

j=1

⌦
�
�Ex j � Ey� � (Exi � Ex) ; f

↵
.

Note that we should take the ensemble average on a scale
considerably larger than the spacing between particles. If
the particles are quite dispersed, the suitable scale may be
much larger than the characteristic lengths of the interaction
force (�ErV in Eq. (18)), rendering it localized. In this
case, the continuum approach cannot capture the swarming
characteristics occurring on the interaction scale and fails to
describe the individual-based model on such a scale. This is
what occurs in the H -stable regime, which we further discuss
in Section 4.

For identical particles, the pair density can be written as

⇢(2) (Ex, Ey, t) = 1
m2 ⇢ (Ex, t) ⇢ (Ey, t) g(2) (Ex, Ey) ,

where the correlation function g(2) (Ex, Ey) = 1 when the
particles have no intrinsic correlation. Using this assumption,

⇢(2) (Ex, Ey, t) = 1
m2 ⇢ (Ex, t) ⇢ (Ey, t) , (19)

and

EFV (Ex, t) =
Z

Rd
�ErEx V (Ex � Ey)

1
m2 ⇢ (Ex, t) ⇢ (Ey, t) dEy. (20)

If we further substitute the interaction potential specified in Eq.
(2) into the above equation, we get

EFV (Ex, t) = �⇢ (Ex, t) Er
Z

Rd

⇥
✓

�Ca

m2 e� |Ex�Ey|
`a + Cr

m2 e� |Ex�Ey|
`r

◆
⇢ (Ey, t) dEy. (21)

Since we assume that all particles have an identical mass,
we may choose m = 1 without loss of generality. In this case,
Eq. (21) becomes the one proposed in Ref. [16], on heuristic
grounds. Using Eq. (15), we may modify Eq. (16) and divide
by ⇢ on both sides to obtain a more conventional expression

@⇢

@t
+ Er · (⇢ Eu) = 0, (22)

@ Eu
@t

+ Eu · rEu = ↵Eu � � |Eu|2 Eu
� 1

m2
Er
Z

Rd
V (Ex � Ey) ⇢ (Ey, t) dEy. (23)

4. Comparison to the individual-based model

The time-dependent variations of the density ⇢ (Ex, t) and
of the momentum Ep (Ex, t) ⌘ ⇢ (Ex, t) Eu (Ex, t) can be obtained
through numerical simulations of Eqs. (15) and (16). Here,
we use the Lax–Friedrichs method [47] to integrate the partial
differential equations. We compare the results of the continuum
model to those of the individual-based model of Eq. (1). Fig. 10
shows the frequently observed single-mill steady state solutions
of both models in the catastrophic regime. Both simulations use
identical parameter values and the same total mass
Z

1
⇢ (Ex) dEx = Nm, (24)

which are listed in the figure caption. In the individual-based
model, particles are initially distributed with random velocities
and at random positions in a 2`a ⇥ 2`a box. The initial
condition of the continuum model is a homogeneous density
in a box of the same size with randomized momentum field.
For the individual-based model, we adopt a free boundary
condition that allows the particles to free motion over the
entire space. For the continuum model, instead we use an
equivalent non-reflecting boundary condition [48] on a fixed
computational domain of 5`a ⇥ 5`a size which is divided into
256⇥256 grid cells. The continuum simulation is terminated if
a significant of density escapes from the edges. The individual-
based simulation uses an adaptive time step size that keeps
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Fig. 10. Comparison of the numerical simulations of the individual-based
model and the continuum model: The parameters used in both simulations are
Ca = 0.5, Cr = 1.0, `a = 2.0, `r = 0.5, ↵ = 1.2, � = 0.5, and the total mass
in Eq. (24) is 88. (a) The averaged density profiles along the radial distance
from the center of mass. (b) The averaged radial momentum profiles. (c) The
averaged tangential momentum profiles. (d) The averaged tangential velocity
profiles.

the increment in position of each step under `a/10 and the
increment in velocity under Ca/5m. The time step size of the
continuum simulation is chosen so that the CFL number is 0.98.
Fig. 10(a) illustrates the averaged density h⇢i as a function
of the radial distance from the center of mass. These two
profiles are in good agreement despite the density oscillation
shown in the individual-based model, reflecting a multiple-
ring ordering of the particle distribution. Fig. 10(b) and (c)
match the averaged radial and tangential momenta (denoted by
hpirad and hpitang respectively) from the simulations of both
models. The negligible radial momenta in Fig. 10(b) indicate
that there is no net inward or outward mass movement, and
thus, the density profile along the radial direction is steady. We
can divide the momentum by the density to obtain the velocity
field. In Fig. 10(d), we show the averaged tangential velocities,
hvitang ⌘ hpitang/h⇢i, from the simulations of both models; it
shows that both the individual-based and the continuum swarms
are rotating at the same constant speed, which equals to veq.

4.1. Validity of the continuum model

The ensemble average implicit in the continuum approach
does not allow for double-milling in the continuum limit
because the velocity inside a mesh cell is averaged and
unified. Local velocity variations, which contribute to EqK (Ex, t)
and �̂K (Ex, t) in Eq. (14), are neglected. We calculate
the ratio of the speed variation to the equilibrium speed,

�K ⌘
q

h�v � veq
�2i/veq2, in order to efficiently estimate the

contribution of these local velocity fluctuation terms. Fig. 11

Fig. 11. Relative speed fluctuations �K while forming a single mill from
random initial conditions. The dashed curve illustrates the normalized angular
momentum M in Eq. (6) while the solid curve represents �K. The parameters
of this simulation are ↵ = 1.0, � = 0.5, Ca = 0.5, Cr = 1.0, `a = 2.0,
`r = 0.5, and N = 500.

shows that �K becomes negligible after the swarm has reached
the single-mill configuration and M ' 1. However, during the
transient time, �K is significantly larger, which implies that
EqK (Ex, t) and �̂K (Ex, t) cannot be neglected during this period.
Hence, the continuum model of Eqs. (15) and (16) can be useful
in analyzing the stability of the steady state solution but does
not capture the dynamics of the swarm settling into this steady
state.

While Fig. 10 shows good agreement between the steady
state solutions of the continuum and the individual-based
models in the catastrophic regime, inconsistencies arise as
the parameters shift into the H -stable regime. Here, at
low particle speeds, the individual-based model results in
compactly supported solutions similar to those shown in
Fig. 3. Conversely, the corresponding continuum model yields
a uniform density distribution spreading over the entire
computational domain regardless of domain size. To investigate
the difference between H -stable and catastrophic regimes, we
study the coherent flock solution, which exists in both regimes.
Note that the steady state coherent flock density of Eqs. (15)
and (16) satisfies

Er
Z

Rd
V (Ex � Ey) ⇢ (Ey, t) dEy = 0 (25)

with |Eu| = p
↵/�. The density can be multiplied by an arbitrary

constant without changing its spatial distribution. The existence
of a multiplicative constant in the continuum limit translates to
pattern shapes being invariant with respect to particle number
N in the individual-based model. In Fig. 12(a), we use the
swarm radius R to indicate the particle distribution and plot it
against N . The curve for a catastrophic swarm has a consistent
R, independent of N , while the H -stable swarm expands with
N . In Fig. 12(b) we investigate the powers Z that fit the scaling
law, R / N Z , for various regions on the C–` phase space. The
flock radius R tends to be independent of N for catastrophic
swarms, but Z ⇠ 1/2 as soon as the parameters cross over
to the H -stable regime. While this dramatic difference is not
really surprising given our discussion of H -stability here and
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Fig. 12. (a) Radii of coherent flocks versus number of particles. Solid circles
represent H -stable flocks (`r = 1.5), fitted by R / N 0.43, while the solid
diamonds represent catastrophic flocks (`r = 1.3), fitted by R / N 0.12. The
other parameters are ↵ = 0, � = 0.5, Ca = 0.5, Cr = 1.0, and `a = 2.0.
(b) Exponents Z of the power law fitting R / N Z for a range of C and `.
The dimensionless parameters C and ` are changed by varying Cr and `r while
the other parameters remain the same as above. The color map indicates the
power Z , and darker colors represent higher exponents. The solid curve marks
the boundary between the H -stable and the catastrophic regions.

in Ref. [33], Fig. 12(b) also demonstrates that the H -stability
property, proven for Hamiltonian systems in classical statistical
mechanics, is also applicable to our model.

The inconsistency between the two models in the H -stable
regime can also be understood from the derivation of the
continuum model. As previously mentioned, the macroscopic
variables are obtained as ensemble averages over a large
number of microscopic ones. In the catastrophic regime,
�NND ⌧ `a, `r in large N limit, as shown in Fig. 12. Hence,
as N ! 1, the particle distribution converges to a continuum
density on a scale comparable to the interaction length. On the
other hand, for an H -stable swarm, �NND stays non-negligible
with respect to the characteristic length of the interaction.
Hence, Eq. (18) does not hold on a scale comparable to the
interaction length, and as a result, Eq. (20) is not a valid
description of the continuum force on such a scale in the H -
stable regime. This is also verified in Fig. 13. In Fig. 13(a),
we define significant neighbors of a particle as neighbors that
exhibit a “significant interaction”. The quantitative definition is
illustrated by the graph on the upper-right corner, in which the
pairwise interaction potential V (r) is plotted versus the inter-
particle distance r , and the potential well depth is denoted by
Vmin. We define a distance rs so that V (x) > sVmin if x > xs ,

where 0  s  1 is a ratio. Then, the number of significant
neighbors of each particle is the number of neighbors at a
distance x for which x  xs . In Fig. 13(a), we count the
averaged number of significant neighbors of a particle, denoted
by ns , for s = 0.5 and s = 0.1. In the H -stable regime,
ns is very low and remains steady; it rises rapidly when the
parameter crosses over into the catastrophic regime. The results
suggest that the H -stable swarms are locally too sparse for Eq.
(18) (and thus, Eq. (20)) to remain valid. Furthermore, we can
use ensemble averages to approximate the collective interaction
potentials in the two models. If the continuum limit properly
describe the individual-based description, these two potential
energies should converge as N increases. Let us define UEu
as the continuum ensemble average interaction potential in the
Eulerian frame

UEu (Ex) ⌘ 1
m2

Z

Rd
V (Ex � Ey) ⇢ (Ex) ⇢ (Ey) dEy.

Here ⇢ (Ex) is approximated by the ensemble average of the
individual particles during the simulation. We also define ULa
as the average collective potential calculated in the Lagrangian
frame, ULa (Ex) ⌘ hU (Exi )iExi =Ex , where U (Exi ) is defined in Eq.
(2) of the individual-based model. Since the rigid-body rotation
and the single-mill state have rotational symmetry with respect
to ExCM, we evaluate UEu and ULa after such states are reached
and at position Ex such that |Ex � ExCM| = R/2, where R is the
swarm radius. In Fig. 13(b), UEu and ULa are shown to converge
in the catastrophic regime and diverge in the H -stable one.
In Fig. 13(c), we investigate whether the difference between
these two averaged potentials, 1U ⌘ UEu � ULa, vanishes
with increasing N . Fig. 13(c) shows that 1U indeed tends
to zero for catastrophic swarms by increasing N but remains
finite for H -stable ones. For the ensemble average to be valid
in the H -stable regime, we may instead choose a scale that is
much larger than the characteristic interaction lengths. Under
such low resolution, the particle distribution can be seen as a
continuous density, and Eq. (18) is then valid. This becomes
the case of the incompressible fluids in Ref. [34], where the
interaction is extremely localized, and hence, the continuum
force yields a stress tensor as a function of the local density.
However, the swarming patterns which we are interested in
emerge on a much smaller scale. Moreover, when the particles
are in the dispersed state, they are far away from each other;
thus, particle-particle interaction is very weak and dominated
by velocity fluctuations. The continuum force then yields a
scalar pressure, which gives the gas dynamics equations [34].

5. Stability of the homogeneous solution

That the solutions of the continuum model of Eqs. (15) and
(16) relax toward a uniform density distribution in the H -stable
regime can also be shown by the linear stability analysis of
its homogeneous solution. Let us first consider a more general
case for a 2D self-driving continuum model with a non-local
interaction

@⇢

@t
� Er · (⇢ Eu) = 0; (26)
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Fig. 13. (a) ns versus `. The upper curve represents the case of s = 10% while the lower curve is for s = 50%. On the upper-right corner is an illustration showing
how the significant neighbors are defined. (b) UEu and ULa versus `. Here ↵ = 0.003, � = 0.5, Ca = 0.5, `a = 2.0, Cr = 1.0, and N = 500. (c) 1U and versus
N . ` = 0.65 for the catastrophic curve while ` = 0.75 for the H -stable curve. The other parameter values are the same as (b).

@

@t
(⇢ Eu) + Er · (⇢ EuEu) = f (|Eu|) ⇢ Eu

� ⇢ Er
Z

Rd
V (|Ex � Ey|) ⇢ (Ey) dEy,

where f (|Eu|) is a scalar function specifying the self-driving
mechanism, and the non-local interaction is expressed by the
convolution term. For our model, f (|Eu|) = ↵ � � |Eu|2. The
possible homogeneous steady state solutions can be written as
⇢ (Ex, t) = ⇢0 and Eu (Ex, t) = v0 v̂, where v̂ is a unit vector
and v0 can be 0 or any of the roots of f (v0) = 0. For our
Rayleigh-type dissipation, v0 = p

↵/�. We perturb the steady
state solution using ⇢ (Ex, t) = ⇢0 + �⇢ exp (� t + iEq · Ex) and
Eu (Ex, t) = v0 v̂ + ��u û + �v v̂

�
exp (� t + iEq · Ex), where �⇢, �u,

�v ⌧ 1 are small amplitudes. The unit vector û points to the
direction perpendicular to v̂ on the 2D space. The wave vector
is denoted by Eq while � = � (Eq) represents its growth rate. By
substituting this ansatz into Eq. (26), the dispersion relation is

� 0
0

@
�⇢

�u
�v

1

A

=
0

@
0 �i⇢0q sin ✓ �i⇢0q cos ✓

�iqṼ (Eq) sin ✓ f (v0) 0
�iqṼ (Eq) cos ✓ 0 f (v0) + v0 f 0 (v0)

1

A

⇥
0

@
�⇢

�u
�v

1

A , (27)

where � 0 ⌘ � + iv0 v̂ · Eq , and Ṽ (Eq) is the Fourier transform of
the pairwise interaction potential V (Ex). The angle between the
wave vector Eq and the unit vector û is denoted by ✓ .

For the case of v0 = 0, the solution is isotropic, and we
can arbitrarily choose the unit vector v̂. If the wave vector Eq is
parallel to the arbitrarily chosen v̂, Eq. (27) reduces to

�

0

@
�⇢

�u
�v

1

A =
0

@
0 0 �i⇢0q
0 f (0) 0

iqṼ (Eq) 0 f (0)

1

A

0

@
�⇢

�u
�v

1

A ,

and � = f (0) or
✓

f (0) ±
q

f (0)2 � 4⇢0q2Ṽ (Eq)

◆
/2. If

f (0) > 0, the homogeneous solution is always unstable. If
f (0) < 0, the homogeneous solution is stable only when
⇢0q2Ṽ (Eq) > 0. Since ⇢0 and q2 are both non-negative, the
criterion can be reduced to

Ṽ (Eq) > 0. (28)

For our Rayleigh-type dissipation, f (0) = ↵. Since ↵ is
positive, the uniform density solution with zero speed is an
unstable steady state solution.

For the case of v0 6= 0 satisfying f (v0) = 0, Eq. (27)
becomes

� 0
0

@
�⇢

�u
�v

1

A =
0

@
0 �i⇢0q sin ✓ �i⇢0q cos ✓

�iqṼ (Eq) sin ✓ 0 0
�iqṼ (Eq) cos ✓ 0 v0 f 0 (v0)

1

A

⇥
0

@
�⇢

�u
�v

1

A .

We thus obtain the growth rate by solving the following
eigenvalue equation

� 03 � v0 f 0 (v0) � 02 + � 0⇢0q2Ṽ (Eq)

� v0 f 0 (v0) ⇢0q2Ṽ (Eq) sin2 ✓ = 0. (29)

Let us consider the two cases of the wave vectors
parallel and perpendicular to the v̂-direction. For the
parallel case, i.e., ✓ = 0, � 0 = 0 or � 0 =
v0 f 0 (v0) ±

q
(v0 f 0 (v0))

2 � ⇢0q2Ṽ (Eq)

�
/2. On the other

hand, in the perpendicular case (✓ = ⇡/2), � 0 =
v0 f 0 (v0) or � 0 = ±

q
�⇢0q2Ṽ (Eq). If f 0 (v0) > 0, the

homogeneous solutions are always unstable. For our Rayleigh-
type dissipation, f 0 (v0) = �2�v0 < 0; hence, the
homogeneous solution is stable only when ⇢0q2Ṽ (Eq) > 0,
which is the same as the criterion in Eq. (28). Further analysis
shows that for a general angle ✓ , Eq. (29) can be rewritten as�
� 0 � v0 f 0 (v0)

� ⇣
� 02 + ⇢0q2Ṽ (Eq)

⌘
+ � cos2 ✓ = 0, where
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Fig. 14. The linear stability diagram of the swarming model of Eqs. (1) and
(2).

� ⌘ v0 f 0 (v0) ⇢0q2Ṽ (Eq). In our model, � > 0 whenever
the homogeneous solution is unstable. Thus, an inspection
of the above equation shows that its largest root, i.e., the
fastest growth rate, is at ✓ = ⇡/2. As a result, perturbations
on the direction perpendicular to the swarm velocity are the

fastest growing mode, and their rate is
q

�⇢0q2Ṽ (q) for a
given q .

Substituting Eq. (2) into Eq. (28), the linear stability
criterion for our swarming model can be explicitly obtained as

Ṽ (q) ⌘ 2⇡

2

64� 1
⇣

1 + q 02
⌘3/2 + C`2

⇣
1 + `2q 02

⌘3/2

3

75 > 0, (30)

where q 0 ⌘ q`a . Since the above criterion has to hold for all
q 0 2 R, stability is attained at

C`2 > 1 if ` < 1, C > ` if ` � 1.

The linear stability diagram is shown in Fig. 14. Note the
close connection between the different regimes shown here and
in the H -stability diagram of Fig. 2. When the homogeneous
solution is linearly stable, the interaction potential is also
H -stable. This is because the condition of Eq. (28) is also
sufficient, but not necessary, for H -stability [35]. Further study
on the dispersion relation in Eq. (29) reveals that � 0 increases
as q2Ṽ (Eq) decreases, and the maximum of � 0 occurs when
the minimum of q2Ṽ (Eq) is reached. As a result, we are
able to evaluate the wavelength of the fastest growth mode
and categorize the long-wave and the short-wave instability
regions in the parameter space. Furthermore, we compare the
fastest growth wavelength to the pattern of the fully nonlinear
continuum model near the onset of the instability, shown in
the left panel of Fig. 15. The simulations are initiated with a
homogeneous density distribution and computed on a periodic
domain of a 206.8 ⇥ 206.8 box. The wavenumber of the fastest
growth mode is calculated as the minimum of Eq. (30). For the
parameters chosen in Fig. 15, |Eq| = 0.121, which corresponds
to a wavelength � = 51.87. This value matches the density
aggregation patterns quite well. In the upper figure, ↵ = 0; the

Fig. 15. Left panel: The contours of a density distribution of the continuum
model near the instability onset with (upper) ↵ = 0 and (lower) ↵ = 1; Right
panel: Simulations of the individual-based model using the same parameters
and initial conditions as the left figures. The parameter values are � = 0.5,
Ca = 0.5, Cr = 1.0, `a = 2.0, and `r = 1.35.

steady state density has zero velocity, and the x–y directions
are isotropic. In the lower figure, ↵ 6= 0, and the velocity
field of the swarm is initiated as Eu (t = 0) = p

↵/� ŷ. The
direction of the stripes indicates that the fastest growth mode
is indeed perpendicular to the initial velocity, which is also
consistent with the theoretical prediction. These results can
also be compared to the simulation of the individual-based
model by using the same parameter values and equivalent
initial and boundary conditions. Since V (r) decays rapidly in r ,
U (Exi ) can be well approximated by including only the adjacent
eight boxes surrounding the computational domain. The steady
particle distributions of the individual-based simulations are
shown on the right panel of Fig. 15. The theoretically predicted
wavelength agrees with the patterns seen in the simulations of
the continuum and the individual-based models.

6. Discussion

Soft-core interactions are widely adopted in the swarming
literature [2,12,14,16–18]. Our investigations, with the Morse
potential of Eq. (2), reveal that the commonly observed
core-free mill patterns only exist in the catastrophic regime
and not in the H -stable one. In this latter case, particles
arrange in rigid-body-like structures, similar to other H -stable
interactions such as the Lennard–Jones potential. It is especially
interesting to note that models which give rise to core-free
mill patterns all use soft-core potentials and operate in the
catastrophic regime [12,14,16–18,33], while those adopting
hard-core potentials do not report such patterns [8,11]. The
morphology richness associated with soft-core catastrophic
potentials is one of the reasons that such interactions have
been so broadly applied in the literature. However, a soft-core
interaction, such as Eq. (2), does not prevent particles from
occupying the same space, which is an unphysical situation.
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This can be resolved in two ways. One is that animals usually
flock on a reduced dimension and thus, can use the extra
dimension to avoid actually occupying the same space. For
example, ants can crawl over each other; therefore, they can
use z-direction to “pass through” each other when they flock
on the x–y plane. Another way is to actually add an additional
hard-core repulsion solely to prevent overlapping. In other
words, there is a soft-core potential that defines an equilibrium
distance between particles and gives rise to the swarming
patterns, and there is also a hard-core potential that specifies
a forbidden distance and prevent particles from penetrating
each other. We find that the presence of the hard-core potential
affects the swarming pattern only when N is large enough,
and hence the equilibrium distance between nearest neighbors,
determined by the collective soft-core interaction, collapses to
the vicinity of the hard-core forbidden distance. Otherwise,
flocks exhibit the same soft-core steady state patterns for small
to moderate N , except for the double-mill state, which is
apparently very sensitive to hard-cores and, in our simulations,
are absent altogether. As N increases, the equilibrium �NND
at first decreases; the flock size increases with N only when
the equilibrium �NND becomes close to the forbidden hard-core
zone and cannot decrease further. Thus, a swarming flock at
moderate N can have soft-core patterns in spite of the existence
of a local hard-core repulsion.

Despite the natural tendency to keep a reasonable distance
between each other, animals may still come close and
occasionally touch each other while moving in a biological
swarm. Thus, the natural repulsive tendency can be realized as
a soft-core repulsion while the body length of the swarming
animals can be viewed as a hard-core forbidden zone. For
biological swarms, the equilibrium �NND is visibly larger than
the hard-core forbidden zone, which supports the description
given in the previous paragraph. In contrast, the Lennard–Jones
potential, used for physical systems of molecules, defines
an equilibrium distance very close to where the potential
rapidly rises toward infinity. In other words, the equilibrium
distance is nearly the same as the hard-core forbidden zone.
Compressibility is perhaps the reason why various catastrophic
patterns, which are not observed in the condensed phases
of classical matter, can exist in the aggregation states of
natural swarms. In artificial swarms, the hard-core repulsion
can be understood as a collision avoidance strategy. If the
distance to invoke the collision avoidance is much shorter than
the equilibrium spacing between agents, various collapsing
patterns shown in Ref. [33] become possible and might even
be engineered for artificial swarming of vehicles.

7. Summary

Natural swarms may switch patterns under different
circumstances. These morphological changes have been
understood to stem from changes in individual mobilities
and mutual interactions within the swarm. Similarly, our
individual-based model exhibits transitions through various
swarming patterns by varying the corresponding parameters.
The same idea can be applied to artificial swarms, where a

group of robots can be programmed to strategically change
formations by varying the self-driving and communicating
parameters of the control model. To analyze the stability of
the emerging patterns with respect to the model parameters, it
is advantageous to have a continuum model that can precisely
describe the individual-based model. We illustrate a procedure
to derive a continuum model from an individual-based model
by using classical statistical mechanics. We show that the
derived continuum model does not approximate the individual
dynamics when the interaction potential is H -stable. This is
due to the fact that for H -stable systems, the length scale of
the potential is comparable to interparticle distances, whereas
in the catastrophic regime many particles can co-exist on a
length scale comparable to the scale of the potential. In the
catastrophic regime, the steady state solution of the continuum
model well matches the single-mill pattern of the individual-
based model. The long-wave instability also shows a match to
both the continuum and the individual-based model simulations
when we theoretically analyze the linear stability of the
homogeneous solution for the continuum model. Thus, the
continuum model may be useful for further analysis, such as
the stability of non-trivial solutions.
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Appendix. Derivation of the fluctuation terms

Following Ref. [34], the momentum transport equation can
be obtained by substituting the macroscopic momentum

⇢ (Ex, t) Eu (Ex, t) =
*
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+

into the generalized Liouville Equation, valid for non-
conserved systems [46],
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Here f is the probability density function described in Eq. (9).
Since
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the transport equation can further be reduced to
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The first term on the right hand side can be modified by noting
that
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where Eu is the macroscopic velocity defined in Eq. (11). Eq.
(A.1) then becomes
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We can substitute the explicit form of Ėpk from Eqs. (11) and
(12)
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into the second term of Eq. (A.2)
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The second term above can be further simplified as
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As a result, Eq. (A.2) can be written as

@

@t
(⇢ Eu) + Er · (⇢ EuEu) + Er · �̂K = ↵⇢ Eu � 2�EK Eu � 2� EqK

+ 2� Eu · �̂K + EFV ,

which is the momentum transport equation shown in Eq. (14).
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