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CHAPT E R 1

Dynamic Phenomena in Cells

07-28

Over the past several decades, progress in the measurement of rates of molecular and
cellular processes combined with rapid advances in computer technology has initiated
a revolution in our understanding of dynamic phenomena in cells. Generally speaking,
the phrase dynamic phenomenon refers to any process or observable that changes over
time. Dynamic phenomena include changes that occur in single cells, such as spikes or
bursts of plasma membrane electrical activity, intracellular signaling via receptors and
second messengers, or more complex processes that involve small clusters of cells, or-
ganelles, or groups of neurons. These clusters may work as signal transduction elements,
like pancreatic islets that respond to an elevation of blood glucose levels by secreting
insulin, or in a network like neuronal cells that either produce or process electrical and
neurochemical signals. Some of the diverse dynamic phenomena that can be treated by
the computational and analytical methods outlined in this book are described in this
chapter.

1.1 Scope of Cellular Dynamics

Living cells are inherently dynamic. Indeed, to sustain the characteristic features of life
such as growth, cell division, intercellular communication, movement, and responsive-
ness to their environment, cells must continually extract energy from their surroundings.
This requires that cells function thermodynamically as open systems that are far from
thermal equilibrium. Much energy is utilized by cells in the maintenance of gradients
of ions and metabolites necessary for proper function. These processes are inherently
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Figure 1.1 A normal red blood cell with its characteristic discoid shape. The cell is approximately 5 µm
in diameter. Adapted from A. J. Grimes, Human Red Cell Metabolism, Blackwell Sci. Pub., 1980, pg. 58.

dynamic due to the continuous movement of ionic and molecular species across the cell
membrane.

A red blood cell, for example, takes up glucose from the blood plasma and uses
glycolytic enzymes to convert energy from carbon and oxygen bonds to phosphorylate
adenosine diphosphate (ADP) and produce the triphosphate ATP. The ATP, in turn,
is utilized to pump Ca2+ and Na+ ions from the cell and K+ ions back into the cell, in
order to maintain the osmotic balance that helps give red cells the characteristic shape
shown in Fig. (1.1). ATP is also used to maintain the concentration of 2,3-
diphosphoglycerate, an intermediary metabolite that regulates the oxygen binding
conformation of hemoglobin. The Þnal products of glucose metabolism in red cells
are pyruvate and lactate, which move passively out of the cell down a concentration
gradient through speciÞc transporters in the plasma membrane. Since red cells possess
neither a nucleus nor mitochondria, they are not capable of cell division nor more en-
ergetically demanding processes. Nonetheless, the continual energy ßow maintains the
capacity of red cells to shuttle oxygen and carbon dioxide between the lungs and the
capillaries. Remarkably, this is carried out in a cell that is only 5 µm across, with a
volume of less than 10−14 L. In later chapters we will discuss models for the transport
of glucose and ions through channels.
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Figure 1.2 The cell division cycle in Þssion yeast. Spindle formation initiates metaphase, where condensed
chromosomes pair up for segregation into daughter cells. The cycle is completed when cytokinesis cleaves
the dividing cell.

The cell division cycle is an ubiquitous dynamical feature of eukaryotic cells, or
cells with nuclei. Fig. (1.2) shows the cycle of events that occur each time a eukary-
otic cell divides via mitosis. The cell cycle is comprised of a regular sequence of events
as shown in the Þgure: chromosome replication during a restricted period of the cycle
(S phase), chromosome segregation during metaphase and anaphase (M phase), and
Þnally cytokinesis, in which two daughter cells separate. This cycle involves a cascade
of molecular events that center around the proteins cdc2 and cyclin, which make up a
complex known as M phase promoting factor, or MPF. This complex has been shown
to oscillate in synchrony with cell division and to be regulated by a series of phos-
phorylation and dephosphorylation reactions. Related dynamical changes occur during
meiosis, in which germ line cells produce eggs and sperm. We will discuss models of
the cell cycle oscillator in detail in a Chapter (??). After DNA replication is complete,
each chromosome consists of two �sister chromatids� which must be separated during
mitosis so that each daugher nucleus gets one and only one copy of each chromosome.
Segregation of sister chromatids during mitosis is another complex dynamical process
that involves self-organizing structures in the cell that work to pull sister chromatids
apart. This process is guided by microtubules that form a bipolar spindle, with one
chromatid attached by microtubules to one pole and the other sister chromatid at-
tached to the other pole. This wonderfully coordinated dynamical behavior is just one
of many examples of motile cellular processes. Other important examples include mus-
cle contraction, cell movement, and projections of cell membrane called pseudopodia.
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Figure 1.3 Population growth of a mutant Eu-
glena strain shows log growth at 25◦C independent
of the light/dark cycle, indicated by the alternat-
ing light/dark bands on the time axis. At 19◦C a
circadian (approximatly 24 hour) growth rhythm
develops that entrains with the light/dark cycle.
Adapted from L. N. Edwards, Jr., Cellular and
Molecular Bases of Biological Clocks, Springer,
1988, pg. 161.

These processes will discussed at length in Chapter (??).
Circadian rhythms are regular changes in cellular processes that have a period of

about 24 hours (from the Latin circa, about + dies, day)and represent another dynam-
ical phenomenon that is widely observed in cells. A great deal about the mechanisms
of circadian rythms has been uncovered in recent years, and circadian biology offers a
rich source of unsolved modeling problems. Internal clocks provide the ability to predict
changes in an organism�s environment, and are manifest in diverse examples ranging
from the eclosion of populations of insects to hormonal regulation in mammals. Data
on the growth cycle in a population of Euglena cells is plotted in Fig. 1.4, with the
logarithm of the number of cells on the ordinate and the time in days on the abscissa.
The dark/light bands correspond to periods of absence and presence of light that sim-
ulate the normal dark/light cycle during a day. As shown in Fig. (1.3), the growth rate
of Euglena is temperature dependent and cell division only sychronizes to a 24 hour
dark/light cycle when the temperature is in the range found in its natural environment.
At this temperature the population doubling time is close to 24 hours. Recent experi-
ments with the fruit ßy Drosophila and other organisms suggest that circadian rhythms
like this are controlled by oscillations in gene transcription. Further consideration of
Circadean Rythms will be given in Chapter (??).

Electrical activity of excitable cells is a widely studied example of cellular
dynamics. Experimental measurements of the membrane potential of insulin secret-
ing cells in the pancreas have revealed regular bursts of electrical activity stimulated
by increases in blood glucose levels. These oscillations occur at physiological levels of
glucose, as shown in the microelectrode recordings from a pancreatic beta cell in an
anesthetized rat in Fig. (1.4). Recent work in vitro has shown that the rapid spikes of
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Figure 1.4 Periodic bursts of electrical activity recorded in vivo from a pancreatic beta cell from the intact
pancreas of an anesthetized rat. Adapted from J. V. Sanchez-Andres, A. Gomis, and M. Valdeolmillos,
The electrical activity of mouse pancreatic beta-cells recorded in vivo show glucose-dependent oscillations.
J. Physiol. (London) 486:223-228 (1995.)

electical activity, known as action potentials, are caused by rapid inßux of Ca2+ from
the exterior of the beta cell followed by a slower efflux of K+. The periods of rapid
spiking are referred to as active phases of the burst, which are separated by intervals
referred to as silent phases. A variety of mechanisms have been proposed to explain
bursting behavior, and computer models of bursting were the Þrst to predict that oscil-
lations of Ca2+ within the cytoplasm should occur in phase with the electrical activity.
Oscillations in Ca2+ were recorded for the Þrst time in vitro eight years after they were
predicted by Chay and Keizer. These oscillations are important physiologically, since
cytoplasmic Ca2+ plays a major role in triggering insulin secretion. This topic will be
revisited in Chapter 5.

Complex electrical activity is a hallmark of electrical signals in neuronal cells as well.
The classical behavior of an action potential in the squid giant axon is shown in Fig.
(1.5). This single spike of electrical activity, initiated by a small positive current applied
by an external electode, propagates as a traveling pulse along the axonal membrane.
Hodgkin and Huxley were the Þrst to propose a satisfactory explanation for action
potentials that incorporated experimental measurements of the response of the squid
axon to steady depolarizations (positive deviations) of the membrane potential. The
Hodgkin-Huxley model involves Na+ and K+ currents that are regulated by membrane
potential and we will describe related models in Chapter (2).

The control of cellular processes by interlocking molecular mechanisms can also
produce oscillatory Ca2+ signals that are independent of electrical activity. Fig. (1.6)
shows the spiral pattern of cytoplasmic Ca2+ oscillations that occurs when an im-
mature Xenopus leavis egg (an oocyte) is stimulated by a microinjection of inositol
1,4,5-trisphosphate (IP3). IP3 is a phospholipid membrane metabolite that is widely
involved in signalling by receptors in the plasma membrane and that triggers release of
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Figure 1.5 Upper Panel: Schematic diagram of the recording
electrodes (a and b) used to detect action potentials following
a stimulus shock in an isolated giant axon from squid. Lower
Panel: The membrane potential recorded at electrodes a and
b in the upper panel following a depolarizing shock. Adapted
from B. Hille, Ionic Channels of Excitable Membranes, 2nd ed,
Sinauer, 1992, pg. 25.

Figure 1.6 A spiral wave of Ca2+ ions detected as
the bright ßuorescence from an indicator dye after mi-
croinjection of IP3 into an immature frog egg. Adapted
from J. D. Lechleiter and D. E. Clapham, Molecular
mechanisms of intracellular calcium excitability in X.
laevis oocytes. Cell 69:283-294 (1992).

Ca2+ from the endoplasmic reticulum (ER). The ER is an intracellular compartment
that functions as a storage region for Ca2+, maintaining a total internal concentration
that is comparable to the external medium (ca. 5mM). The spiral waves of Ca2+ in
Xenopus oocytes can be explained quantitatively by kinetic models of the feedback
mechanisms responsible for uptake and release of Ca2+ from the ER. Simple models
of regenerative Ca2+ release that are solved on a spatial domain provide insight to the
processes of self organization that result in spiral waves.

Theses examples of cellular systems provide only a glimpse of the complex dy-
namical behavior that has been observed in living cells. In the next section we turn
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our attention to computer models and how they can be used to help explain dynamic
phenomena in cells.

1.2 Role of Theory and Computation

Even the simplest of the dynamic phenomena described in the previous section are
exceedingly complex, and computer models have proven to be an important tool in
helping to dissect the molecular processes that control their time evolution. In the
physical sciences, theoretical methods in combination with experimental measurements
have provided rich insights into phenomena for many years. The abundance of quantita-
tive experimental data that are now available at the cellular level have opened the door
to a similar collaboration in neurobiology and cell physiology. The challenge in biology,
however, is usually much greater than in the physical sciences because the number of
molecular mechanisms and component molecular species uncovered in cells has become
staggering.

Nonetheless, the interplay of experiment, theory, and computation follows a
conceptual framework similar to that which has proven successful in the physical
sciences:

1. Taking clues from experiment, the Þrst step is to sort through possible molecular
mechanisms and focus on the most plausible ones. Ideally, this step involves close
consultation with experimentalists working on the problem.

2. The selection of mechanisms deÞnes the basis for a schematic representation, or
cartoon, that depicts the overall model. To be useful the cartoon should be ex-
plicit enough that it can, in turn, be translated into a series of elementary steps
representing the individual mechanisms.

3. Because of their origin in molecular processes, the basic laws of physics and chem-
istry can be used to translate the individual mechanisms depicted in the cartoon
into mathematical expressions.

4. The individual mechanisms are then combined into time dependent differential
equations that quantify the changes described by the whole model.

5. Finally, a careful study of the differential equations must reveal useful information
about the system.

The challenge of the theorist in biology then becomes similar to that in astrophysics
or quantum mechanics: to analyze the equations, simplify them if possible, solve them,
and, most importantly, make predictions that can be tested with further experiment.
Further experiments may uncover inconsistencies in a model that will require changes.
The process that we have outlined above and will revisit in later chapters is interative
cycle of ever-improving approximation where the mathematical or computer model
plays the role of a quantitative hypothesis.

The Þeld of computational cell physiology would not be possible without the use
of computers. Advances in both computer hardware and numerical analysis have made
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the solution of complicated systems of ordinary differential equations fast, accurate and
relatively easy. Indeed, the role of computation is critical since the differential equa-
tions describing biological processes nearly always involve control mechanisms that have
nonlinear components. Simple linear differential equations often can be solved analyti-
cally, which means that we can obtain an exact solution using traditional mathematical
methods. Nonlinearities often make it difficult or impossible to obtain an exact solution;
however, we can obtain quite good estimates using numerical methods implemented on
computers. Spatial variation is often an important feature in cellular mechanisms, so one
is confronted with analyzing and solving spatially explicit partial differential equations,
which are still more complicated and less analytically tractable than ODEs.

Computer models permit one to test conditions that may at present be difficult
to attain in the laboratory or that simply have not yet been examined by experimen-
talists. Each numerical solution of the differential equations, therefore, can provide a
simulation of a potential laboratory experiment. These simulations can be used to help
assess parameters, such as diffusion constants or kinetic constants, that may be dif-
Þcult to measure experimentally. Numerical simulations can test how intervention by
pharmacological agents might affect a processes. With simulations one can test speciÞc
hypotheses about the role of individual mechanistic components or make predictions
about variables that can be tested in the laboratory. Often the most important result
of a simulation is negative: a well crafted model can rule out a particular mechanism
as a possible explanation for experimental observations.

The scope of mathematical techniques employed to investigate problems in mathe-
matical biology spans almost all of applied mathematics. The problems that are covered
in this book involve properties of cells that change in a prescribed way over time. We
use the language of differential equations to describe the behavior of dynamical sys-
tems with time. Mathematicians have developed techniques for the analysis of systems
of differential equations that describe complex interrelated processes.

While the modeling of processes is discussed in detail, only the basics of the math-
ematics and the elementary tools for the analysis of these models are introduced.
Rigorous analysis of complicated differential equations requires specialized training,
since there are many subtleties that are appreciated only with experience. While the
creation and manipulation of simple models is within the reach of all cell biologists, the
careful scientist will seek collaborations with experienced mathematicians, particularly
for the valid simpliÞcation of complicated models into more tractable ones. In the middle
ground between established disciplines such as biology and mathematics, fruitful scien-
tiÞc work can be done, and all parties gain valuable insight from the interdisciplinary
experience.

1.3 Cartoons, Mechanisms and Models

In this section we illustrate with a simple model of ion channel gating the kinds of
phenomenon that are investigated in detail in subsequent chapters. We introduce some
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Figure 1.7 Mechanistic cartoon of a gated ionic
channel showing an aqueous pore that is selective to
particular types of ions. The portion of the trans-
membrane protein that forms the �gate� is sensitive
to membrane potential, allowing the pore to be in
an open or closed state. Taken from B. Hille, Ionic
Channels of Excitable Membranes, 2nd ed, Sinauer,
1992, pg. 66.

of the methods underlying the analysis of these models and also try to demonstrate the
basic conceptual modeling framework utilized throughout the book.

We begin with a simple channel because it is an intuitively clear example of tran-
sition between different molecular states corresponding to different conformations of a
macromolecule. For simplicity, we are going to ignore the ion current ßowing through
such a channel as well as the concept of voltage dependence until Chapter (2). The
simplest cartoon of gating is a channel with two states, one with the pore open and
the other with it closed, corresponding to the mechanism shown in Fig. (1.7). This
kinetic �cartoon� is easily translated into a conventional kinetic model of the sort often
employed in biochemistry.

Here the model takes the form of the diagram in Fig. (??). Diagrams like this, which
will be used extensively in this book, represent molecular states or entities by symbols
and transitions between states by solid lines. The letters in Fig. (??) correspond to
the open and closed states of the channel and the lines represent elementary molecular
processes. The transitions between O and C are unimolecular process since they involve
only the channel molecule ( bimolecular processes will be introduced in Chapter (3)).
An important aspect of transitions between molecular states is that they are reversible,
which is a consequence of microscopic reversibility of molecular processes.

These states represent a complex set of underlying molecular states in which the
pore is either permeable or impermeable to ionic charge.

C ↔ O, (1.1)

Using the patch clamp, transitions between closed and open states can be measured
for single ion channels. However, here the focus is on the average change for a collection
of ion channels. Since it is not unusual to have several thousand ion channels of a given
type in the plasma membrane of a cell, the average behavior of the entire ensemble of
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channels is often what determines the cellular dynamics. This concept will be discussed
in detail in Chapter (12).

The rates of the elementary processes denoted in the kinetic diagram are determined
by the so-called law of mass action. (Despite the name, mass action is not technically
a physical law, but rather is a constitutive relation which holds as a very good approx-
imation for any well mixed system.) This �law�, which dates back to the early studies
of chemical kinetics, states that the rate of a processes is proportional to the product of
the concentrations of the molecular species involved in the process. Thus the rate of the
transition from state C to state O is given by J+ = k

+[C], where the square brackets
denote concentration, with [C] representing the concentration of channel molecules in
state C. The factor k+ is the rate constant, in this case unimolecular, with practical
units of s−1. Similarly the rate of the reverse reaction, O ← C, is given by J− = k

−[O]
with k− a unimolecular rate constant (with units s−1).

The law of mass action is a speciÞc example of a more general relationship that
underlies the dynamics of all physicochemical processes. In its most general form these
rate expressions are interpreted as probability transition rates. As described in Chapter
(12), rate expressions give information about the probability of transitions between the
molecular states of an individual channel. However, they also provide information about
the average number of transitions per unit time for an ensemble of channels, and that
is how we will use the rate expressions here.

To translate the mechanism in Fig. (??) into an equation, the law of mass action
is applied to the concentration of channels in states C and O. For cellular transport
mechanisms, a variety of measures of �concentration� can be used. For example, if the
channels are in intact cells, concentration is often expressed in terms of total cell volume.
Another measure in common use involves total weight of protein in a sample. The total
number of transporters, N , is useful for single cells. Here we choose the latter to deÞne
concentration so that [O] = nO = NO/N , where the lowercase n will refer to the fraction
of closed channels and N is the total number or channels. Since the kinetic model
involves only interconversion of channel states, the total number of channels should be
preserved. This introduces the idea of a conservation law, NC +NO = N , that channels
are neither created nor destroyed. This implies that one of the dependent variables can
be eliminated using the conservation law, say, NC = N −NO. The differential equation
for NC therefore becomes redundant and the number of differential equations to be
solved is reduced to only one along with the algebraic equation for NC . The fraction of
channels in the closed state is, therefore, 1− nO.

Having established the correspondence of the diagram with rate expressions, it is
easy to write down the differential equations that the diagram represents. To do so one
must keep track of the change that each elementary process in the diagram makes for
each state, which we refer to as a it ßux. Thus the process connecting states O and C
causes a loss of stateO in the reverse direction and a gain in the forward direction. These
small, whole numbers that correspond to losses or gains of a state (e.g., -1 for state
C in the process C → O) are called the stoichiometric coefficients for the mechanism.
Using the coeÞcients in conjunction with the kinetic diagram, the ordinary differential
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equations follow for the rate of change in the states:

flux O→ C = j− = k
−nO

flux C → O = j+ = k
+(1− nO)

change in nO = j+ − j−

dnO
dt

= j+ − j−
= −k−nO + k+(1− nO)
= −(k− + k+)(nO − k+

(k− + k+)
) (1.2)

or, deÞning τ = 1

(k−+k+) and n∞ =
k+

(k−+k+) ,

dnO
dt

=
−(nO − n∞)

τ
. (1.3)

Channels may be comprised of multiple subunits that behave similarly. This fraction
can be derived from a model like that in Fig. (??) if it is assumed that the protein
consists of independent, identical subunits, each of which has to be in the state O for
the channel to be open. Thus the underlying dynamics for the state of each subunit
still satisÞes Eqn. (1.3), but now nO gives only the fraction of the subunits in state
O. To get the the fraction of open channels, we use the assumption that the subunits
are identical and independent. Thus the open fraction of channels is the product of the
fractional occupancies of all subunits. For a 4 subunit (tetrameric) channel, the fraction
of open channels would be nO

4. This topic will be covered in detail in Chapter (2).
The example we have presented here shows the basic framework under which all

of the models in this book are developed and understood. With the formulation of the
model equations, the Þrst steps in the modeling process are completed. What remains
is the analysis of the equations. A detailed discussion of some of the basic terminology
and techniques involved in the solution of these and more complicated equations that
frequently arise in the modeling process are developed and discussed in Appendix (A).

1.4 Solving and Analyzing Differential Equations

Many students have worked with differential equations quite often without being aware
of it in their study of physical sciences or elementary mathematics and they may have
been introduced to solution techniques explicitly in an advanced calculus course. In
general, the differential equations that arise for the rate of change in cellular proper-
ties will be complicated and difficult or impossible to solve exactly using analytical
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Figure 1.8 A selection from the family of solutions to equation (1.3) for τ = 2.

techniques. Consider the simple linear equation:

dX(t)

dt
=
−X(t)
τ

(1.4)

Eqn. (1.4) says that we are seeking a function X(t) whose derivative is proportional
to itself with proportionality constant 1/τ . Remembering that the derivative of the
exponential function is still an exponential function, a good guess is that the exact
solution to Eqn. (1.4) is

X(t) = Xoe
−t/τ (1.5)

It can be veriÞed that Eqn. (1.5) is indeed a solution of Eqn. (1.4) by differentiating
the solution with respect to t, thereby recovering our original equation:

dX(t)

dt
=
d

dt
(Xoe

−t/τ) = −1
τ
(Xoe

−t/τ) =
−X(t)
τ

(1.6)

Because the same differential equation describes how a variable changes no matter
where it begins initially, the solution for a differential equation has to prescribe both how
a variable evolves and at what value it begins. Thus there are a family of solutions to a
differential equation and the correct one is chosen by specifying an it initial condition
such as Xo in Eqn. (1.6). This is an important concept that is particularly relevant
to the numerical solution of differential equations. Representatives from the family of
exact solutions for different values of Xo are shown in Þgure Fig. (1.8) for τ = 2. talk
about tau and t1/2
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Figure 1.9 The Euler method of numerical integration relies upon a series of short linear approximations
using the derivative at the old time point. The solution to equation (1.3) with τ = 2 is shown in solid,
the linear approximation using the derivative at t = 0 (-0.5)is shown in dots, and the difference between
these two curves is shown in dashes. Note that, by t = 2, the error between the actual and approximate
functions is equal to the value of the actual funtion.

1.4.1 Numerical Integration of Differential Equations

Even if Eqn. (1.4) were more complicated and could not be solved exactly, a numerical
approximation can still be calculated. The simplest and perhaps the oldest method of
numerical solution goes back to the mathematician Euler and is easy to understand. The
method is called the forward Euler method and it is the prototype for all other methods
of solving ODEs numerically. Consider the differential equation 1.20, but approximate
the derivative by

dX

dt
≈ ∆X

∆t
=
X(t+∆t)−X(t)

∆t
(1.7)

where ∆X and ∆t are small, but not inÞnitessimal like the differentials dX and dt. If
this approximation to the derivative is substituted into the differential equation, the
resulting equation can bew solved for X(t+∆t) giving,

X(t+∆t) = X(t)−X(t)∆t/τ. (1.8)

The smaller ∆t is, the better the Euler approximation of the derivative is. Also,
because the Euler approximation gives a piecewise linear estimate of the solution, the
farther from linear the problem is, the smaller ∆t must become to give an acurate
solution. The essence of numerical integration is that we start at some value and crawl
along the solution in increments of ∆t by estimating the change over that interval. If ∆t
is very small, our estimate of the rate of change is good and our solution is accurate but
it may take a very long time to compute the solution. This is termed computationally
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Figure 1.10 Panel A: The exponential decay of the open fraction of channels. Initial conditions at either
1 or 0 both decay to the steady state value of 0.5. Panel B: The effect of the step size in the Euler
method for the simulation in Panel A starting with the initial condition n(0) = 1. The exact solution,
n(t) = 0.5(1 + exp(−t/3)), is given by the full line. Made with linear1.ode

expensive, since it either requires a faster (more expensive) computer or a longer time
to run.

There are many other methods of numerical integration which give better approx-
imations to the derivative. These methods are generally more complicated, but have
fewer restrictions on ∆t. These more complicated methods also address some other im-
portant problems that are frequently problem dependent. XppAut incorporates several
of the most versitile of these methods. There are many Þne texts on numerical analy-
sis that discuss these issues and explain the various advantages and disadvantages of
each method. As we mentioned before, however, the best way to ensure an optimal and
valid means of solution is to collaborate with a mathematician who has experience in
scientiÞc computation or numerical analysis.

1.4.2 Solving ODEs with XppAut

An equation related to the simple exponential decay equation discussed above (dX/dt =
−X/τ) is the exponential approach to a steady state other than zero. For example, Eqn.
(1.3), which resulted from the single channel model above, describes exponential decay
(or growth) to a steady state number of open channels, n∞. The analytic solution to
Eqn. (1.3) for a given initial condition n(0) is given by Eqn. (1.9). We want to introduce
a practical tool for solving such equations numerically.

dnO
dt

=
−(nO − n∞)

τ

nO(t) = n∞ + (nO(0)− n∞)e(−t/τ) (1.9)
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1.4.3 Introduction to XppAut

While it is important to understand the limitations of whichever numerical algorithm
is used for the solution of a problem, fortunately it is not necessary to face the task
of implementing these algorithms on a computer from scratch. Several excellent soft-
ware programs have been developed that not only solve ODEs, but represent solutions
graphically and allow their dynamical properties to be analyzed. Among the best is a
public domain package, XppAut, that has been developed by Bard Ermentrout at the
University of Pittsburgh. The name of the program evolved from a DOS version that
was called PhasePlane, refering to the program�s ability to carry out phase plane anal-
ysis. A version that ran in X-windows under unix or linux was then developed that was
called X-PhasePlane (or Xpp for short). Finally, when the automatic bifurcation tool
Auto, developed by E. Doedel, was added it became X-PhasePlane-Auto or XppAut.
XppAut is an excellent tool for solving and analyzing ordinary differential equations,
and we adopt it as the basic software program for use with this text. Directions for
downloading XppAutand hints for using the package are given in the appendix to this
chapter.

All that is needed to start using XppAut is a properly formated input Þle that deÞnes
the functions and ODEs for the equations of interest. This is saved as �Þlename.ode�,
which is the Þle format recognized by XppAut. An XppAut Þle for Eqn. (1.9) is:

#linear1.ode: an XppAut file to solve single channel model

#the initial condition on the open fraction

no(0)=1

#the parameters

param ninf=0.5,tau=3

#the equation

dno/dt=-(no-ninf)/tau

#an auxiliary function

aux rate=-(no-ninf)/tau

#end of file

Note that the dependent variable can be given any name; here we choose nO as
in the original equation. The independent variable is always t, suggestive of �time��
although that interpretation is not always necessary. To help illustrate the meaning of
the Þle, comments have been included. These are the lines that begin with # and that
are ignored by XppAut. The auxilliary function, rate, keeps track of the instantaneous
rate of change of nO. Including it on the line beginning with aux allows it to be plotted
in XppAut. The lines declaring parameters must begin with param. In the case of this
particular equation, the exact solution to the differential equation is known Eqn. (1.9),
and so it is included as a second auxiliary function for comparison:

Panel A of Fig. (1.10) illustrates two solutions to Eqn. (1.9) obtained by integrating
the linear1.ode Þle using the Euler method in XppAut. The time step was chosen to
be dt = 0.03 and two different initial conditions were used, no(0)=1 and no(0)=0.
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Figure 1.11 Panel A is a plot of the rate of change of n in Fig. 13A as a function of n. The lower panel
is a phase portrait with the arrows representing the direction and relative magnitude of the rate for each
value of nO . All the arrows point towards the steady state, ninf = 0.5.

Independent of the initial condition, nO(t) relaxes to its steady state value, finf=0.5.
This steady state is sometimes called an equilibrium or a singular point. It corresponds
to the point where the rate vanishes, as can be seen graphically in Fig. (1.10A), or by
noting the form of the expression for rate in the linear1.ode Þle. The rate at which the
steady state is approached depends on the value of tau, which is 3 in these simulations.

Panel B of Fig. (1.10) illustrates how the solution to the equation in the Euler
method depends on step size. Only step sizes that are more than an order of magnitude
smaller than the value of tau do a good job of approximating the exact exponential
solution, which for the parameter values used is fo(t) = 0.5(1 + exp(−t/3)). Unrealis-
tically large step sizes like dt = 6 give approximations that are not even close to the
exact solution. In fact, the numerical method has become unstable, and the computed
solution oscillates around the true solution.
FOLLOWING SECTION MAY NEED REVISION - TYSON
There is a different way to plot the results of solving the differential equation that

frequently gives insight into the properties of the solution. This is demonstrated in Fig.
(1.11), where the function rate = -(fo-ninf)/tau is plotted versus the value of fo
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for the two initial conditions in Fig. (1.10A). As f is restricted on physical grounds
to be between 0 and 1, the plot shows that finf=0.5 is the unique steady state and
makes it clear that when nO > 0.5, n(t) decreases with time (since df/dt < 0) and
that nO(t) increases with time when nO < 0.5. To further emphasize this arrows show
the direction that nO is changing. This type of plot is called a phase portrait, in the
case one dimensional. Phase portraits are particularly useful for analyzing ODEs with
two variables, where they are typically called phase plane diagrams. A full discussion of
phase plane diagrams appears in Appendix (A). Since phase portrait diagrams will be
used extensively in the remainder of the text, it would be a useful digression to review
that material now.

1.5 Exercises

1. Verify by differentiation (or by integration) that Equation (1.9) is the solution to
Equation (1.8).

2. Read the sections of the XppAut Tutorial entitled Introduction and Creating and
running an ODE Þle. Create and run the input Þle for the passive membrane model
described there. Use that Þle to follow along with the Tutorial.

3. Do Homework 1.2 in the section Creating and running an ODE Þle in the XppAut
Tutorial.

4. Create an input Þle for XppAut or Winpp that is suitable for solving the ODE
in Eqn. (1.4) and use XppAut to explore what happens to the solution when the
intial condition and characteristic time, τ , are changed. Compare to the analytical
solution in the previous exercise.

#decay.ode

#the initial condition is 1

X(0)=1

#the parameters

param tau=2

#the equation

dX/dt=-X/tau

#an auxiliary function

aux rate=-X/tau

#an auxiliary function for the exact solution

aux exact=1*exp(-t/tau)

end

#end of file

5. Using the input Þle linear1.ode, verify that the solutions graphed in Fig. 1.13 are
also obtained using the Runge-Kutta or Adams numerical method.

#linear1.ode: an XppAut file to solve Eq. (1.29)
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#the initial condition on the open fraction

n(0)=0.75

#the parameters

param ninf=0.5,tau=3

#the equation

dn/dt=-(n-ninf)/tau

#an auxiliary function

aux rate=-(n-ninf)/tau

#end of file

1.6 Appendix: Hints for Using XppAut

The mechanics of running a Þle in XppAut depend on whether you have the unix/linux
version (XppAut) or the version of the program that runs under Windows-95/NT
(Winpp). Either version can be downloaded over the Web from Ermentrout�s site
http://www.pitt.edu/∼phase/. Once a Þle is loaded into XppAut, the program brings
up a variety of windows that allows one easily to change the initial conditions, param-
eter values, and look at a tabular display of the solution. The main window contains
a graph, in which the solution of the ODE can be plotted along with mouse-activated
menus for plotting, graphical, and numerical options.

The hints listed here are directed at the unix/linux version of XppAut. Nonetheless,
almost all of the menus and submenus in XppAut have identical (or comparable) names
inWinpp. Two notable exceptions are that submenus in the nUmericsmenu of XppAut
are all contained in the Int. Pars. (integration parameters) submenu inWinpp and that
the Phaseplane menu in Winpp contains the menus for setting the grid parameters.
More complete information about running XppAut is contained in the Xpptutorial,
which can be obtained as an html Þle at http://www.pitt.edu/∼phase/, Ermentrout�s
internet Web site.

1. The Þrst (and best) hint is to open up the XPPtutorial html Þle using a Web browser
such as Netscape. Put this in a different window (or in linux in a different desktop)
than the one you use for XppAut and use the Table of Contents and References as
on-line help. A complete list of formating commands can be found under Format
of ODE Þles and examples, which is linked to the References in the section XPP
Tutorial: Basic Idea and Introduction.

2. Create or edit an XppAut Þle using your favorite editor. Files must be saved in ascii
(text) format and end in �.ode�, i.e. �Þlename.ode�. If the Þle is not written with
correct syntax, then XppAut will not load the Þle. Pay attention to the reasons
that XppAut gives for rejecting the Þle, since they point you to where revisions are
required. Remember that Þxed quantities are evaluated in the order in which they
appear. XppAut will not warn you about this type of error!
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3. Load the Þle into XppAut, which will bring up all the windows for XppAut for the
Þle named �Þlename.ode�. You should minimize all the windows except the main
window to get them out of your way until you need them; in the linux version they
will be solid blue. You will probably want to maximize the parameter and the initial
condition windows (or any other XPP window that you will use regularly).

4. Always be sure to click on the menu item nUmerics and set the Method and
Total (duration of integration) before you begin. For almost all equations Adams
or Runga-Kutta work Þne with an appropriate time step (Dt in the nUmerics
menu). It also helps to set the Ncline ctrl mesh to 100 and the sIng pt ctrl mesh
to 150. Set Bounds to a number larger than the expected maximum of all of your
variables; otherwise you will get an �out of bounds� message when integrating. It
is not necessary to save every time point in the integration; to save fewer points,
set nOutput to a number greater than one. Then return to the main menu.

5. Use the InitialConds menu to initiate integration of the equations. TheGo option
will begin the integration with the parameters and initial conditions set in the other
windows. Range allows you to choose a range of intitial conditions or parameters.
You can set the variable to plot and its range using either the Viewaxes or Xi vs
t options.

6. In case you want to void a menu choice or to stop an integration prematurely, use
the Esc key.

7. To print a graph, Þrst save the graph to a postscript Þle using the menu Graphics
stuff and then choosing Postscript. This prompts you with a default name (�Þle-
name.ode.ps�), which you can edit, but keep the �.ps� since it will remind you that
this is a postscript Þle. The Þle prints on any postscript printer.

8. You can open up multiple graph windows using the menu item HalfWindow. The
white square in the upper left corner of the graph tells you which window is active.
All the window speciÞc menu items (eg., Viewaxes and Graphics stuff) apply
only to the active graph window. To activate a graph window, simply click the
mouse anywhere in the graph, itself, and the white square will appear.

9. To exit XppAut use the menu item File, choose Quit and then agree.
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CHAPT E R 2

Voltage Gated Ionic Currents

Chris Fall and Joel Keizer

07-28

Electrophysiology is the study of ionic currents and electrical activity in cells and tissues.
Because this Þeld has its roots in classical physics, traditionally it has been the most
quantitative Þeld in cell physiology. The work of the physiologists Hodgkin and Huxley
and others in elucidating the mechanism of action potentials in the squid giant axon
before and after the Second World War was the Þrst major breakthrough of dynamical
modeling in physiology. In the latter half of the 20th century, the introduction of the
patch-clamp technique established Þrmly that ionic currents are carried by proteins
that act as gated ionic pores. More recently genetic engineering techniques have been
employed to clone, modify, and characterize the gating mechanisms of many types of
channels. In this chapter we focus on voltage gated ionic currents. We begin by reviewing
the basic concepts of electrical behavior in cells. Next, we describe classical activation
and inactivation gates and how the voltage clamp technique can be used to study these
currents. We touch brießy on the Hodgkin-Huxley model of the squid giant axon before
moving on to models more suitable for phase-plane analysis. We then study the Morris-
Lecar model for action potentials in the giant barnacle muscle, which is nonlinear but
involves only two variables. With only two variables, we can analyze the dynamics of
the Morris-Lecar model using phase plane techniques.
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Figure 2.1 The equivalent electrical circuit for the Hodgkin-Huxley model of squid giant axon. The
capacitance is due to the phospholipid bilayer separating the ions on the inside and the outside of the
cell. The three ionic currents, one for Na+, one for K+, and one for a non-speciÞc leak, are indicated by
resistances. The conductances of the Na+ and K+ currents are voltage dependent, as indicated by the
variable resistances. The driving force for the ions is indicated by the symbol for the electromotive force,
which is given in the model by the difference between the membrane potential, V = Vin − Vout and the
reversal potential.

2.1 The Membrane Model

The conceptual idea behind current electrophysiological models originates in the work
of K. C. Cole, who pioneered the notion that cell membranes could be likened to an
electronic circuit. Cole�s basic circuit elements are 1) the phospholipid bilayer, which is
analogous to a capacitor in that it accumulates ionic charge as the electrical potential
across the membrane changes; 2) the ionic permeabilities of the membrane, which are
analogous to resistors in an electronic circuit; and 3) the electrochemical driving forces,
which are analogous to batteries driving the ionic currents. These ionic currents are
arranged in a parallel circuit, as shown in Fig. (2.1). This analogy to electrical circuits
is now widely relied upon for developing models of electrical activity in membranes.

As with electronic circuits, the electrical behavior of cells is based upon the transfer
and storage of charge. We are used to thinking about electricity as the movement of
electrons, but current can be carried by any charged species - including ions such as
K+, Na+, and Ca2+ in solution. Recall several important deÞnitions from elementary
Physics listed in Table (2.1). The transfer of 1 mole of K+ions in a period of one second
would carry one ampere of current. An ion�s valence is the number of charges, plus or
minus, that it carries. An equivalent number of the divalent ion Ca2+ would carry twice
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Table 2.1 Important DeÞnitions in Electrophysiology

DeÞnition Abbreviation Value

Notes:

the amount of charge as the univalent ion K+. Potential difference is measured in volts.
By deÞnition, the work required to move 1 C of charge across a 1 V gradient is 1 joule.

2.2 Basis of the Ionic Battery

Cells contain ion pumps which use energy in the form of ATP to transport ions against
a concentration gradient. Consider an ion-impermeable membrane such as the phos-
pholipid bilayer of the cellular plasma membrane with a concentration gradient of K+

ions established by ion pumps. Based on the relationships discussed above, we could
calculate the voltage across the membrane using Faraday�s constant and the differ-
ence in concentration across the membrane Exercise (??). If a nonselective pore or a
pore selective for K+ only were inserted into the membrane, the concentration would
equilibrate and the voltage gradient across the membrane would dissipate to zero.

As we have seen, biological ßuids such as cytoplasm and extracellular ßuid contain
numerous ions. Consider the case where two ions, K+ and any monovalent anion A−

are in solution such that the concentration is different across the membrane but the
two ions are equal in concetration on the same side of the membrane. Before we make
any changes, there is no potential difference across the membrane because the charge
between the K+ ions and the A− ions is balanced on each side due to the equivalent
concentrations. If we insert a nonselective pore into the membrane, concentration and
charge equilibrate such that there are an equal number of each ion on both sides of the
membrane and the voltage across the membrane is again zero.

It is when we insert a channel into the membrane that allows only the passage of
K+ that an interesting and useful phenomenon occurs. Because [K+] is greater on one
side of the membrane, K+ ions diffuse through the K+ pore in order to equilibrate the
concentration difference. Because the membrane is not permeable to the anion A−, each
K+ ion that passes down the concentration gradient carries a positive charge that is
not balanced by an accompanying A−. Since the transfer of these charges establishes
an electrical potential gradient, K+ ions continue to move from high concentration to
low concentration until the growing electrical potential difference is balanced by the
chemical potential contained in the residual concentration difference.

The equilibrium potential, where the electrical potential is equilvalent to the chemi-
cal potential due to the concentration difference, is given by the Nernst Equation derived
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from statistical physics:

∆E = Ein −Eout =
RT

zF
ln
[ionin]

[ionout]

= 2.303
RT

zF
log10

[ionin]

[ionout]

=
61.5

z
log10

[ionin]

[ionout]
(at 37oC)

(2.1)

where R, and F are deÞned above, T is temperature (in Kelvin) and z is the valence of
the ion as previously deÞned. At body temperature, RT/F is approximately 60. There-
fore a 10 fold difference in the concentration of a monovalent ion like K+would result in
approximately 120 mV of potential difference across a membrane. Because the equilib-
rium potential represents the steady state of the thermodynamic system, the potential
difference evolves to that given by the Nernst equation regardless of the initial starting
potential. This tendency for the system to move towards the equilibrium potential is
the basis of the ionic battery used in the modeling of electrophysiological phenomena.
In electrophysiology, the equilibrium potential is called the reversal potential, since de-
parture from that point of zero current ßux results in the positive or negative ßow of
ions.

2.3 Differential Equations for Membrane Electrical
Behavior

We can approximate the current ßow through a K+ channel using Ohm�s law and an
assumption that the reversal potential stays constant:

Ik = gk(V − Vk) (2.2)
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Here gk is the conductance of the K
+ channel. Vk is the K

+ reversal potential determined
by the Nernst equation and V − Vi represents the driving force across the membrane
provided by the ionic battery. We assume that the reversal potential for a given ion
remains constant, which is equivalent to assuming that restorative mechanisms such
as ionic pumps can keep pace with electrical activity on a time scale that prevents
the �ionic battery� from running down. This is a reasonable assumption for a large
cell, which would have a small surface area to volume ratio. Charge is stored due
to the capacitance of the plasma membrane. In a small cell, with a large surface to
volume ratio, the ion transfer necessary to change the membrane potential might have
a large effect on the intracellular ionic concentration and thus the strength of the �ionic
battery.� Exercise (??)

To translate the electric circuit diagram into ODEs, we use the traditional interpre-
tation of each circuit element along with Kirchoff�s law. Assuming that the membrane
acts as a capacitor, the capacitive current across the membrane can be written

Icap = C
dV

dt
, (2.3)

where C is the capacitance of the membrane and V is the membrane potential, deÞned as
the electrical potential difference between the inside and outside of the cell. To establish
the differential equation satisÞed by the voltage, V , Kirchoff�s law of charge conservation
is applied to the circuit in Fig. (2.1). Kirchoff�s law dictates that capacitative current
must balance with the ionic current and any currents that might be applied, say, through
experimental manipulation. This implies that

Icap =
X
i

Ii + Iapp (2.4)

where the sum is over all the ionic currents. Using the expressions in Eqn. (2.3) and
Eqn. (??) this can be rewritten:

CdV/dt = −
X
i

gi(V − Vi) + Iapp. (2.5)

If the form of the gated conductances, gi, are known, this provides a differential equation
for the voltage. In general, the gi will not be linear functions of V , and therefore the
problem is to Þnd the time and possible voltage dependence of the various conductances.

2.4 Activation and Inactivation Gates

In order to control the permeability to ions, channels have gates, as illustrated
schematically in Fig. (??), that regulate the permeability of the pore. These gates
can be controlled by membrane potential�producing voltage gated channels�or by
ligands�producing ligand gated channels. Hodkgin and Huxley and others established
experimentally that sodium (Na+) and potassium (K+) ions were responsible for car-
rying the majority of current across the membrane of the squid giant axon. By using
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Figure 2.3 Simulation of voltage clamp experiment using Eqs. () and (). Panel A: Current records
resulting from 40ms depolarizations from the holding potential of -60mV to the indicated test potentials.
Panel B: the maximum (steady state) current as a function of test potential taken from records like those
in Panel A.

a technique called the voltage clamp, Hodgkin and Huxley were able to characterize
the variation in resistance of the membranes to Na+ and K+ currents as the mem-
brane potential changed. This is indicated by the variable resistors for the Na+ and K+

conductances in the schematic membrane model shown in Fig. (2.1).

2.4.1 The Voltage Clamp

In order to measure the activation and inactivation properties of channels, whole
cell currents are often used. These are recorded either in the whole cell patch clamp
conÞguration or with microelectrodes that are used to impale cells. In order to measure
the voltage dependence of a gate, a voltage clamp is used. This is an electronic feedback
device that adjusts the applied current, Iapp, so that it matches the membrane currents.
To see what this accomplishes, consider a membrane with a single gated ionic current.
If

Iapp(t) = gfO(t)(V − Vrev). (2.6)

and the membrane potential satisÞes the differential equation:

C
dV

dt
= −nOg(V − Vrev) + Iapp(t), (2.7)

then the right hand side of Eqn. (2.7) is zero and the voltage must be unchanging, or
constant. Because V is constant,the time dependence of the applied current comes only
from the dependence of nO on t as determined by the gating equation:

dfn
dt
=
−(nO − n∞(V ))

τ(V )
. (2.8)
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Thus the time dependence of the applied current provides a direct measurement of the
gated current at a Þxed voltage.

To carry out a voltage clamp measurement like this it is necessary to block all but a
single type of current. While this is not always possible, speciÞc toxins and pharmacol-
igical agents have proven useful. For example, tetrodotoxin (TTX) from the puffer Þsh
selectively blocks the voltage gated Na+ in the squid giant axon whereas charybdotoxin
(CTX) and apamin selectively block different Ca2+ activated K+ channels.

It is not difficult to simulate a voltage clamp measurement using Eqn. (2.6) and
Eqn. (2.8). However, to carry out either an experimental measurement or a simulation,
a consistent set of electrical units must be used. As we have seen, the standard unit
for membrane potential is millivolts (mV) and because the characteristic times for
voltage dependent gates, τ(V ) is milliseconds (ms)(see Exercise (??)), this is taken
as the standard unit of time. For typical cells a whole cell current is picoamperes (1
pA = 10−12 A), which we use as the standard unit for current. According to the left-
hand-side of Eqn. (2.7), if current is measured in pA, then the capacitance must be in
picofarads (1 pF = 10−12 F) (since the units of dV/dt are volts/second). Recalling the
expression for the gated current on the right-hand-side of Eqn. (2.7), it follows that
the conductance, g, must be in nanosiemens (1 nS = 10−9 S = 109 Ohm), since the
units of V −Vrev are millivolts. This standard set of units is summarized in Table (??).
An alternative consistent set of units uses current in femtoamperes (1 fA = 10−15 A),
conductance in pS, and capacitance in fF (see Exercise (??)).

To simulate a voltage clamp experiment, we have used the XppAut Þle in Exercise
(??) to solve Eqn. (2.8) and plot the resulting current in Eqn. (2.6). Fig. (2.3A) simulates
a typical set of experiments in which the membrane potential is clamped at a holding
potential (-60mV in Fig. (2.3)), is then changed to various test potentials for a Þxed
interval (40ms), and then returned to the holding potential. The value of the holding
potential generally is chosen so that there is little or no current throught the channel.
This greatly simpliÞes the interpretation of the current at the test voltages (see Exercise
(??)). Fig. (??A) shows the current that develops during this protocol for 5 test voltages,
Vtest. The increase in current when the potential is clamped at the test values is governed
by the exponential increase of nO with characteristic time τ(Vtest). When the potential is
clamped again at the holding potential, the resulting current is called the tail current. Its

Table 2.2 Consistent Electrical Units

Name (Symbol) Units Abbreviation

voltage (V ) 10−3 volt mV

time (t) 10−3 second ms

conductance (g) 10−9 siemens nS

capacitance (C) 10−12 farad pF

current (I) 10−12 ampere pA
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decline is also exponential, but since V = −60mV during this period, the characteristic
time is now τ(−60mV ).

Fig. (2.3A) gives a plot of the steady state current as a function of the test voltage.
According to Eqn. (2.6) it can be expressed as I(V ) = gf∞(V )(V − Vrev). Thus for an
activating current like that in the simulations, when V is large enough f∞(V ) ≈ 1 and
the current is a linear function of V . The curvature in Fig. (??) at lower voltages is
caused by the shape of the activation function, f∞(V ). In the jargon of circuit theory,
currents like this are said to rectify. The delay in the onset of the maximum current,
which is determined by the value of τ(V ), has lead to channels like the one simulated
in Fig. (2.3B) being referred to as delayed rectiÞers.

2.4.2 The Hodgkin Huxley model

We did not discuss the form or source of the voltage and time dependence for the com-
putational voltage clamp �experiment� in the previous section. The squid giant axon
model developed by Hodgkin and Huxley is empirical. That is, many voltage clamp ex-
periments were performed by Hodgkin and Huxley, and their data was Þt to expressions
that they incorporated into the model without consideration of an underlying model
of the channel gates. From their voltage clamp and other measurements, Hodgkin and
Huxley deduced that the sodium conductance involved two voltage-dependent gates, an
activation gate and an inactivation gate and that the potassium conductance had a sin-
gle activation gate. To account for these facts they represented the ionic conductances
in the following form:

gNa = ḡNam
3h (2.9)

gK = ḡKn
4, (2.10)

where the terms ḡ represent maximal conductances and m and n are the activation
gating variables and h the inactivation. These gating variables were postulated to satisfy
linear differential equations where the variables �relax� to voltage dependent values,
e.g. m∞(V ), that varied between zero and one with voltage-dependent time constants,
e.g. τm(V ).

Putting the ODEs for the gating variables together with Eqn. (2.5) gives the
equations for the Hodgkin-Huxley model:

CdV/dt = −ḡNam3h(V − VNa)− ḡKn4(V − VK) + Iapp
− ḡleak(V − Vleak) + Iapp (2.11)

dm/dt = −(m−m∞(V ))/τm(V ) (2.12)

dh/dt = −(h− h∞(V ))/τh(V ) (2.13)

dn/dt = −(n− n∞(V ))/τn(V ). (2.14)

Hodgkin and Huxley added the third conductance, ḡleak, to their voltage equation to
account for a small, voltage-independent conductance that they attributed to a �leak�
in the membrane, possibly through their microelectrode. The nonlinear terms in Eqn.
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Figure 2.4 Panel A: The solution of the Hodgkin-Huxley equations for three different initial values of
the membrane potential and no applied current. When the initial value exceeds ca. -59mV, an action
potential is produced. Panel B: Continuous spiking occurs under the same conditions with an applied
current Iapp = 15. Made with hh.ode

(2.11) are obvious in the activation and inactivation gates. Not so obvious are the
nonlinearities in Eqn. (2.12) -Eqn. (2.14); however all the voltage-dependent terms in
those equations are nonlinear functions of V as well.

2.4.3 Solving the Hodgkin-Huxley Equations

It is not difficult to solve the Hodgkin-Huxley equations with XppAut. In this case
the input Þle has more lines and one must be careful to choose a suitable numerical
method of solution, but otherwise the proceedure is the same. Using parameters and
functional forms for the Hodgkin-Huxley equations taken from the XppAut tutorial, it
is not difficult to construct the appropriate input Þle, which is called hh.ode.

#hh.ode: an XppAut file for the Hodgkin-Huxley equations

#time in msec and voltage in mV
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#the initial conditions

init V=-65,m=0.052,h=0.596,n=0.317

#the parameters

param VNa=50,VK=-77,VL=-54.4,gNa=120

param gK=36,gL=0.3,C=1,Iapp=0

#time constants and steady state functions for gating variables

taum(V)=1/(0.1*(V+40)/(1-exp(-(V+40)/10))+4*exp(-(V+65)/18))

minf(V)=(0.1*(V+40)/(1-exp(-(V+40)/10)))*taum(V)

tauh(V)=1/(0.07*exp(-(V+65)/20)+(1/(1+exp(-(V+35)/10))))

hinf(V)=0.07*exp(-(V+65)/20)*tauh(V)

taun(V)=1/(0.01*(V+55)/(1-exp(-(V+55)/10))+0.125*exp(-(V+65)/80))

ninf(V)=(0.01*(V+55)/(1-exp(-(V+55)/10)))*taun(V)

#the equations

dV/dt=(-gNa*m^3*h*(V-VNa)-gK*(V-VK)*n^4-gL*(V-VL)+Iapp)/C

dm/dt=-(m-minf(V))/taum(V)

dh/dt=-(h-hinf(V))/tauh(V)

dn/dt=-(n-ninf(V))/taun(V)

done

Notice that an alternative way of indicating the intial conditions has been used in the
line that begins with init. Also in this model functions of the voltage have been deÞned
for use in the gating equations. As described in the XppAut tutorial, Þxed quantities
could have been used in these formulae instead. For example, it could be written:

dm/dt=-(m-minf)/taum

taum=1/(0.1*(V+40)/(1-exp(-(V+40)/10))+4*exp(-(V+65)/18))

minf=(0.1*(V+40)/(1-exp(-(V+40)/10)))*taum}

where minf and taum are Þxed quantities that are evaluated once during each time step
before the right hand sides of the equations. It is important not to deÞne minf before
taum, however, since Þxed quantities are evaluated in the order in which they appear.
Reversing the order would mean that in evaluating minf the value of taum from the
previous time step would be used.

To solve the Hodgkin-Huxley equations with hh.ode and XppAut, the Runge-Kutta
method has been used with a time step of 0.05. These are the defaults in XppAut, and
it is easily checked that reducing the time step to 0.01 gives no noticeable change in
the results. Fig. (2.4) shows several simulations that can be made with these equations.
The top panel shows calculations with Iapp = 0, but with V (0) = −65, -60, and -57mV.
The steady state for the voltage with these parameters is clearly -65mV; however, if the
initial value of V exceeds about -59mV, then the equations produce an action potential
spike. This is an all-or-none response that requires an initial deviation of the voltage
exceeding a threshold. Action potentials are an important feature of nerve conduction
and we will explore the mechanistic features that underlie them in Chapter 3.
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The Hodgkin-Huxley equations can also produce repetitive Þring of action po-
tentials. This is illustrated in the lower panel of Fig. (2.4). The parameters in that
simulation are identical to those in the upper panel, except that Iapp = 15. The tran-
sition from an excitable membrane that can produce isolated action potentials to one
that can support repetitive Þring is an example of a bifurcation.

One of the remarkable aspects of Hodgkin and Huxley�s work is that their model
was developed without a molecular understanding of the mechanism. That is, they had
no mechanistic cartoon to guide their modeling. In fact, it required almost thirty years
of intensive research to formulate a realistic cartoon of the mechanisms underlying the
ionic currents in cells. Although Hodgkin and Huxley justiÞed these expressions on
empirical grounds, it is possible to derive the gating expression used in the Hodgkin-
Huxley model using mechanistic models of the channels similar to those in Chapter
(1). While it remains a seminal accomplishment in the history of physiology, the HH
model is complicated and not amenable to the phase plane methods of analysis that
we will use here to understand dynamical electrical behavior in cells. As we shall see,
it is possible to combine gated channels to derive much simpler models of neuronal
Þring that provide a more intuitive understanding of the mathematical structure of the
underlying mechanisms.

2.4.4 The Patch Clamp

The time course of voltage changes in a whole cell is the result of the average behav-
ior of many individual channels. Our understanding of individual channel gating comes

PULL
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Figure 2.5 Four methods of measuring electrical responses in cells with the patch clamp technique.
Taken from B. Hille, Ionic Channels of Excitable Membranes, 2nd Ed., Sinauer, 1992, pg. 89.
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Figure 2.6 On cell patch clamp measurements of currents in T-type calcium channels. The upper panels
are currents measured in a single channel at -20mV. The lower panel is the average of several hundred such
records, which shows rapid activation followed by slow inactivation of the average current. Taken from B.
Hille, Ionic Channels of Excitable Membranes, 2nd Ed., Sinauer, 1992, pg. 103.

from experiments using the patch clamp technique, which is illustrated in Fig. (2.5).
In the patch technique, a pipette with an opening of ca. 1 µm containing an internal
solution and a wire for electrical measurements is used to make a high resistance seal
(�gigaOhm� = 108 Ohm) onto a cellular membrane. In the on-cell patch conÞguration
all the current into the pipette ßows directly through the patch, which can contain as
few as one or two ion channels. In the whole cell conÞguration, sucking on the pipette
breaks the patch and allows the current through the tip now comes from the entire cell.
In a perforated patch conÞguation, an ionophore such as nystatin is introduced into the
pipette in order to allow whole cell-like access while minimizing exchange of the cell
contents with the contents of the pipette. Alternatively, patches of membrane can be
torn off, leading to inside-out and outside-out patches that can be studied in
isolation. Fig. (??) shows typical measurements from an on-cell patch of predominately
T-type calcium currents in guinea pig cardiac ventricular cells. These currents were
evoked when the membrane potential, which was previously clamped at -70 mV, was
rapidly changed to -20 mV. The small current deviations in the negative direction in-
dicate the opening of individual T-type channels. Statistically, two types of states of
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the channel are observed: a closed state with no current ßowing and an open state, in
which the unitary current is ca. 10−12 amperes (1 picoampere or 1 pA). As we discuss
in Chapter 10, transitions between these states are random in time. However, as illus-
trated in the bottom panel of Fig. (??), the average of several hundred records produces
a behavior that shows a rapidly activating current, followed by slower inactivation.

Analysis of the these currents leads to a model of the T-type calcium current that
has two kinds of voltage-dependent gates: an activation gate, in which the open state
is favored by more positive potentials (termed depolarization) and an inactivation gate,
in which the open state is favored at more negative potentials (hyperpolarization). This
type of model simulates the average behavior of a collection of ionic channels. It provides
a good representation for the behavior of a whole cell with numerous channels in the
plasma membrane.

2.4.5 Models of voltage dependent Gating

The mathematical description of both activation and inactivation gates is based on the
mechanism

C ↔ O, (2.15)

which was presented in Chapter (1). What distinguishes a voltage dependent gating
mechanism from a passive mechanism is the voltage dependence of the rate constants.
Recall that the fraction of open channels, nO, satisÞes the differential equation:

dnO
dt

= −(k− + k+)(nO − k+

(k− + k+)
)

=
−(nO − n∞)

τ
. (2.16)

Because ionic channels are composed of proteins with charged amino acid side chains,
the potential difference across the membrane can inßuence the rate at which the tran-
sitions from the open to closed state occur. According to the Arrhenius expression for
the rate constants, the membrane potential, V , contributes to the energy barrier for
these transitions and the rate constants will have the form:

k+(V ) = exp(−aV )k+o and k−(V ) = exp(−bV )k−o , (2.17)

where k+o and k
−
o are independent of V . Substituting Eqn. (2.17) into the expressions

for n∞ and τ (cf. Eqn. (2.16))and rearranging, we obtain

n∞(V ) =
1

exp(−(V − Vo)/So) + 1 (2.18)

τ(V ) =
exp(aV )

k+o
· exp(−(V − Vo)/So)
exp(−(V − Vo)/So) + 1 , (2.19)

where Vo and So are constants that can be expressed in terms of a, b, k
+
o , and k

−
o

(see Exercise (??)). Both of these expressions can be rewritten in terms of hyperbolic
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Figure 2.7 Panel A: Equilibrium open fractions (n∞) for an inactivation gate (Vo = −50mV and
So = −2mV) and activation gate (Vo = −25mV and So = 5mV) as a function of voltage. Panel B: The
characteristic relaxation times, τ , for the activation and inactivation gates in Panel A as a function of
voltage, which are peaked around the values of Vo and have a width determined by So.

functions, which

n∞(V ) = 0.5(1 + tanh((V − Vo)/2So)) (2.20)

τ(V ) =
exp(V (a+ b)/2)p

k+o k
−
o cosh((V − Vo)/2So)

(2.21)

Recall that n∞(V ) gives the fraction of channels open at equilibrium at the membrane
potential, V . Thus for a Þxed value of V it gives the open fraction after transient
changes in nO have damped out with a characteristic time τ(V ).

An activation gate tends to open, whereas an inactivation gate tends to close, when
the membrane is depolarized . Whether a gate activates or inactivates with depolariza-
tion is determined by the sign of So: a positive sign implies activation and a negative
sign inactivation. This is illustrated in Fig. (2.7A), where the dependence of f∞ on
V has been plotted for an activation gate with Vo = −25mV and So = 5mV and an
inactivation gate with Vo = −50mV and So = −2mV, i.e.,

f∞(V ) =
1

exp(−(V + 25)/5) + 1 and f∞(V ) =
1

exp((V + 50)/2) + 1
. (2.22)

Notice that the magnitude of So determines the steepness of the dependence of f∞ on
V , whereas the value of Vo determines the voltage at which half of the channels are
open. Panel B in Fig. (2.7) illustrates the dependence of τ on V for these activation
and inactivation gates assuming that a = −b and pk+o k−o = 0.2 ms−1. The data for
plotting all four of these functions was obtained using the Þle �plotting.ode� in XppAut
described in ???.
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Figure 2.8 Depolarization-induced electrical activity in giant barnacle muscle Þbers as measured by C.
Morris and H. Lecar (Biophys. J. 35:193 (1981), Fig. 4A). The arrows indicated the start and end of the
depolarizating currents.

2.5 Giant Barnacle Muscle: The Morris-Lecar Model

Application of a depolarizing current to barnacle muscle Þbers produces a broad range
of electrical activity. Fig. (2.8) illustrates the sort of oscillations that are induced by
current injections of 180, 540, and 900 µAcm−2 into these Þbers. Careful experimental
work by a number of research groups has indicated that the giant barnacle muscle Þber
contains primarily voltage gated K+ and Ca2+ currents along with a K+ current that
is activated by intracellular Ca2+, a so-called KCa current. Neither of the voltage gated
currents shows signiÞcant inactivation in voltage clamp experiments. Thus the trains of
depolarization-induced spikes in Fig. (??) must occur via a mechanism different from
that proposed by Hodgkin and Huxley for the squid giant axon.

>From Artie:

Morris-Lecar tauw is defined as:

phi/cosh()

In the Rinzel-Ermentrout chapter in Koch and Segev, it is

1/(phi*cosh())

That is, phi is a rate ("temperature fudge factor") not a time. We need to

be consistent because several chapters are using ML in various forms
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chris changed eqns to match rinzel and Ermentrout. Need to verify later
dependencies

Morris and Lecar proposed a simple model to explain the observed electrical be-
havior of the barnacle muscle Þber. Their model involves only a fast activating Ca2+

current, a delayed rectiÞer K+ current, and a passive leak. They tested the model
against a number of experimental conditions in which the interior of the Þber was pur-
fused with the Ca2+ chelator EGTA in order to reduce activation of the KCa current.
Their simulations provide a good explanation of the their experimental measurements.
The model translates into two equations:

C
dV

dt
= −gCam∞(V )(V − VCa)
− gKn(V − VK)− gL(V − VL) + Iapp (2.23)

dn

dt
=
φ(n∞(V )− n)

τ(V )
(2.24)

Here n is the fraction of open channels for the delayed rectiÞer K+ channels and the
conductances gL, gCa, and gK are for the leak, Ca

2+ and K+ currents, respectively. The
functions

m∞(V ) = 0.5[1 + tanh((V − V1)/V2)] (2.25)

n∞(V ) = 0.5[1 + tanh((V − V3)/V4)] (2.26)

τ(V ) = 1/ cosh((V − V3)/V4). (2.27)

are the equilibrium open fraction for the Ca2+ current, the K+ current, and the activa-
tion time for the delayed rectiÞer. Representative parameters are given in Table (??).
Also note that here m is not assumed to be a dynamic variable. The reason for this
is that we have assumed that the dynamics for m are �fast enough� that they can be
assumed to always be in steady state. The idea of fast and slow processes is arguably
one of the most important concepts in modeling. Although we make the assumption
without argument here, its implications in modeling are addressed fully in Chapter
(??), and in a more mathematical context in Chapter (??).

The Morris-Lecar equations can readily be solved with XppAut. Using the parame-
ters and initial conditions given in Exercise (??) we have solved the equations for four
values of the applied current, Iapp, and plotted the time series for V (t) in Fig. (2.9A).
In the absence of applied current the equations have a stable steady state near -60mV.
Although increasing Iapp to 60pA produces a brief transient action potential, the effect
of the depolarization simply produces a steady state near -35mV. Depolarization with
a current of 150pA, on the other hand, produces a steady train of action potentials
reminiscent of those observed experimentally in Fig. (??). In the presence of depo-
larizating currents much greater than this, the simulated barnacle cell can no longer
sustain continuous spiking as shown at Iapp = 300pA.
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Figure 2.9 Panel A: Voltage records
for the Morris-Lecar equations using the
parameters in Exercise (??) and the indi-
cated applied currents. Oscillations occur
at Iapp = 150pA. Panel B: The phase
plane for the Morris-Lecar model for Iapp =
150pA. The V -nullcline is the long-dashed
line and the n-nullcline is the dot-dashed
line. The heavy line is the limit cycle corre-
sponding to the oscillation in Panel A, and
the lighter lines are short trajectories that
circulate in the counterclockwise direction
toward the stable limit cycle. Panel C:A
bifurcation diagram that catalogues the dy-
namical states of the Morris-Lecar model as
a function of Iapp with the other param-
eters Þxed. The maximum and minimum
of V on the limit cycle are represented
by the heavy lines Compare the values for
Iapp = 150pA (long-dashed line) with the
voltage record in Panel A.
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2.5.1 Phase Plane Analysis

The mechanistic features underlying continuous spiking and action potentials can be
understood more easily by plotting the solutions in the V -n phase plane. This is shown
in Fig. (??) for Iapp = 150pA, which leads to the pattern of repetitive spiking. Both the
V -nullcline, which has the inverted �N� shape, and the n-nullcline, which is given by
n∞(V ), are shown along with a number of representative trajectories. The trajectories
circulate around the steady state in a counterclockwise direction as indicated by the
velocity vectors. The intersection of the nullclines indicated by the Þlled circle is an
unstable steady state with eigenvalues λ± = 0.265 and 0.0221 (as determined using
the Sing pt option in XppAut). This is evident from the two trajectories that start
nearest to the steady state, both of which diverge from it. Indeed all of the trajectories
converge towards a unique, closed trajectory indicated by the heavy line. This trajectory
is called a limit cycle since it is the cyclic curve to which all the neighboring trajectories
converge. A limit cycle cannot occur if the differential equations are linear, in which case
the nullclines are straight lines. A formal discussion of these issues are covered in
Appendix (A) and should be referenced as necessary here. The only cycles that
are possible for linear equations occur around neutrally stable steady states (cf. Fig.
(2.9)), and even then the cycles are not unique (Exercise (??)).

The simulations in Fig. (2.9) show that limit cycles occur only for certain parameter
values and that the oscillations surround an unstable steady state. If only a single
parameter, such as Iapp, is changed, then by making small changes and testing the
stability of the steady state it is possible to locate speciÞc values at which the stability
of the steady state changes. Such points where the character of the solution changes
with a change in a parameter are called bifurcation points. Numerical algorithms have
been developed that allow investigation of bifurcations to be done automatically. As
we mentioned brießy in Chapter (1) Auto, which is one of the more useful of these
algorithms, has been incorporated into XppAut.

Although we defer full discussion of bifurcations and bifurcation diagrams to Chap-
ter (??), we have used the Auto option in XppAut to produce a bifurcation diagram
for the Morris-Lecar model in Fig. (2.9C). In Fig. (2.9C), the characteristic values of
the membrane potential are plotted on the ordinate as a function of Iapp. The thin
full and dashed lines are the steady state values of V for each value of Iapp, with the
full lines representing stable steady states and the dashed lines unstable states. Thus
Iapp ≈ 98pA and 238pA are bifurcation points where the stability of the steady state
changes. Near these points two new dynamical features appear: a stable limit cycle
and an unstable limit cycle. The bifurcation diagram summarizes this by recording the
maximum and minimum values of V on the limit cycles (heavy full line for stable and
broken dashed line for unstable). For example, at Iapp = 150pA the points on the heavy
line correspond to the maximum and minimum of the spikes in Fig. (2.9A). This type of
bifurcation is called a subcritical Hopf bifurcation. The mathematical properties of Hopf
bifurcations are treated in more detail in Chapter (??). The existence of an unstable
limit cycle should be no more surprising than the existence of unstable steady states.
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Figure 2.10 Panel A: The K+, Ca2+, and total current (ICa + IK + Ileak − Iapp) when n = 0.35. The
states 1 and 3 are stable steady states and state 2 is unstable as indicated by the velocity vectors. Panel
B: The phase plane for the Morris-Lecar model for Iapp = 150pA, cf. Fig. 3.6B, except τ(V ) has been
increased by a factor of ten. The values n = 0.468 and 0.251 correspond to the maximum and minimum
of the V -nullcline. The points 1, 2, and 3 at n = 0.350 are the steady states in Panel A. Inset shows the
voltage record for a single spike.

It corresponds to a closed trajectory away from which all neighboring trajectories di-
verge. Exercise (??) illustrates a simple way to locate the unstable limit cycles for the
Morris-Lecar model.

2.5.2 Why Do Oscillations Occur?

If the following three conditions on the Morris-Lecar equations hold, then oscilla-
tions will occur: 1) the V nullcline has the inverted N shape like that in Fig. (2.9B);
2) a single intersection of the V - and n-nullclines occurs between the maximum and
minimum of the N and 3) the rate of change of V is much faster than n. All three
conditions are met for the parameter values giving rise to oscillations in Fig. (2.9). The
importance of the slow change in n, i.e., the �delay� of the delayed rectiÞer, can be seen
by examining the trajectories in Fig. (2.9B). If the rate of change of n were fast with
respect to V , then the trajectories would not depolarize and hyperpolarize rapidly as
they do in Fig. (??), but rather would bend towards the steady state, which would be
stable. This is tested using XppAut by decreasing the value of the characteristic time
for relaxation of n by decreasing the value of the parameter φ (see Exercise (??)).

It is easy to see why oscillations occur when the rate of change of V is very much
faster than n and the nullcline have the shape in Fig. (2.9). In this case, we can treat
changes in V under the assumption that n is constant. This describes changes on the
�fast� time scale. Changes on the �slow� time scale of the delayed rectiÞer are then
determined by changes in n. On the fast time scale we need only to consider the voltage
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equation with n Þxed:

C
dV

dt
= −gL(V − VL)− gCam∞(V )(V − VCa)− gKn(V − VK) + Iapp. (2.28)

Since only the voltage is changing on this time scale, we can examine its dynamical
behavior using the one dimensional phase portrait, rather than a phase plane. This is
shown in Fig. (2.10A), where the total current, which is proportional to the the rate
of change of V , is plotted along with the Ca2+ and K+ currents for n = 0.35 and
Iapp = 150pA. The total current vanishes at three points, which are the steady states
for the voltage when n is Þxed. States 1 and 3 are stable and state 2 is unstable, as
indicated by the velocity vectors in the Þgure. Note that at state 1 the membrane is
polarized and the outward K+ current dominates the Ca2+ inward current, whereas the
opposite holds true at state 3. As we shall see, the oscillations can be thought of as
transitions back and forth between the polarized and depolarized states, driven by slow
changes in activation of the delayed rectiÞer current.

Fig. (2.10A) also explains why the V -nullcline in the Morris-Lecar model has the
inverted N shape: The K+ and leak current exceed the inward Ca2+ current at polarized
voltages between states 1 and 2, whereas the Ca2+ current exceeds the other currents
between states 2 and 3. This voltage-dependent competition between inward and out-
ward currents leads to a maximum and minimum in total current and, therefore, the
inverted N shape for the nullcline.

The three steady states of the voltage also can be found graphically in the phase
plane by locating the intersection of the line n = 0.35 with the V -nullcline. This is
shown in Fig. (2.10B). It is clear from the Þgure that if n exceeds 0.468 (the maximum
on the right branch of the V -nullcline), then the voltage has only a single polarized
steady state on the left branch of the V -nullcline. Similarly if n is smaller than 0.251
(the minimum on the left branch), then on the fast time scale the voltage has only a
single depolarized steady state on the right branch. For 0.251 ≤ n ≤ 0.468 two stable
steady states and one unstable state occur and the voltage is said to be bistable.

To understand how bistability on the fast time scale leads to oscillations, we need to
understand how n changes on the longer time scale. Assume that initially the membrane
is polarized at state 1 in Fig. (2.10B) with n = 0.35. Because this point is above the
n-nullcline, n will decrease. As n decreases, V will stay close to the V -nullcline because
it relaxes rapidly to the closest steady state value. Thus the trajectory follows the
polarized branch, as indicated by the heavy line, until the minimum at n = 0.251 is
reached. Beyond the minimum, however, stable polarized states no longer exist and V
rapidly relaxes to the only remaining steady state, which is on the depolarized branch of
the V -nullcline. During the depolarization, however, the n-nullcline is crossed. Thus on
the depolarized branch, n increases�tracking the V -nullcline upward until the maximum
at n = 0.468 is reached and the membrane rapidly repolarizes.

The abrupt transitions from the polarized to depolarized branch and back again
have lead to the name relaxation oscillator for systems of equations that have well-
separated time scales. For the parameters in Fig. (??). the Morris-Lecar model is not
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Figure 2.11 Excitability in the Morris-Lecar model for Iapp = 60pA. Panel A: An initial deviation of the
voltage to -22mV relaxes rapidly to the steady state voltage, whereas a deviation to -17mV produces an
action potential. Panel B: The trajectories in Panel A represented in the phase plane. When V changes
much faster than n, the location of the V -nullcline (long-dashed line) sets the threshold for action potential
spikes.

a relaxation oscillator. However, when the characteristic time for n is increased by
a factor of 10, the limit cycle (heavy line in Fig. (2.10B)) closely approximates that
for a relaxtion oscillator. If the characteristic time were increased sufficiently�or the
characteristic time for V were decreased sufficiently�then the trajectory would coincide
with the bistable portions of the V -nullclines and the rapid excursions of the voltage
would occur precisely at n = 0.251 and 0.468. The inset in Fig. (??B) shows a single
voltage spike that illustrates the rapid upstroke and downstroke for the limit cycle in
the Þgure. The inset also illustrates that the shape of the depolarized and polarized
portions of the spike reßects the shape of the two branches of the V -nullcline.

2.5.3 Excitability and Action Potentials

Another dynamical feature of the Morris-Lecar model is excitability. The term �ex-
citable� has generally been a bit fuzzy in its deÞnition and has varied from publication
to publication. Excitability can be precisely characterized in a spatial context, although
in non-spatial settings, the deÞnition is not as clear - hopefully this will be clear from
the following explanation. An �excitable system� is one which has a single globally sta-
ble attracting rest state, but in which there exists a threshold perturbation strength for
which the system supports an undiminishing propogating signal through the medium.
In models which do not incorporate space, the concept is less clear since the propoga-
tion largely depends on the spatial coupling in addition to the dynamics at each spatial
location. A useful working deÞnition is that a steady state is excitable when small per-
turbations return to the steady state, but larger (i.e. above a threshold) perturbations
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cause large transient deviations from away from the steady state. An example of this
is shown in Fig. (2.11A), where the time course of the voltage with an applied current
of 60pA and initial conditions of n(0) = nss = 0.0685 and either V (0) = −22 or -17mV
are used. For V (0) less than about -18.1mV the voltage increases only slightly before
it decreases monotonically to its steady state value of ca. -37mV. For larger initial de-
viations, like that for V (0) = −17mV, the voltage increases dramatically producing an
action potential spike before returning to steady state.

The explanation for excitability can be understood most easily in the phase plane. In
Fig. (2.11B) we have plotted the trajectories for the two initial conditions in Fig. (2.11A)
along with the two nullclines. The trajectories for initial conditions V (0) ≤ −22mV
start at points in phase space above the V -nullcline and below the n nullcline. This
implies that the initial velocity vector, and therefore, the initial trajectory, points in
the direction of smaller potentials and larger values of the activation of the delayed
rectiÞer K+ current. Thus the voltage begins to decrease and continues to do so since
the K+ current activates as n increases. This contrasts with the trajectory that starts at
V (0) = −17mV, for which the initial velocity vector points in the direction of increasing
voltage. Even though n is increasing in this region, which is also below the n-nullcline,
the rate of increase of voltage exceeds that of n and the trajectory moves to higher
voltages until it crosses the V -nullcline and begins to decrease.

The threshold value of V (0) above which action potentials occur depends on the
shape of the nullclines and the rate of activation of n. However, it is close to the point
where a line drawn parallel to the V axis at nss crosses the V -nullcline. It is not hard
to check that it will be exactly at that point if n changes much more slowly than the
voltage (cf. Exercise (??)).

Figure 2.12 Examples of Voltage-Freqency plots for the Morris-Lecar model with parameters that result
in Type I dynamics (Panel A) and Type II dynamics (Panel B). Taken from Rinzel and Ermentrout. NEED
TO REMAKE FIGS IN POSTSCRIPT
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2.5.4 Type I vs Type II spiking

Many investigators are now interested in applying biophysical models of neurons and
other spike generating mechanisms to the study of information transfer using infor-
mation theoretic measures. It is particularly important, therefore, that the dynamical
behavior of a model be characterized over the space of parameters and that the charac-
teristics of the spike generating model match the intended use. Both the Hodgkin Huxley
and Morris Lecar models produce trains of action potentials when sufficiently depolar-
ized. Muscle Þber and axons innervating muscle Þber other examples? are examples
of situations where a strong, consistent signal is required. By varying the depolarizing
current, we can see that depolarization beyond threshold results in rapid oscillations
whose frequency does not vary signiÞcantly as the depolarizing stimulus is increased.
(show Þgure). This is an example of a type II oscillator. Many neurons, including the
ubiquitous cortical pyramidal cell, exhibit Þring properties that are fundamentally dif-
ferent from the Type II oscillator. Frequency (but not amplitude) of spiking in these
cells is more dependent on the input current, and, most importantly, models of these
cells can produce arbitrarily low frequencies of oscillations. These models are classiÞed
as type I oscillators. The Morris-Lecar model is particularly interesting because it can
exhibit Type I or Type II behavior, depending on the parameters that are chosen. Ex-
amples of Voltage-Frequency plots for the Morris-Lecar model in these two regimes are
shown in Fig. (2.12). The Morris-Lecar Type II oscillator or the Hodgkin Huxley axon
model would not be appropriate for the study of subtle aspects of information transfer.
We have seen that Type II spiking results from a Hopf bifurcation as input current
is increased. Type I spiking results from a saddle-node bifurcation. The difference be-
tween these two bifurcations is discussed in Appendix (??), and we explore saddle node
bifurcations in the Morris-Lecar model in Exercise (??). We also note that there are
other levels of complexity for spikeing models. Models of bursting neurons, which Þre
trains of action potentials separated by periods of quiescence, require additional slow
variables. We do not discuss these models here.

2.5.5 Phase and Phase Response Curves

Maybe add section on this as appropriate.

2.6 Summary

The dynamical features of �fast� and �slow� variables with either N-shaped or inverted
N -shaped nullclines are common to many biological mechanisms at the cellular level.
In addition to producing oscillations in the barnacle muscle and the retinal ganglion
cell, the same dynamical structures appear in mechanistic models of insulin secretion
(Chapter (??)) and Ca2+ oscillations (Chapter (??)). In each of these models the na-
ture of the fast and slow variables are determined by processes that are peculiar to
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each mechanism. This dynamical paradigm appeared Þrst in cellular neuroscience in
simplications of the Hodgkin-Huxley equations by FitzHugh and later Nagumo. The
simplest version of this type of system involves a linear nullcline for the slow variable
and a cubic nullcline, which has the inverted N shape, for the fast variable. Equations
of this type (see Exercise (??)) are often given the generic name FitzHugh-Nagumo (or
FH-N) models.

Suggestions for further reading

� Ionic Channels of Excitable Membranes. Bertil Hille.
� Analysis of Neural Excitability and Oscillations. Rinzel and Ermentrout.
� ...

2.7 Appendix: Plotting Functions with XppAut

It is possible to evaluate and plot functions using XppAut, thus extending the function-
ality of the program. The .ode Þles that do this rely on solving the equation dx/dt = 1,
i.e., x(t) = x(0) + t. Thus any function, f(x), that is declared as an auxiliary function
can be plotted at the sequence of points x(0), x(0)+ t1, . . . , x(0)+ tn where 0, t1, . . . , tn
are the times at which the solution to dx/dt = 1 are recorded in the DataViewer.
Choosing any of the methods for solving the ODE in the nUmerics menu that use a
Þxed time step gives t1 = dt, t2 = 2dt, . . . , tn = ndt. Thus by choosing the time step
(Dt) and the length of time to integrate (Total) under the nUmerics menu, it is possi-
ble to plot representative values of f(x) in a Graph window in XppAut. The Þle below
illustrates the basic form of the plotting Þle (�plotting.ode�) that was used to obtain
the data for Fig. (??).

#plotting.ode

#.ode file for plotting the functions in Figure () where

#x is the dummy variable for plotting the auxiliary functions.

#initial value of x

x(0)=-80

#the equation

dx/dt=1

#the equilibrium activation and inactivation

#functions to plot

aux ninfact=1/(exp(-(x+25)/5)+1)

aux ninfinact=1/(exp((x+50)/2)+1)

#the characteristic times to plot

aux tauact=5/cosh((x+25)/2*5)

aux tauinact=5/cosh(-(x+50)/2*2)

done
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The plots for Fig. (??) were made using this Þle with the Euler method, a time step of
0.25, and a total time of 140. This produced values for the function at 561 values of x
ranging from -80 to +60.

2.8 Exercises

1. Show that the constants So and Vo in Eqs. (2.18) and (2.19) can be written as:

So =
1

a− b and Vo =
ln(k+o /k

−
o )

a− b . (2.29)

2. Use the results in Exercise 2.1 to verify that the expressions in Eqs. (2.20)-(??) are
correct. Note that a special case of Eqn. (2.21) when a = −b is

τ(V ) =
1p

k+o k
−
o cosh((V − Vo)/2So)

(2.30)

[Hint: recall that tanh(x) = (ex − e−x)/(ex + e−x) and cosh(x) = ex + e−x.]
3. Using Eqn. (2.7) show that mV, ms, pS, fF, and fA form a consistent set of electrical
units.

4. It is possible to estimate a characteristic time for the relaxation of the membrane
potential using Eqn. (2.7). When the channel is completely open, show that the
equation can be written:

dV/dt = −(V − Vrev)/�τ + Iapp/C (2.31)

where �τ = g/C. Show that �τ is the characteristic time for relaxation of the voltage
to a steady state value V ss = Vrev + Iapp/g.

5. For biological membranes a typical capacitance per unit area is 1 µFcm−2 whereas
conductances per unit area are in the range 10−4 − 10−3 Scm−2. Using these facts
and Exercise (??), show that typical relaxation times for the membrane potential
are in the range of 1-10 ms.

6. Use the XppAut Þle below to reproduce the voltage clamp simulations given in Fig.
(??) for the voltage activated channel described by Eqn. (2.8) and Eqn. (2.6).

#voltclamp.ode

param V=-60,Vo=-25,So=5,A=10,g=2,Vrev=-65

#initial condition

nO(0)=0.0

#activation functions

ninf=1/(exp(-(V-Vo)/So)+1)

tau=A/cosh((V-Vo)/(2*So))

#equation for activation

dnO/dt=-(nO-ninf)/tau

#auxiliary variables

#current



52 2: Voltage Gated Ionic Currents

aux i=g*nO*(V-Vrev)

#maximum current

aux imax=g*ninf*(V-Vrev)

#logarithm of relative current

aux lndi=ln((g*ninf*(V-Vrev)-g*nO*(V-Vrev))/(g*(V-Vrev)))

done

7. Use the analytical solution to Eqn. (2.8) to show that the time course of the rising
current when the voltage is clamped from the holding potential, Vholding, to the test
potential, Vtest, in Fig. (??A) has the form:

I(t) = g · (Vtest−Vrev) · [exp(−t/τ(Vtest))(n∞(Vhold)−n∞(Vtest))+n∞(Vtest)]. (2.32)
Since Vhold is chosen so that n∞(Vhold) ≈ 0, it follows that the rising current is given
by

I(t) = g · (Vtest − Vrev) · n∞(Vtest)(1− exp(−t/τ(Vtest))). (2.33)

Similarly show that the tail current can be approximated by

I(t) = g · (Vhold − Vrev) · n∞(Vtest) exp(−t/τ(Vhold)). (2.34)

8. Write an XppAut Þle suitable for solving the Morris-Lecar equations, (2.23)-(2.27),
for the parameter values VK = −84, VL = −60, VCa = 120, Iapp = 0, gK = 8, gL = 2,
gCa = 4, C = 20, V1 = −1.2, V2 = 18, V3 = 2, V4 = 30, φ = 25 and the initial
conditions V (0) = −60 and n(0) = 0.01 (in the standard set of units in Table 2.1).
Check your Þle against the one in the XppAut tutorial.

9. Use the XppAut Þle in Exercise (??) to solve the Morris-Lecar model for the four
values of Iapp given in Fig. 2.6A. Create a phase plane window in XppAut and use
the Nullcline option to draw the nullclines. Using the Initialconds/(M)ouse option
verify that there is a unique stable limit cycle. Compare your results with Fig. (??).
Use the Sing pts option to locate the steady state and to obtain its eigenvalues.

10. Use the XppAut Þle in Exercise (??) to convince yourself that an inÞnite number
of closed trajectories surround a neutrally stable steady state for a 2 × 2 system
of linear equations. [Hint: Use the Initialconds/(M)ouse option to click on different
initial conditions in the phase plane.]

11. Using the XppAut Þle in Exercise (??), show that the time constant of the delayed
rectiÞer in the Morris-Lecar model determines whether or not the steady state at
Iapp = 150pA is stable or unstable and also determines the maximum and minimum
values of the voltage on the limit cycle. For Iapp = 60pA check that the value of V (0)
above which action potentials occur is close to the point where a line drawn parallel
to the V axis at nss crosses the V -nullcline. Also verify that it will be exactly at
that point in the limit that n changes much more slowly than the voltage. [Hint:
Increasing the parameter φ increases the time constant for n.]

12. Explain how you could locate the unstable limit cycles near the bifurcation point
in the Morris-Lecar model in Fig. (??) by integrating the equations backwards in
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time. Use the XppAut Þle in Exercise (??) to do this by changing the signs of the
parameters φ and c for Iapp = 99pA. (Why does this work?) Verify that the steady
state is now unstable and that trajectories that converged to the stable limit cycle
in Fig. (??) now diverge from it.

13. The .ode Þle for the two variable retinal ganglion cell model discussed in Section
(??) is

#rgc2.ode

#two variable model of the retinal ganglion cell

#leak current

param gL=8,VL=-70

IL=gL*(v-VL)

#sodium current

param gNa=150,VNa=75

tauh=0.3+3.5*exp((-(V+50)^2)/500)

hinf=1/(1+exp((V+50)/6.5))

minf=1/(1+exp(-(V+20)/6.5))

INa=gNa*minf*h*(V-VNa)

#applied current

param mag=70,dur=200,lag=100

Iapp(t)= mag*heav(t-lag)*(1-heav(t-(lag+dur)))

#equations

param c=10

v(0)=-50

dv/dt= (-IL-INa+Iapp(t))/c

dh/dt=(hinf-h)/tauh

#auxiliary function

aux n=1-h

done

The Þle simulates a time-dependent applied current, Iapp(t), that is zero for 0 ≤ t ≤
lag and t ≤ lag + dur and has a magnitude of mag during the interval lag ≤ t ≤
lag+dur. This is accomplished using the Heaviside �step� function (written heav(x)
in XppAut), which is zero for x ≤ 0 and one for 0 ≤ x. Use this Þle to simulate
depolarizing currents of different durations and magnitudes and determine their
effect on the voltage.

14. Modify the .ode Þle for the RGC in Exercise 2.13 so that the applied current no
longer depends on time but is a parameter. Use this new .ode Þle to explore the
properties of the model in the phase plane for different values of the depolarizing
current.

15. Modify the .ode Þle in Exercise 2.14 so that n = 1 − h, instead of h, is the slow
variable. Plot the nullclines in an XppAut window and show that they have the
same form as in the Morris-Lecar model.
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16. The FitzHugh-Nagumo model is

dv/dt = v(a− v)(v − 1)− w + i (2.35)

dw/dt = bv − cw (2.36)

where 0 < a < 1, b, c, and i are parameters. Find analytic experssions for the v-
and w-nullclines and sketch the phase plane for i = 0. Create an XppAut Þle for
the FitzHugh Nagumo equations and explore their properties in the phase plane.
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CHAPT E R 3

Transporters and Pumps

Eric Marland and Joel Keizer

07-28

Ionic channels are not the only mechanism that cells use to transport impermeant
species across membranes. Cells have developed a great variety of transport proteins for
moving both ions and molecules from one cellular compartment to another. For example,
to maintain the concentration imbalance of Na+, K+, and Ca2+ across the plasma
membrane it is necessary to pump ions against signiÞcant concentration gradients. In
the case of Ca2+ ions the ratio of concentrations outside to inside is greater than 4
orders of magnitude (ca. 2mM outside and 0.1µM inside). In addition to pumps, there
are numerous speciÞc cotransporters and exchangers that allow ions and small molecules
to be transported selectively into internal compartments or out of the cell. Unlike ionic
channels, for which the driving force is a passive combination of electrical potential
and ionic concentration differences, most transporters and pumps expend considerable
energy. In red cells, for example, it has been estimated that nearly 15% of the ATP
that is produced through the metabolism of glucose is devoted to maintaining low
cytoplasmic Na+ and high cytoplasmic K+ concentrations via Na+/K+ pumps.

In this chapter we provide an overview of some of the mechanisms, other than
ionic channels, that cells use to pump and transport small molecules and ions. We
Þrst introduce the ideas behind passive transport, using a passive glucose transporter
(GLUT) as an example. We then introduce analytic, diagrammatic, and numerical
methods for calculating rates of transport and apply them to a simplÞed model of GLUT
transporter. Using the cotransport of glucose and Na+ as an example, we then discuss
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how to create models of transporters and how this transporter functions physiologically
in intestinal epithelial cells. A great deal is known about the kinetic steps involved in
the pumping of Ca2+ by Ca2+ pumps in internal stores, and we use this mechanism
to illustrate how phosphorylation by ATP drives the pumping mechanism. In the Þnal
section of the chapter we focus on the cyclic nature of these mechanisms and describe
additional transporters that operate via comparable kinetic cycles.

3.1 Passive Transport

We must be a little careful about what we call passive transport, since there is no free
lunch. The following example is not without its energy costs, but it uses background
thermal energy rather than the explicit energy in a particular molecule such as ATP.

Glucose is a six carbon sugar that is a major fuel for intermediary metabolism in
animals. It is derived from carbohydrates in the gut and is transported through ep-
ithelial cells in the intestines into the blood stream and thence to the brain, pancreas,
liver, muscle and other organs. There glucose is taken up and metabolized via gly-
colytic enzymes. Although uptake from the gut involves active co-transport of glucose
with sodium ions, peripheral tissues such as fat, muscle, and liver transport glucose
via a class of passive membrane transporters referred to as GLUT transporters. Since
glucose is a major energy source for cells�indeed, it is the only energy source for the
brain�understanding the rate of glucose transport into cells via GLUT is important
physiologically.

Four isotypes of GLUT transporters have been isolated, GLUT1-GLUT4, each of
which is prevalent in one or more types of tissue. GLUT2, for example, is found in pan-
creatic beta cells�the glucose-sensing cells that secrete insulin from pancreatic tissue�as
well as liver cells. Extensive kinetic experiments have lead to a cartoon description of
the steps involved in the tranport processes. The transitions of the transporter itself,
facing the inside of the cell to facing the outside of the cell, is driven by heat or thermal
ßuctuation. Thus the heat of the system and the concentration gradient of glucose and
the only driving forces in the system. Because no other energy is needed, it is called
passive transport. It is similar in this sense to diffusion, which we discuss in Chapter 6.

Panel A of Fig. (3.1) shows four different states of the transporter. State S1 has an
empty binding site for glucose exposed to the exterior of the cell. When glucose binds
to this state, the transporter makes a transition to state S2, with glucose bound and
facing the exterior. In S2, a glucose molecule is bound to the transporter, which is still
facing the exterior. State S3 is the state with the transporter then facing the interior.
When glucose dissociates from GLUT and ends up inside the cell, the transporter is
left in state S4. Finally, the cycle can repeat if S4 makes the conformational transition
to S1. All of these processes are reversible.

This kinetic �cartoon� is easily translated into a conventional kinetic model of the
sort often employed in biochemistry. Here the model takes the form of the diagram
in Panel B of Fig. (3.1). Diagrams like this, which will be used extensively in the re-
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Figure 3.1 Upper Panel: Cartoon of four states of a GLUT transporter, showing the empty pore facing
the exterior of the cell, glucose bound facing the exterior, glucose bound facing the interior, and the open
pore facing the interior of the cell. Adapted from G. E. Leinhard, J. W. Slot, D. E. James, and M. M.
Mueckler, How cells absorb glucose. ScientiÞc American, January, 1992, pg. 89. Lower Panel: Four state
kinetic diagram of a GLUT transporter based on the cartoon in the upper panel.

mainder of this book, represent molecular states or entities by symbols and transitions
between states by solid lines. The labelled corners in Panel B correspond to the states
S1-S4 of a GLUT transporter described in the previous paragraph and the lines rep-
resent elementary molecular processes. The transition from S1 to S2 is a bimolecular
process since it requires the interaction of a glucose molecule (indicated as Gout in the
diagram) and the GLUT molecule in S1. The transition from S2 to S1, on the other
hand, involves only the GLUT molecule and is, therefore, unimolecular: thus only S2
appears at the end of the line connecting S2 to S1. This illustrates an important as-
pect of transitions between molecular states: they are reversable, corresponding to the
property of microscopic reversibility of molecular processes.

The rates of the elementary processes denoted in the kinetic diagram are determined
again by the law of mass action as we discussed in Chapter 1. Thus the rate of the
transition from S1 to S2 is given by J12 = k12[Gout]x1, where the square brackets denote
concentration, and x1 represents the fraction of the GLUT molecules in S1, x1 = N1/N
where N is the total number of transporters. The factor k12 is the rate constant, in
this case bimolecular, with practical units of s−1mM−1. Similarly the rate of the reverse
reaction, 2 → 1, is given by J21 = k21x2 with k21 a unimolecular rate constant (with
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Table 3.1 Rate Expressions for Glut Transporter

Forward Process Rate Reverse Process Rate

S1 → S2 k12[Gout]x1 S2 → S1 k21x2

S2 → S3 k23x2 S3 → S2 k32x3

S3 → S4 k34x3 S4 → S3 k43[Gin]x4

S4 → S1 k41x4 S1 → S4 k14x1

units s−1). Table 3.1 lists the forward and reverse rate expressions for all of the processes
in the kinetic diagram.

Having established the correspondence of the diagram with rate expressions, we can
write down the differential equations that the diagram represents. To do so we must
keep track of the change that each elementary process in the diagram makes for each
state. Thus the fraction of transporters in S1, x1, decreases with the transition to S2 or
S4, and increases with transitions from S1 or S4. Using this idea, in conjunction with
the kinetic diagram and Table 3.1, the ordinary differential equations follow for the rate
of change in the number of states:

dx1/dt = −k12[Gout]x1 + k21x2 + k41x4 − k14x1
dx2/dt = k12[Gout]x1 − k21x2 − k23x2 + k32x3
dx3/dt = k23x2 − k32x3 − k34x3 + k43[Gin]x4

dx4/dt = k34x3 − k43[Gin]x4 − k41x4 + k14x1 (3.1)

Since the kinetic model involves only interconversion of GLUT states, the total
number of transporters should be preserved. This introduces the idea of a conservation
law, N1+N2+N3+N4 = N or x1+x2+x3+x4 = 1, that transporters are neither created
nor destroyed. In this case, these equations preserve the total number of transporter
already. This can be checked by adding together the expressions on the right hand side
of Eqn. (3.1). It is easily veriÞed that all of the terms cancel, leading to the result that
d(x1+x2+x3+x4)/dt = 0, which shows that the sum of the fractions of transporters in
different states does not change. That is, x1 + x2 + x3 + x4 has a constant value, which
in this case is 1.

This implies that one of the dependent variables can be eliminated using the con-
servation law, say, x4 = 1 − x1 − x2 − x3. In this way, the differential equation for x4
becomes redundant and the number of differential equations to be solved is reduced to
only three along with the algebraic equation for x4. If this is done, the equations can
be written in the reduced form:

dx1/dt = m11x1 +m12x2 +m13x3 − k41
dx2/dt = m21x1 +m22x2 +m32x3

dx3/dt = m31x1 +m32x2 +m33x3 + k43[Gin] (3.2)

x4 = 1− x1 − x2 − x3
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where the 3 × 3 array, mij, is a matrix whose elements can be found by substituting
x4 = 1−x1−x2−x3 into the Þrst three equations of Eqn. (3.1). We leave it to the reader
to verify, for example, that m11 = −(k12[Gout] + k14) and m33 = −(k32+ k34+ k43[Gin]).

With the formulation of the model equations, the Þrst steps in the modeling process
are completed. What remains is the analysis of the equations. We will leave the analysis
of this model for an excercise, while we will use a reduced model to demonstrate several
ways to analyze the transport rates for transporters. An additional discussion of some
of the basic terminology and techniques involved in the solution of these and more
complicated equations that frequently arise in the modeling process are developed and
discussed in the Appendix.

3.2 Transporter Rates

In the previous section we described a four-state model of a GLUT-type glucose trans-
porter. Like all models of transporters the �states� are distinct molecular arrangements
of the transporter protein and the small molecules (ligands) that interact with it. These
states are the basic kinetic ingredients of the kinetic mechanism, and we identify the
states by numbering them S1, S2 . . .M , whereM is the total number. As for the GLUT
transporter, we summarize the mechanism by a kinetic diagram with lines between the
states representing possible transitions. Each line stands for a forward and reverse step
that can be either unimolecular or bimolecular. Which states are connected together and
the nature of the transitions connecting the states must be determined experimentally,
and the resulting diagrams summarize succinctly a great deal of kinetic information. As
we saw, the diagram can be easily translated into differential equations that describe
how the number of transporters in each state changes with time.

What is important physiologically is not the rate at which states of a transporter
change with time but rather the rate at which the ions or molecules that are trans-
ported get across the membrane. This can be determined from the kinetic mechanism
but requires additional analysis since the transport rate is a property of the entire
mechanism rather than an individual step. To make this distinction clear, consider the
simpliÞed three-state version of the mechanism for a GLUT transporter in Fig. (3.2).

1

2 3

Gout
G

in

Figure 3.2 A three state diagram for the GLUT transporter.
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In this simpliÞcation S1 and S4 in the four-state diagram in Fig. (3.1) have been treated
as a single state. This type of simpliÞcation of a mechanism is described more fully in
Chapter 4. The three transitions represented are the binding of glucose to the trans-
porter from the exterior (S1�S2) and interior (S1�S3) of the cell and the conformation
change in which the glucose moves from the exterior to the interior (S2�S3). Using xi
to represent the fraction of the total number of transporters in state Si = S1, S2, S3,
the kinetic equations for this diagram are (cf. Eqn. (3.1)):

dx1/dt = −J12 + J31
dx2/dt = J12 − J23
dx3/dt = J23 − J31. (3.3)

Here the Jij are the net rates for the indicated transition with the i→ j direction taken
as positive. Thus,

J12 = k
∗
12[Gout]x1 − k21x2 (3.4)

J23 = k23x2 − k32x3 (3.5)

J31 = k31x3 − k∗13[Gin]x1. (3.6)

In these equations we use a superscript ∗ to indicate a bimolecular rate constant. Net
rates often appear in analyzing transport rates, and we will refer to the Jij as ßuxes.
We can see by adding equations (3.3) together that the total number of tranporters
is conserved. This means that the conservation equation, x1 + x2 + x3 = 1, is already
satisÞed.

Experimentally, the rate at which glucose is transported into the cell is determined
by the rate at which the concentration of glucose accumulate inside the cell in the
absence of metabolism. Since [Gin] is measured in millimolar, its rate of change of can
be determined from the diagram and the rate equations Eqn. (3.3) to be:

d[Gin]/dt =
number of millimoles of transporter

cellular volume
· J31

= (103N/Vin.500A) · J31 = Rin, (3.7)

where A is Avagadro�s number, Vin is the cellular volume in liters, and the factor 10
3N/A

converts the total number of transporters, N , to millimoles. A related measure of the
transport rate is the rate of change of [Gout], which give a measure of the transport
rate, Rout, based on the loss of glucose from outside the cell. In analogy to Eqn. (3.7)
Rout is easily seen to be given by

− d[Gout]/dt = (10
3N/VoutA) · J12 = Rout. (3.8)

In order to simplify the interpretation of experiments, Vout is usually chosen to be much
greater than Vin, and so to a good approximation [Gout] can be taken as a constant.

These two measures of the rate of transport of glucose are generally not proportional
to one another since J12 6= J31. Inspection of Eqn. (3.3) shows, however, that the two
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ßuxes are equal at steady state, in which case

Jss12 = J
ss
23 = J

ss
31 = J

ss. (3.9)

This state condition can be inferred directly from the diagram in Fig. (3.2) by noting
that the total ßux into and out of each state must vanish for the number of transporters
in each state to be steady. Thus at steady state Jss provides a unique measure of the
transport rate, which can be written:

Rss = (103N/VinA) · Jss. (3.10)

This rate is achieved, however, only after a transient period during with the states of
the transporter come to steady state.

To calculate the transport rate using Eqn. (3.10) it is necessary to calculate the
value of Jss, and this, in turn, requires the steady state values of the xi. There are three
ways that this can be done: numerically by solving the differential equations; with linear
algebra, which gives an analytical expression for the xi; or using diagrammatic methods.
The Þrst method is explored in the exercises using XppAut.

3.2.1 Algebraic Method

We can obtain the steady state value of the transport rate by solving the linear equations
for the xi. Substituting the expressions for the ßuxes given in Eqn. (3.4)-Eqn. (3.6) into
Eqn. (3.3) and eliminating x3 using the conservation condition, x3 = 1− x1 − x2, gives
the 2× 2 linear equations

dx/dt = �Ax+ y (3.11)

with

�A =

Ã −(k12 + k13 + k31) k21 − k31
k12 − k32 −(k21 + k23 + k32)

!
and y =

Ã
k31

k32

!
. (3.12)

To simplify notation we have introduced the pseudounimolecular rate constants

k12 = k
∗
12[Gout] and k13 = k

∗
13[Gin]. (3.13)

The steady state of Eqn. (3.11) is determined by the algebraic equation

�Axss = −y. (3.14)

According to Eqn. (??) in Section (??), this equation has the solution

xss = −�A−1y. (3.15)

with �A−1 the inverse matrix of �A. Using the explicit expression for the �A−1 given in
Appendix 2.5, Eqn. (3.15) gives

xss1 = (a22y1 − a12y2)/det�A
xss2 = (−a21y1 + a11y2)/det�A (3.16)

xss3 = 1− xss1 − xss2 .
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To evaluate the transport rate using the algebraic method we need to substitute
the expressions in Eqn. (3.16) into one of the expressions in Eqn. (3.9) for Jss. For
example, using the Þrst expression gives

Jss12 =
1

det�A
(k12(a22y1 − a12y2)− k21(−a21y1 + a11y2)). (3.17)

To get an explicit expression in terms of the rate constants, kij , using Eqn. (3.17) we
need to substitute the expressions for the matrix elements, aij, given in Eqn. (3.12)
and then calculate the determinant of �a. The resulting expression is messy and offers
numerous opportunities for making algebraic mistakes. An alternative is to use the
diagrammatic method, which circumvents all of these algebraic difficulties.

3.2.2 Diagrammatic Method

Diagrams that represent mathematical expressions are in common use in both quantum
electrodynamics (�Feynman diagrams�) and statistical mechanics but are signiÞcantly
less familiar in biology. Although the diagrammatic method for obtaining Jss involves
a few new ideas, it leads to vastly simpler, more transparent expressions for the ßuxes
than the algebraic method. To help motivate the use of diagrams, consider the following
inÞnite sum:

1

2
+
1

4
+ . . .+

1

2n
+ . . . =

∞X
n=1

1

2n
(3.18)

Even if the reader has previously encountered this geometric series, few probably re-
member that the sum converges exactly to the value one. On the other hand, a simple
glance at the diagram in Fig. (3.3) makes the answer clear immediately.

Diagrams of the sort that are used in solving for the ßuxes for the three-state GLUT

1/2

1/4

1/16
1/32

1/8

... Figure 3.3 A diagram representing the geometric series
in Eq.()
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Figure 3.4 The complete diagram at the top, partial diagrams in
the middle, and directed diagrams for state S1 at the bottom for the
3-state GLUT transporter model.

transporter are shown in Fig. (3.4). In general a diagram is a set of vertices (represent-
ing the states) and lines representing unimolecular (or pseudounimolecular) transitions
between states. A complete diagram for the GLUT transporter, which includes all of
the lines and all of the vertices in the model is shown in the top panel of Fig. (3.4). Note
that it differs from the kinetic diagram in Fig. (3.1) since the glucose concentrations
have been absorbed into the pseudounimolecular rate constants as in Eqn. (3.13). The
three partial diagrams for the model (with the vertices unlabeled) are shown in the
middle panel of Fig. (3.4). Partial diagrams are obtained from the complete diagram
by removing lines and have the maximum number of lines possible without forming a
cycle. A third type of diagram, called the directional diagram can be constructed from
the partial diagrams. Directional diagrams have arrowheads attached to the lines, such
that all of the lines �ßow� into a single vertex. The directional diagrams for state S1 are
given in the lower panel of Fig. (3.4). Note that for ease in writing the arrowhead on a
line will be dropped whenever its direction is obvious, as in the Þrst and second direc-
tional diagram in the lower panel of Fig. (3.4). Three comparable directional diagrams
can be drawn for states S2 and S3.

These diagrams represent algebraic expressions just as the areas in the diagram for
the geometric series in Fig. (3.3) represent fractions. For these diagrams each line with
an arrowhead (a directed line) represents the unimolecular or pseudounimolecular rate
constant for the indicated transition. For example, the two lines in the third diagram
in the lower panel of Fig. (3.4) represent k21 and k31. Diagrams with several directed
lines represent the product of all the indicated rate constants. Thus the the directional
diagrams stand for products of two rate constants, e.g., the Þrst directional diagram in
Fig. (3.4)C is shorthand notation for the product k23k31, whereas the second and third
diagrams represent k21k32 and k21k31, respectively.

There is a general theorem that connects the directional diagrams with the frac-
tional occupancy of states in the kinetic diagram. In particular the fractional occupany
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Figure 3.5 Diagrammatic expression for the fractional
occupancy of GLUT transporters in state S1 at steady
state.

of state Si is given by the expression:

xssi =
sum of all state Si directional diagrams

sum of all directional diagrams
(3.19)

For xss1 it yields the expressions given in Fig. (3.5), where we have adopted the symbol
Σ to represent the sum of all directional diagrams. The division by Σ ensures thatP

i x
ss
i = 1.
Although the expression for xssi in Eqn. (3.19) can be proven for any mechanism

that can be represented by a kinetic diagram, we give a proof only for the three-state
GLUT model. Since the steady state solution for this model is unique, we need only
show that the expression in Eqn. (3.19) leads to the equality of all the ßuxes Jij at
steady state. Rather than write out the algebra, we use the diagrams themselves to
complete the proof. This is illustrated in Fig. (3.6), where Jss12 is calculated. The second
equality uses Eqn. (3.19), and in the third we have used the directed lines corresponding
to the rate constants k12 and k21 to add extra directed lines to the diagram. Two pairs
of terms cancel to give the Þnal equality in which only the difference of the two cyclic
diagrams appear. A cyclic diagram is derived from a partial diagram with one additional
ßux added to produce a cycle. For more details consult the book by T. L. Hill, Free
Energy Transduction in Biology. Similar manipulations show that the third equality
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Figure 3.6 Calculation of Jss12 using dia-
grams.
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also holds for Jss23 and J
ss
31 (Exercise 3.5). Thus J

ss
12 = J

ss
23 = J

ss
31 , which is the condition

for steady state.
The Þnal equality in Fig. (3.6) is a corollary that can be generalized for any kinetic

diagram, i.e.:

Jssij =
sum of differences of cyclic diagrams with i-j in the cycle

Σ
(3.20)

Thus the steady state ßux for the three-state model is given by the difference of the two
cyclic ßuxes (counterclockwise - clockwise) divided by the sum over all partial diagrams
for the complete diagram.

We need one more key fact about cyclic diagrams in order to simplify the expression
for the transport rate, namely, that the product of the bimolecular and unimolecular
rate constants in the counterclockwise direction of a cycle equal those in the clockwise
direction. This is called the thermodynamic restriction on the rate constants because it is
a consequence of the laws of chemical thermodynamics. To see why the thermodynamic
restriction is true, consider the situation in which no transport occurs, i.e., [Gout] =
[Gin]. If we revert to the notation for chemical reactions, then the three steps in the
cycle for the three-state GLUT transporter can be written:

Gout + S1 = S2 with equilibrium constant K12 = k21/k
∗
12

S2 = S3 with equilibrium constant K32 = k32/k23 (3.21)

S3 = S1 +Gin with equilibrium constant K31 = k
∗
13/k31

where S1, S2, and S3 represent the three states of the transporter. It is easy to show that
the equilibrium constants, Kij , for the �reactions� are the ratio of the rate constants,
as indicated next to each reaction in Eqn. (3.21) (see Exercise 3.6). If we add these
three chemical reactions together we get the net reaction:

Gout = Gin. (3.22)

A basic property of equilibrium constants (see Exercise 3.7) is that when reactions are
added, the equilibrium constants are multiplied. Therefore the equilibrium constant for
the net reaction Eqn. (3.22) is

Knet = K12K23K31 (3.23)

=
k21k32k

∗
13

k∗12k23k31
. (3.24)

But at chemical equilibrium the concentrations of product (Gin) and reactant (Gout)
in Eqn. (3.22) are equal, so that Knet = [Gin]eq/[Gout]eq = 1. Using this fact in Eqn.
(3.23) and Eqn. (3.24) and rearranging gives the thermodynamic restriction on the rate
constants:

k∗13k32k21 = k
∗
12k23k31. (3.25)
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When constructing models, it is essential that the thermodynamic restriction on rate
constants be satisÞed for all cycles. Otherwise the model will violate the second law of
thermodynamics.

3.2.3 Rate of the GLUT Transporter

Using the results in the previous sections we can write an explicit expression for the rate
of the three-state GLUT transporter. Combining Eqn. (3.10) with the Þnal equation in
Fig. (3.6), we obtain

Rss =
103N

VinA
· k

∗
12[Gout]k23k31 − k∗13[Gin]k32k21

Σ
(3.26)

=
103Nk∗12k23k31([Gout]− [Gin])

VinAΣ
, (3.27)

where in the second equality we have used Eqn. (3.25), the thermodynamic restriction
on the rate coefficients. According to Eqn. (3.27), the steady state transport rate is
positive when the concentration of glucose outside of the cell exceeds that inside and
vanishes when the two concentrations are the same. This is a consequence of the ther-
modynamic restriction on the rate constants and is just what is expected for a passive
transport mechanism. In the next section we consider the Na+/glucose cotransporter,
which utilizes a gradient of Na+ to transport glucose from a low concentration to a
higher concentration.

For a symmetric transporter there is no difference between the kinetic steps occuring
inside and outside of the cell. This means that the rate constants for the transitions
2→ 3 and 2← 3 are the same and that the association and dissociation rate constants
are the same inside and outside as well. In this case there are only three different rate
constants:

k∗12 = k
∗
13 = k

+ (glucose association)

k21 = k31 = k
− (glucose dissociation) (3.28)

k23 = k32 = k (transport).

It is not difficult to evaluate the sum of the directed diagrams, Σ, explicitly in this case
(see Exercise 4.8) which is

Σ = k+(2k + k−) (K + [Gout] + [Gout]) , (3.29)

where we have written the dissociation constant K = (k−/k+). Thus for the symmetic
GLUT transporter model the transport rate can be written

Rss =
Rmax([Gout]− [Gin]))

Kd + ([Gout] + [Gin])
, (3.30)

where the maximal rate is

Rmax =
103Nkk−

(2k + k−)VinA
. (3.31)



3.3: How to Make a Model: The Na+/Glucose Cotransporter 67

Eqn. (3.30) and Eqn. (3.31) provide explicit expressions for the transport rate for the
symmetric transporter in terms of the rate constants for the model.

Experimentally glucose uptake can be measured using 3-O-methyl glucose, a non-
metabolizable analogue of glucose. This further simpliÞes the expressions, since the
concentration of the analogue is initially zero, Gin = 0, inside the cell. As a practical
matter experiments involve large numbers of cells rather than a single cell. However,
both N and Vin increase in proportion to the number of cells, so that the value of Rmax

is still characteristic of a single cell. So for this type of experiment the rate expression
in Eqn. (3.30) can be written

Rss =
Rmax[Gout]

K + [Gout]
. (3.32)

This has the same form hyperbolic form as the rate expression for the Michaelis-Menten
model in Eqn. (??).

One way to analyze the experimental rate of glucose uptake is using an Eadie-
Hofstee plot. The Eadie-Hofstee plot is a graph of the experimental rate of glucose
uptake, R, versus R/[Gout] for a range of values of [Gout]. According to Eqn. (3.32) this
plot should give a straight line with y-intercept equal to Rmax and slope equal to K.
This can be seen using a little algebra, Þrst rearranging Eqn. (3.32) to get

R/[Gout] =
Rmax

K + [Gout]
(3.33)

and then multiplying both sides by K + [Gout] and then dividing by R/[Gout] and
rearranging to obtain:

[Gout] =
Rmax

R/[Gout]
−K. (3.34)

If this experssion for [Gout] is substituted in the second factor in the following identity:

R =
R

[Gout]
· [Gout], (3.35)

we obtain

R = Rmax − R

[Gout]
·K, (3.36)

which is the Eadie-Hofstee expression for the rate. Exercise 3.9 illustrates how XppAut
can be used to simulate transport rates for the four-state model of a GLUT transport
and analyze the results using an Eadie-Hofstee plot.

3.3 How to Make a Model: The Na+/Glucose
Cotransporter

A great variety of specialized proteins have evolved to transport speciÞc substance
across membranes in cells. Whereas the mechanisms of these transporters differ in
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Figure 3.7 Elementary kinetic processes for transporters representing: ligand
(L) binding, ligand transport, phosphorylation, light excitation, and multiple
ligand binding.

detail, they also share a number of common features. For example, all of the known
transporters bind the ligand or ligands that they transport and, of course, they must
dissociate them as well. These steps must occur on both sides of the membrane for
transport to occur, so there must be a process or processes in which the ligands are
transported across the membrane. Fig. (3.7) illustrates some of the elementary kinetic
processes that are found for transporters, including chemical modiÞcation of the trans-
porter by phosphorylation, light-induced conformational changes, and multiple ligand
binding.

¿From the point of view of chemical physics, the transport step can be viewed
as energetic rearrangements that involve both the transporter protein and the ligand
being transported. The top panel in Fig. (3.8) is a schematic representation of what
the energy proÞle across a GLUT transporter might look like when the glucose concen-
tration outside is high and inside is low. The energy proÞle is the Gibbs free energy,
rather than the potential energy, since for the average kinetic events that we are consid-
ering the inßuence of entropy effects must be taken into account. Thus the reason that
the free energy of glucose is higher outside is simply that the concentration of glucose
is higher outside the cell than inside. The peaks of the free energy represent barriers
to the movement of glucose across the transporter. Two possibilities for the transition
from state 2 to state 3 are shown in the lower panels of Fig. (3.8). The Þrst represents
a barrier crossing in which the transition 2 → 3 does not inßuence the shape of the
energy proÞle. In the second, on the other hand, the energy proÞle is different after the
transition, as might be the case if the transition involved a conformational change.

Although understanding the transport step is an important feature of building a
model of a transporter, it does not describe how a transporter works nor the rate of
transport, which was seen in Section 3.2 to be a property of the complete model, not a
single step. To illustrate how a complete model of a transporter is created, we consider
the Na+/glucose cotransporter from intestinal epithelial cells. This transporter utilizes a
concentration gradient of Na+ to transport glucose from the intestine into the epithelial
cells that line the gut. This is �up hill� transport as the concentration of glucose in the
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Figure 3.8 Schematic representation of the
free energy proÞle across a membrane for a
transporter protein. Two possibilities for state
changes for the transport step 2 to 3 for the
GLUT transporter are indicated: A, simple bar-
rier crossing; and B, barrier crossing via a
conformational transition.

epithelial cells exceeds that in the intestine. As shown schematically in Fig. (3.9), the
cotransporter works in concert with a Na+/K+ ATPase and passive transport of glu-
cose by GLUT transporters, both at the basolateral side of the epithelium, to move
glucose from the intestine to the blood stream. The Na+/K+ ATPase helps eliminate
the Na+ that accompanies glucose uptake during cotransport, thereby maintaining a
low concentration of Na+ inside of the cell.

A model for any transporter must incorporate a number of basic experimental facts.
One of these is stoichiometry, which for the cotransporter is the number of Na+ ions
transported per glucose molecule. Experimental measurements on the Na+/glucose co-
transporter from intestine yield a stochiometry is 2Na+ to 1 glucose. Another important
fact about the cotransporter is the absolute requirement for Na+, i.e., if Na+ is absent
from the external medium, glucose is not transported. In addition, the cotransporter is
electrogenic, i.e., transport generates an electrical current due to the transport of Na+.

These observations require 2 Na+ and 1 glucose association steps on each side of
the membrane. Thus a partial skeleton for the cotransporter might contain the kinetic
steps connected together as shown in Fig. (3.10). It is also possible that the second
sodium binds after the glucose as in the right panel of Fig. (3.10). However, this can
be ruled out if the states with Na+ and glucose bound from the outside are connected
by conformational transitions to comparable states inside (as indicated by the dashed
lines). In that case the six state cycle on the right in Fig. (3.10) (E to E-Na+ to G-E-Na+

to G-E∗-Na+ to E∗-Na+ to E∗ to E) would transport only a single Na+ for every glucose
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Figure 3.9 A cartoon representing the cotransport of glucose and Na+ into intestinal epithelium, followed
by the passive transport of glucose into the blood. Energy stored in the gradient of Na+ (higher in the lumen
of the gut) is utilized to transport glucose from a high concentration to a low concentration. Na+ that
accumulates in the epithelial cells is removed by active transport into the blood by the Na+/K+ATPase.
From Alberts, et al Molecular Biology of the Cell, Garland Publishing, Inc., New York, 1983, pg. 297.

molecule, impying a stochiometry at steady state less than 2:1. The third possibility,
not shown in Fig. (3.10), is that glucose binds Þrst. This is ruled out, however, by
the experimental observation that the cotransporter supports Na+ currents even in the
absence of glucose. Thus we are left with the ordered binding of ligands indicated on
the left in Fig. (3.10).

If we number the eight states on the left in Fig. (3.10) sequentially, S1 through S8,
starting at �E� and moving counterclockwise, there are a number of possibilities for
conformational changes connecting the left and right sides of the diagram. Fig. (3.11)
illustrates six alternatives. Alternative b is easily eliminated since it does not transport
glucose. Although diagram C does transport glucose (S4 to S5), it does not includes
steps that transport only Na+, and, therefore, conßicts with the fact that the transporter
produces a Na+ current in the absense of glucose. Diagram D can be ruled out because
it has the wrong stochiometry (1 Na+:1 glucose). This leaves as possible mechanisms
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Figure 3.11 Six possible diagrams for the Na+/glucose transporter with transport steps included. Only
A, E, and F are compatible with experiment.

diagram A, the fully connected diagram, and diagrams E and F , each of which is
missing Na+ transport steps.

All three of these diagrams are compatible with the experimental evidence, and all
three can be �reduced� to a diagram with the 6-state skeleton given in Fig. (3.12A). This
method of reducing diagrams uses the rapid equilibrium approximation that applies to
steps for which the forward and reverse rates are rapid with respect to other steps in the
diagram. The details of how this method works are explained in Chapter 4 although the
basic idea can be seen by comparing Panels A and B in Fig. (3.11). The experimental
values of rate constants for the six state model have been assigned by Parent and
colleagues. Step S4 to S5 in the six state model is the dissociation of glucose inside the
cell, and this step is extremely fast. This permits the two states to be approximated
as a single combined state (state S4,5 in Panel B) and reduces the diagram to 5 states
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Figure 3.13 Panels A and B: Two simpliÞed models to explaining the Ca2+ dependence of the
experimental SERCA pump rate.

as shown. We must be careful in doing so to readjust the rates to account for the
reduction. The details of the process for doing this is given in Chapter 4, but it is not
difficult. In short, only a portion of the combined state S4,5 reacts to the other states.
The portion to be used in each reaction is determined as a result of the reduction using
simple algebra. The reduced model with experimental rates obtained by Parent, et al
is given in the form of an XppAut Þle in Exercise 3.10.

It is possible to write diagrammatic expressions for the transport rate for either the
Þve-state or six-state models in Fig. (3.12). However, the number of directed diagrams
and cyclic diagrams increases quickly with the complexity of cycles in the complete di-
agram. For example, for the Þve-state model there are 6 pairs of cyclic diagrams and 55
directed diagrams. Nonetheless, the general expressions in Eqn. (3.19) and Eqn. (3.20)
remain valid and can be used to obtain explicit expressions for the steady state ßuxes.
The diagrammatic method does not, however, provide information about the tran-
sient time-dependence of the ßuxes. This is most conveniently obtained by numerical
integration of the equations (see Exercise 3.10).

3.4 SERCA Pumps

The Ca2+-ATPase that is found in the endoplasmic reticulum (ER) and sarcoplasmic
reticulum (SR) of muscle is typical of transporters that utilize the chemical energy
stored in ATP to pump ions against a gradient. Typical free cytosolic Ca2+ concentra-
tions, [Ca2+]i, are of the order of 0.1 µM, whereas Ca

2+ concentrations in the ER and
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SR are in the range of 0.1-1mM. Thus these pumps, which are abbreviated SERCA
for �Sarco-Endoplasmic Reticulum Ca2+ ATPase�, have to surmount a 3-4 order of
magnitude concentration difference. Topologically, the SR and ER are equivalent to
the �outside� of the cell and both compartments function to store Ca2+ for a variety of
cellular processes. In muscle Ca2+ release from the SR is involved in triggering muscle
contraction whereas Ca2+ release from the ER is involved in stimulating hormone se-
cretion and other intracellular signaling cascades. Pumping of Ca2+ by SERCA is the
primary mechanism by which SR and ER Ca2+ stores are maintained. A different type
of Ca2+ pump (PMCA), which is found in the plasma membrane, functions to pump
Ca2+ out of the cell.

Although there a several isotypes of SERCA found in different tissues, the rate at
which they pump Ca2+ has a simple dependence of [Ca2+]i. The pumping rate can be
measured using vesicles prepared from either SR or ER membranes. The rate of vesicle-
accumulation of 45Ca2+, a radioactive isotope of Ca2+, can then be used to determine
the pumping rate. Experimentally, the rate has a sigmoidal dependence on [Ca2+]i with
a Hill coefficient close to two, i.e.,

R =
Rmax[Ca

2+]i
2

K2 + [Ca2+]i
2 . (3.37)

The Hill coefficient is related to the stochiometry of the SERCA pump, which is known
to be 2Ca2+:1ATP. X-ray diffraction of SERCA pumps in bilayers has produced a low-
resolution structure with the three segments shown in the upper panel of Fig. (3.13): a
stalk region just outside the bilayer and near the binding sites for Ca2+, a head region
that contains the ATP binding site, and a large transmembrane region through which
the Ca2+ is transported. Binding experiments have revealed two binding sites for Ca2+.

A simple model that is consistent with the Ca2+ dependence of the pump rate
can be constructed using only two states: an inactive state, I , and an active state,
A, connected by the mechanism shown in Fig. (3.13A). This model leads to the rate
expression in Eqn. (3.37) if we assume that the two states rapidly equilibrate and that
only the active state transports Ca2+. Rapid equilibration implies the balance of the
forward and reverse rates in Fig. (3.13A). This leads to the equilibrium condition

k−/k+ = Keq =
[Ca2+]2[I]

[A]
, (3.38)

where [I] and [A] are the per unit area concentrations of SERCA pumps in the two
states and the equilibrium constant, Keq, is the ratio of the rate constants. Solving Eqn.
(3.38) for [I ], substituting that expression into the conservation condition [I]+[A] = N ,
and then solving for [A] gives the concentration of active SERCAs:

[A] =
N [Ca2+]2

K2 + [Ca2+]2
. (3.39)

Here we have deÞned K =
√
Keq, which has the units of concentration. As can be seen



74 3: Transporters and Pumps

Figure 3.14 A twelve state model of the SERCA pump. Note the two sequential Ca2+ binding steps on
the left hand side. Although the cycle is drive by the hydrolysis of ATP, all of the steps in the diagram
contribute to the steady state rate. Taken from P. Läuger, Electrogenic Ion Pumps, Sinauer, Sunderland,
MA, 1991, pg. 241.

from Eqn. (3.39), the numerical value of K equals the concentration of Ca2+ at which
half of the SERCA are in the active state. A small value of K is said to correspond to
a high affinity binding site and a large value to a low affinity site. If the rate constant
for the active state to transport Ca2+ is k, then Eqn. (3.39) gives the transport rate

R = k[A] =
Rmax[Ca

2+]i
2

K2 + [Ca2+]i
2 (3.40)

with Rmax = kN .
Although this mechanism agrees with the measured transport rate and provides an

expression for Rmax, there are several things wrong with it. First, it assumes the simul-
taneous binding of two Ca2+, which is highly improbable. Second, it doesn�t provide an
explanation for the transport rate constant, k, and third, it doesn�t explain how ATP
might be involved. We can eliminate the Þrst criticism by expanding the model to in-
clude sequential binding of two Ca2+, as indicated in Fig. (3.13B). For this mechanism
there are two simultaneous binding equilibria:

K1 =
[Ca2+][I]

[I∗]
and K2 =

[Ca2+][I∗]

[A]
. (3.41)
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In analogy to what was done for the previous model, these equations can be combined
with the conservation condition [I ] + [I∗] + [A] = N to obtain

[A] =
N

1 + (K1K2/[Ca2+]2) +K2/[Ca2+]
. (3.42)

This agrees with the rate expression in Eqn. (3.37) under the condition that K2 ¿
[Ca2+] and K1. In this case [A] is approximately given by Eqn. (3.39) withK =

√
K1K2,

the geometric mean of the two dissociation constants. Although this does not explain
the pumping rate, it does suggest that the binding of Ca2+ might be sequential with
the Þrst site of much lower affinity than the second, i.e., K1 À K2.

Constructing a complete kinetic model of the SERCA pump requires more experi-
mental information than is contained in the pumping rate. In fact, a great deal is known
about the other steps involve in the transport cycle. Figure 3.14 gives a 12 state model
that includes rate constants for all of the steps indicated. The two conformations of the
transporter, E1 and E2, correspond to the bound Ca

2+ facing the cytosol and inside
(lumen) of the ER, respectively. The cycle is initiated by ATP binding to E1, followed
by the binding of two Ca2+ from the cytosol. Using the fact that the Ca2+ binding steps
are fast, the equilibrium constants can be calculated from the forward and reverse rate
constants (K = k−/k+) to be K1 = 1 · 10−5M and K2 = 2.5 · 10−8M. So in agreement
with the two state binding model, this model involves sequential binding of Ca2+ with
the Þrst step having much lower affinity than the second. In fact, using the expression
K =

√
K1K2 gives K = 5 · 10−7M, which is close to the experimental value obtained

from rate measurements in vesicles. The cycle in Fig. (3.14) is driven by the phospho-
rylation of SERCA, which facilitates the conformational transition that exposes bound
Ca2+ to the lumen.

3.5 Transport Cycles

Like enzymes, transporters are unchanged by the transport process. Indeed, trans-
porters can be thought of as enzymes whose primary purpose is to alter the location
of a molecule rather than its chemical state. If we take the more general point of view
suggested by nonequilibrium thermodynamics, an enzyme and a transporter are simply
different classes of the same generic type of protein that catalyze a change in free energy.
As we noted in the previous section (cf. Fig. (3.8)), a transporter does this by altering
the concentration that the molecule experiences. An enzyme, on the other hand, does
this by altering the chemical bonds in the molecule.

The catalytic nature of a transporter is apparent in the cyclic structure of the
transport mechanism. The GLUT transporter, the Na+/glucose cotransporter, and the
SERCA pump described in Sections 3.1-3.4 all function in cycles that leaves the trans-
porter unchanged. Three additional examples of transport cycles that have been used
to explain experimental transport rates are given in Figs. 3.15A-B and 3.16: a P-type
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proton pump, the adenine nucleotide transporter from mitochondria, and bacteri-
orhodopsin, a light-driven proton pump.

In a transport cycle a ligand is moved from one cellular compartment to another
by some type of driving force. In passive transport, like that for the GLUT transporter,
the driving force is simply the concentration difference of ligand. For transporters that
involve more than one ligand, such as the Na+/glucose cotransporter or the adenine
nucleotide transporter in Fig. (3.14B), the driving force is a combination of ligand
concentrations differences. For ATP-dependent pumps, on the other hand, the driving
force is the chemical energy stored in the terminal phosphate bond of ATP, which is
transfered in a phosphorylation step (cf., Figs. 3.14 and 3.15A) to the transporter.
Phosphorylation maintains the high energy state, and the high energy phosphate bond
facilitates conformational transitions that lead to the transport and dissociation of the
tranported ion. A third form of driving force is light, as indicated in the transport cycle
for bacteriorhodopsin in Fig. (3.16). In this case energy from a photon excites a state
of the transporter causing a trans to cis transformation in the structure of retinal that
is otherwise inaccessible to thermal motion, thereby releasing a proton at the exterior
face of the membrane.

As long as we are interested in the average properties of a transporter, it is correct
to picture transport cycles as occuring in a Þxed direction governed by the driving
forces. Dynamic changes in an individual transporter molecule, on the other hand, are
stochastic. This is a result of the microscopic reversibility of the kinetic steps in a
cycle. Although it is more probable that an individual GLUT transporter will move
glucose from a high concentration to a low concentration, the reverse will occur with
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Figure 3.16 An irreversible diagram for the light driven proton pump, bacteriorhodopsin, a 27kD protein
from the salt tolerent bacteria, Halobacterium halobium. Light absorbed in the step BR568-BR

∗ drives the
trans to cis conformational change in retinal, leading to the release of a proton. Taken from P. Läuger,
Electrogenic Ion Pumps, Sinauer, Sunderland, MA, 1991, pg. 147.

nonvanishing probability. In fact, any step in a transport cycle can and will occur
in the opposite direction to the average transport rate. This reversibility has been
demonstrated experimentally for a number of transporters, one of the most convincing
being the reversal of SERCA pumps to produce ATP by reversing the Ca2+ gradient.
Thus the dynamic changes in an individual transporter molecule consist of a series of
random positive and negative steps around the cycle that over time lead to an average
transport rate in the direction dictated by the driving forces.

Cycles are a common feature of other cellular processes with some of the most
complex cycles governing muscle contraction, the rotary motion of ßagella, and other
so-called molecular motors. In metabolism the operation of the FoF1 ATPase, which
is responsible for converting proton gradients and ADP into ATP, is governed by a
combined catalytic-transport cycle. The molecular kinetics underlying these cycles is
still an active area of research.
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Exercises

1. Verify that the fraction of transporters in the states 1 and 2 for the three-state
GLUT model satisÞes Eqs. (??) and (??).

2. Carry out the matrix multiplication indicated in Eq. (??) to verify that the
expressions for the fractional occupany in Eq. (??) are correct.

3. Write down the directional diagrams for states 2 and 3 for the three-state GLUT
transporter model (cf. Fig. 3.3C) and the algebraic expressions that they represent.

4. There are 9 directional diagrams for the three-state GLUT transporter model. Write
down the algebraic expression for their sum, which is the denominator, Σ, in Eq.
(??) and Fig. 3.5.

5. Show that manipulations like those in Fig. 3.5 give the same Þnal expression for
Jss23 and J

ss
31 as a difference between directed cycle diagrams.

6. The equilibrium constant for a chemical reaction is given by the ratio of the product
of the concentrations of �products� divided by the ratio of the product of concen-
trations of �reactants�. (By convention reactants are the chemical species on the
left hand side of the equation and the products are on the right hand side.) Show
for the three reactions in Eq. (??) that the equilibrium constants are the ratio of
the rate constants as indicated in the equations. [Hint: Recall that �equilibrium�
for a reaction occurs when the rate of the forward reaction equals the rate of the
reverse reaction.]

7. Using the deÞnition of the equilibrium constant in Exercise 3.4, show that the
equilibrium constant for the sum of two chemical reactions is the product of the
equilibrium constants for the individual reactions.

8. Verify that the expression for the sum of the directed diagrams, Σ, for the symmetric
three-state GLUT transporter model is given by Eq. (??).

9. Write a .ode Þle for the 4-state model of a GLUT transporter (cf. Fig. 1.8). Using
XppAut and the values of the rate constants given below simulate data for an
Eadie-Hofstee plot of the rate of transport of glucose when [Gin] = 0mM. Make an
Eadie-Hofstee plot of the rate using a plotting program in XppAut (see Chapter
12 appendix) to determine Rmax and Kd. Use the rate constants k12 = k43 =
2.4mM−1min−1, k21 = k34 = 42min−1, k14 = k14 = k41 = k23 = k32 = 1000min−1.
The transport rate is given by R = c · Jss34 , where c = 2mM is the concentration of
GLUT transporters per unit volume of cells. [Hints: Because of the size of the rate
constant k14, etc you will need to use a small step size (try 0.0001min). For the
same reason you only will need to integrate for about 0.3min. Be sure to include
an auxiliary expression in your .ode Þle for R = c · J34.]

10. The .ode Þle below was constructed from data gathered by Parent, et al on the
Na+/glucose cotransporter from rabbit intestine. It corresponds to the 5 state model
in Fig. 3.11B. Steps 1 to 2 and 5 to 6 depend on the membrane potential, v,
which is taken as a parameter. Use this Þle to calculate both the transient and the
steady state ßux of glucose as given by the auxiliary variable, Jglu. Explore how



3.5: Transport Cycles 79

the membrane potential inßuences the ßux. For a Þxed value of the ßux, Þnd the
steady state transport rate as a function of [Na+out] (NaOut in the .ode Þle). Does
your simulation give a linear Eadie-Hofstee plot? [Hint: Due to the size of the rate
constants you will need to choose a small time step for the integration.]

#naglu5.ode (5 state Na/glucose cotransporter)

#initial values of state variables

init x1=0.15,x2=0.15,x3=0.15,x45=0.2

#parameters

parm k12=0.08,k21=500,k16=35,k61=5,k23=100,k32=20

parm k25=0.3,k52=0.3,k34=50,k43=50,k45=800,k54=40000

parm k56=10,k65=0.00005,ap=0.3,app=0,d=0.7,f=96489

parm gluIn=10,gluOut=1,NaIn=20,NaOut=100

parm n=2,z=-2,r=8314,tconst=310,v=-50

#functions and rate constants

mu(v)=f*v/(r*tconst)

k12p(v)=k12*NaOut^2*exp(-n*ap*mu(v)/2)

k21p(v)=k21*exp(n*ap*mu(v)/2)

k56p(v)=k56*exp(-n*app*mu(v)/2)

k65p(v)=k65*NaIn^2*exp(n*app*mu(v)/2)

k34p(v)=k34*exp(-(z+n)*d*mu(v)/2)

k43p(v)=k43*exp((z+n)*d*mu(v)/2)

k25p(v)=k25*exp(-(z+n)*d*mu(v)/2)

k52p(v)=k52*exp((z+n)*d*mu(v)/2)

k61p(v)=k61*exp(z*d*mu(v)/2)

k16p(v)=k16*exp(-z*d*mu(v)/2)

#the other state variables

x5=x45*k45/(k45+k54*GluIn)

x4=x45*k54*GluIn/(k45+k54*GluIn)

x6=1-x1-x2-x3-x45

#the fluxes

j12(x1,x2,v)=k21p(v)*x2-k12p(v)*x1

j16(x1,x6,v)=k61p(v)*x6-k16p(v)*x1

j23(x2,x3)=k32*x3-k23*GluOut*x2

j25(x2,x5,v)=k52p(v)*x5-k25p(v)*x2

j34(x3,x4,v)=k43p(v)*x4-k34p(v)*x3

j56(x5,x6,v)=k65p(v)*x6-k56p(v)*x5

#equations

dx1/dt=j12(x1,x2,v)+j16(x1,x6,v)

dx2/dt=-j12(x1,x2,v)+j23(x2,x3)+j25(x2,x5,v)

dx3/dt=-j23(x2,x3)+j34(x3,x4,v)

dx45/ct=-j34(x3,x4,v)+j56(x5,x6,v)-j25(x2,x5,v)

#flux of glucose
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aux jGlu=j23(x2,x3)

done

11. Write down the 6 pairs of cyclic diagrams and the 11 directed diagrams for state
1 for the Þve-state diagram in Fig. 3.11. What are the directed diagrams for state
4,5?

12. The cardiac form of the Na+/Ca2+ exchanger is electrogenic with a stochiometry
of 3Na+:1Ca2+. Assuming that the 3 Na+ bind sequentially to sites of decreasing
affinity, how do you anticipate that the transport rate will depend on [Na+out]?
Prove your answer.
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One of the hallmarks of cellular processes is their complexity. For example, in Chapter
3 we described a detailed model for the SERCA pump that requires 11 ODEs and 22
kinetic constants for its analysis. Similarly, the Hodgkin-Huxley model, which includes
only three currents in the squid giant axon, involves 4 differential equations and infor-
mation about three voltage-gated currents. As complex as these processes are, they do
not begin to represent the true complexity of cellular processes like muscle contraction
or insulin secretion, which depend on the coupling of numerous dynamic components.
In Chapter 5 we describe some simple examples of �whole-cell� modeling that attempt
to deal with these larger issues. With a view toward this more complex type of mod-
eling, here we describe several techniques that can be used to simplify the molecular
mechanisms that make up these models. These techniques rely on the separation of
variables into ones that are �fast� and ones that are �slow�. This type of separation
has already been used implicitly to simplify previous models. In the Morris-Lecar model
(Section (??)), for example, the rate of activation of the Ca2+ current was assumed to
be instantaneous and in Section (??) transient behavior was ignored in deÞning trans-
port rates. In this chapter we introduce two important methods to simplify molecular
models: the rapid equilibrium approximation and time scale analysis. These methods are
closely related and both can be used to eliminate variables and simplify the analysis of
the differential equations. First, however, we motivate the discussion with the following
example.
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Figure 4.1 Whole-cell currents for L-
type channels from a neuron in the sea
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4.1 Rapid Equilibrium Approximation

The voltage clamp measurements in Fig. (4.1) show typical whole-cell Ca2+ currents
for L-type channels from a neuron in the sea hare Aplysia. The control curve in Panel
A shows that these channels rapidly activate and then slowly inactivate when the cell
is depolarized to 20mV. The Ca2+ dependence of the inactivation step is illustrated by
the slowing of inactivation when the mobile Ca2+ chelator, EGTA, is injected into the
cell. The Ca2+ dependence of inactivation is conÞrmed by the experiment in Panel B,
in which Ba2+ replaces Ca2+ outside of the cell.

A cartoon for the mechanism underlying Ca2+ inactivation of L-type channels is
given in Fig. (4.2A). The cartoon illustrates the formation of a domain of elevated Ca2+

at the cytoplasmic face of an open Ca2+ channel (i.e., a small localized region in the
vicinity of the channel in which Ca2+ concentration can be quite high). Domains like
this have been predicted to form within a few microseconds of the opening of a channel
due to the combined effects of high Ca2+ concentrations outside the cell (ca. 2mM) and
low basal concentrations in the cytosol (ca. 0.1 µM). When this is combined with slow
diffusion of Ca2+ within the cell1, calculations predict Ca2+ domains with peak values

1The slow rate of diffusion of Ca2+ is discussed in Chapter ??. It is caused by tight binding of
Ca2+ to numerous sites in the cytoplasm, which greatly retards its ability to diffuse.
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Figure 4.2 Panel A: Cartoon of domain calcium. Panel B: State diagram for Ca2+channel

approaching 200-500 µM within nanometers of the channel. The high concentration of
Ca2+ in a domain suggests that an open channel may be subject to direct block of the
open state by binding of a Ca2+ ion at the cytoplasmic face of the channel. A simple
mechanism that accounts for this is given in Fig. (4.2B).

The three states C, O, and I represent closed, open, and inactivated states of the
channel. Step 1 is the activation step, whereas step 2 represents the binding of domain
Ca2+, written as Ca+2d . The mechanism postulates a low affinity site for Ca2+ binding,
which means that the inactivated state can be reached only when the channel is open
and the Ca2+ domain has formed. Since simulations show that the peak concentration
in a domain falls rapidly when a Ca2+ channel closes, it is possible to associate a unique
value of domain Ca2+ with the open state, whose value depends only on the current
through the open channel.

This mechanism is easily translated into a mathematical model. All the steps are
unimolecular, except for the binding of domain Ca2+, which is bimolecular. If we rep-
resent the fractions of channels in the three states by xC, xO, and xI , then the kinetic
equations for the model can be written

dxC/dt = −V1, (4.1)

dxO/dt = V1 − V2, (4.2)

with xI = 1− xC − xO and with
V1 = k

+
1 xC − k−1 xO, (4.3)

V2 = k
+
2 [Ca

2+
d ]xO − k−2 (1− xC − xO) (4.4)

the rates of steps 1 and 2. Since the value of Ca2+ in the domain, [Ca2+]d, depends
only on the current, it is a function of the electrical driving force and the single channel
conductance2. SpeciÞc values for the rate constants are given in Exercise ??. Fig. (4.3)
shows a simulation with the model that depicts the Ca2+ current for a cell that is

2In general, the value of [Ca2+]d depends on the external Ca
2+ concentration and the membrane

potential and is proportional to the single channel conductance, cf., Exercise ??.
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Figure 4.3 Computed solution and approximate solution for calcium current through L-type calcium
channels.

depolarized at t = 10ms to a voltage where the channel is open. Simulations like this
have been used to duplicate the time course of voltage clamp measurements for L-type
Ca2+ currents in pancreatic beta cells. Key evidence that supports the domain model
has come from recent experiments with genetically engineered L-type channels, and it
now seems certain that the essential ideas of the model are correct.

In both the experiments and the simulations, activation of the channel is fast com-
pared to inactivation. In the model this is due to the fact that both the rate constants
for step 1 are much larger than those for step 2. For example, the forward rate for V1
is about 47 times faster than that for V2. Because of this, step 1 rapidly �equilibrates�
the states C and O.

To see how this equilibration takes place, it is a good approximation to ignore V2,
at least at Þrst. Assuming that xC(0) = 1 (all channels are initially closed), it follows
that xI = 0 and xC + xO = 1. We use this to calculate that

dxO/dt = −(xO − 1

1 +K1

)/τact (4.5)

with K1 = k−1 /k
+
1 and τact = 1/(k+1 + k

−
1 ). The number τact is the time constant for

activation.
Because this process is fast, within a few milliseconds V1 ≈ 0. This condition

continues to hold even as the fractional occupancies xC, xO, and xI change.
The rapid equilibrium approximation is a method to exploit this observation that

some kinetic steps are �fast�. By �fast� we mean �faster than the times scales of phys-
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iological interest�, i.e., faster than the slowest times scales in the process. Here the
fast process is the process V1, and for most times after the short initial phase, V1 ≈ 0.
According to Eqn. (4.3), the condition V1 = 0 implies that

xC = (k
−
1 /k

+
1 )xO = K1xO, (4.6)

which is the equilibrium condition for step 1 in the mechanism.
Now, it might be tempting to set V1 = 0 in (4.2), but this is the wrong thing to do.

Instead, we recognize that since xC and xO are in equilibrium, the quantity of interest
is the total number of channels in the states C and O. Notice that by adding the two
equations (4.1) and (4.2) together, V1 is eliminated and we Þnd the rate of change of
the combined state y = xC + xO to be

d(xC + xO)/dt = −V2. (4.7)

Using the equilibrium condition (4.6), we Þnd that xO =
1

1+K1
y, xC =

K1

1+K1
y, so that

dy/dt = k−2 (1− y)−
k+2 [Ca

2+
d ]

1 +K1

y. (4.8)

This ODE can be rearranged into the familiar form

dy/dt =
y∞([Ca

2+
d ])− y

τ([Ca2+d ])
, (4.9)

where

τ([Ca2+d ]) =
1 +K1

k+2 [Ca
2+
d ] + k

−
2 (K1 + 1)

, (4.10)

y∞([Ca
2+
d ]) = k

−
2 τ([Ca

2+
d ]). (4.11)

Written this way, Eqn. (4.9) has the same form as Eqn. (??) for a voltage gated channel,
except now [Ca2+]d replaces the voltage.

The only tricky part remaining about the solution to Eqn. (4.9), which is an expo-
nential, is Þnding the correct initial condition. Since we have assumed that step 1 is fast,
the initial condition for (4.9) must take into account the rapid initial equilibration of C
and O. As in Fig. (4.1) the initial condition typically is at a hyperpolarized potential
where all the channels are closed and xC(0) = 1. After the initial equilibration, some
of the channels will have moved to state O, so that y = xC + xO = 1. This gives the
equilibrated initial condition for Eqn. (4.9) as

y(0) = 1. (4.12)

Using this initial condition, the solution to the rapid equilibrium approximation for the
model is plotted as the dashed line in Fig. (4.3). Two things are notable in comparing
the approximation to the complete solution. First, by neglecting the rapid activation of
the channel, the approximation slightly overestimates the peak current, which is given
analytically using the initial condition in Eqn. (4.12) as Ipeak = g(1/(1 + K1))(V −
VCa) (see Exercise ??). Second, the exponential decline in current predicted by Eqn.
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(4.9) does a good job of approximating the rate of inactivation of the current. The
approximation works well because the time scale for the fast process (ca. 1ms) is much
faster than that for inactivation (ca. 45 ms). As long as the time constant for the fast
process is at least an order of magnitude faster than the remaining processes, the rapid
equilibrium approximation provides a reasonable approximation to the complete model.

The rapid equilibrium approximation is a useful way to reduce the complexity
of models. For the domain Ca2+ inactivation model, the simpliÞcation is not really
necessary since the full model involves only two linear differential equations that can
be analyzed by the matrix methods in Chapter ??. However, the fact that the equation
for the simpliÞed model resembles that for voltage-gated channels provides a conceptual
bridge to the properties of ligand-gating of channels, which are pursued in more detail
in Chapter ??.

4.2 Time Scale Analysis

Mathematicians have developed a more systematic method of dealing with fast and
slow variables called asymptotic analysis. Although we do not work through all the
intracacies of this technique here, the central idea of asymptotics is easy to understand,
and it can be applied proÞtably to many modeling problems in cell and neurobiology.
The idea is to deÞne the fast and slow time scales in the model, and then to rescale
time so that on this new scale only the slow, or alternatively only the fast, variables
are changing.

To illustrate the idea we reexamine the model of Ca2+ currents for L-type channels
introduced in the previous section. As we saw in that analysis, the two time scales
are the time scale of activation τact = 1/(k+1 + k

−
1 ) and the time scale of inactivation

τ([Ca2+d ]).
Having identiÞed the fast and slow time scales, we proceed to nondimensionalize

all of the variables in Eqs. (4.1)-(4.4) including time. Nondimensionalization is simply
eliminating the units of a variable by dividing by a parameter in the model that has the
same units as the variable. In this case the variables xC , xO, and xI are percentages, and
so are already nondimensional. The only variable having dimensions is t. The choice of
a nondimensionalized time determines whether our analysis focuses on the fast or the
slow time scale.

To nondimensionalize time using the slow time scale, we could set bt = τ([Ca2+d ])t.
However, it is somewhat easier and essentially equivalent to set bt = k−2 t. In terms of
this new time scale, Eqs. (4.1) and (4.2) become

²dxC/dbt = −k+1
k−1
xC + xO, (4.13)

²dxO/dbt = k+1
k−1
xC − xO − ²k

+
2

k−2
[Ca2+d ]xO + ²(1− xC − xO), (4.14)

where ² = k−2 /k
−
1 is a small number.
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The important observation is that since ² is small, unless the right hand side of
(4.13) is small, xC changes rapidly. However, if we add the two equations (4.13) and
(4.14) together and divide by ² we Þnd an equation that is independent of ²,

d(xC + xO)/dbt = −k+2
k−2
[Ca2+d ]xO + (1− xC − xO). (4.15)

The basic idea of asymptotic analysis is to treat ² not as a Þxed number, but as
a parameter that can be varied. In the asymptotic limit that ² → 0, we Þnd that the
right hand side of (4.13) is zero. This is the lowest order solution in the asymptotic
analysis on the slow time scale, and is exactly the same as (4.6). This approximation is
sometimes called the quasi-steady state approximation, where �quasi� emphasizes that
k+1 xC − k−1 xO is nearly, but not exactly, zero. We complete the slow time scale analysis
by using (4.13) to Þnd xC and xO in terms of y = xC + xO, and then using (4.15) to
Þnd an equation describing the evolution of y. This equation turns out to be exactly
(4.8).

The analysis on the fast time scale is similar. This time we choose a nondimensional
time �t = k−1 t, and write the equations (4.1) and (4.15) as

dxC/d�t = −k
+
1

k−1
xC + xO (4.16)

d(xC + xO)/d�t = ²(−k
+
2

k−2
[Ca2+d ]xO + (1− xC − xO)). (4.17)

This time, in the asymptotic limit that ²→ 0, the equation (4.17) reduces to

d(xC + xO)/d�t = 0, (4.18)

so that xC + xO = 1, and

dxC/d�t = −k
+
1

k−1
xC + 1− xC, (4.19)

at least for a short time.
This type of time scale analysis can be summarized by Þve steps, as follows:

� Analyze the parameters of the model to assess whether there are times scales that
can be separated into �fast� and �slow�.

� DeÞne time constants for each time domain, whose ratio deÞnes a small parameter,
².

� Select appropriate parameters in the model to nondimensionalize the dependent
variables.

� Nondimensionalize the differential equations in each time domain and see which
terms can be neglected as ²→ 0.

� Analyze the simpliÞed equations, which represent the behavior of the variables on
the two time scales.

In the next sections we describe how to carry out this analysis for several different
arrangements of fast and slow reactions.
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4.3 Glucose-Dependent Insulin Secretion

Insulin is secreted from β-cells in the pancreas in an oscillatory fashion. Glucose must
be metabolized by the β-cell to stimulate insulin secretion, and the insulin, which is
prepackaged in secretory vessicles, is secreted from the β-cell into the capillary system
by exocytosis. However, the secreted insulin affects the transport of glucose into the cell
by activating GLUT1 transporters and inactivating GLUT2 transporters. Thus, there
is both positive and negative feedback, necessary ingredients for sustained oscillations.

These oscillations have been studied experimentally in a ßow system depicted in
Fig. (4.4). A thin layer of insulin-secreting β-cells is sandwiched between beads and
exposed to a steady ßow of solution. By collecting the solution exiting the bed, one
can determine how the rate of insulin release from the cells in the bed depends on the
composition and ßow rate of the inßux solution.

A mathematical model of this process must involve (at least) three variables, the
extracellular glucose and insulin concentrations and the intracellular glucose concen-
tration. We assume that the volume of islets behaves like a well stirred chemical ßow
reactor so that the concentration of any quantity is uniform throughout the bed (justi-
Þcation of this assumption uses similar time scale arguments, but is rather complicated
and goes beyond the level of the discussion given here). Thus, the rate of change of a
concentration is the rate of ßow in minus the rate of ßow out plus the rate of production
in the bed. For glucose this is

dG/dt = −R1 −R2 − k0(G−G0) (4.20)

and for insulin

dI/dt = Rs − k0(I − I0) (4.21)

where G and I are the glucose and insulin concentrations of the solution, G0 and I0 are
the respective concentrations of the inßow solution, R1 and R2 are the uptake rates for
glucose through GLUT1 and GLUT2 receptors, respectively, Rs is the rate of insulin
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Figure 4.5 Schematic diagram of an insulin secreting cell.

secretion and k0 =
f

Vbed
is the inverse of the residence time for this reactor bed. (A

schematic diagram of a secreting cell is shown in Fig. (4.5).
Since there is no ßow associated with the intracellular space, the intracellular

glucose concentration is found by keeping track of productions rates, via

dGi/dt = −R1 −R2 +Rm (4.22)

where Rm is the rate of glucose usage through metabolism.
Now we must specify the transfer rates. As described in Chapter 1, the GLUT

transporters can be described by four states, two glucose free states and two glucose
bound states. If we assume that transporter is always in quasi-equilibrium, then the
ßux through the transporter is given by

RGLUT =
KGVmax(G−Gi)

(KG +G)(KG +Gi)
. (4.23)

The speciÞc transporters GLUT1 and GLUT2 have ßuxes of this form with the modi-
Þcation that GLUT1 is activated by insulin, and GLUT2 is inhibited by insulin. Thus,
for the GLUT1 transporter we take

R1 =
K1Vmax1(G−Gi)

(K1 +G)(K1 +Gi)
· In

Kn
i + I

n
(4.24)

and for the GLUT2 transporter

R2 =
K2Vmax2(GJ

m −Gi)

(K2 +G)(K2 +Gi)
. (4.25)

The variable J is a (phenomenological) inhibition variable, related to I, that acts to shut
down the inward ßux of glucose when I is large, and satisÞes the differential equation

dJ/dt =
J∞(I)− J

τ
, (4.26)

where J∞ = I/(I+KI), and τ is the time constant associated with this time dependent
process.
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The metabolism of internal glucose is an enzymatic process, the Þrst step of which
is that glucose is phosphorylated by glucokinase, in a reaction that is Michaelis-Menten-
like, and so is well described by the Michaelis-Menten rate law

Rm =
VmGi

Km +Gi

. (4.27)

The detailed mechanism underlying the secretion of insulin is not fully understood,
so a phenomenological equation describing the rate of secretion as a function of the
rate of metabolism is used,

Rs =
Vs(R

4
m + L

4)

K4
s +R

4
m + L

4
. (4.28)

Notice that with L 6= 0, there is secretion of insulin even when Rm = 0. Now that the
model is complete, we can begin an analysis of it. To do so we need to know something
about the parameters. In Table (4.3) are listed the parameters that are Þxed by the
experiment, experimentally variable, and adjustable.

To reduce the complexity of the model, we would like to determine if there are
any (relatively) fast or slow variables. One way to do this is to numerically simulate
the full system of equations using typical parameter values and observe if there are
some variables that change much faster than others. However, we suspect that there
are differences in time scales here for the simple reason that the ratio of the two time
constants k−10 and τ in Table 4.3 is large, being τk0 = 8× 103. This suggests that the
ßow processes (involving G and I) are fast compared to inhibition through J . To be sure
that this is correct, we introduce dimensionless parameters and variables bG = G/Km,bGi = Gi/Km, bG0 = G0/Km, bI = I/Ki, and bt = t/τ , and Þnd the four dimensionless

Table 4.1 Standard dimensional parameters

Fixed by experiment Vm 0.24 mM min−1

Km 9.8 mM

Vs 0.034 mM min−1

Ks 0.13 mM min−1

Vmax2 32.0 mM min−1

K2 17.0 mM

Vmax1 120.mM min−1

K1 1.4 mM

L 0.01 mM min−1

Experimentally variable k0 400.0 min−1

I0 0.0 mM

G0 8-22 mM

Adjustable in the model KI 1× 10−6mM
Ki 4.0× 10−5mM
τ 20.0 min
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differential equations

dbG/dbt = −bR1 − bR2 − bk0(bG− bG0) (4.29)

dbGi/dbt = −bR1 − bR2 + bRm (4.30)

dbI/dbt = bRs − bk0bI (4.31)

dJ/dbt = bJ∞(I)− J (4.32)

where

bR1 =
bK1
bVmax1(bG− bGi)

( bK1 + bG)( bK1 + bGi)
·

bInbKn
i +

bIn (4.33)

bR2 =
bK2
bVmax2(bGJm − bGi)

( bK2 + bG)( bK2 + bGi)
(4.34)

bRm =
bVm bGi

1 + bGi

(4.35)

bRs =
bVs(bR4

m +
bL4)bK4

s +
bR4
m +

bL4 (4.36)

bJ∞ = 1

1 + bI . (4.37)

The deÞnitions of the dimensionless parameters and their values are given in Table 4.2.
The Þrst noticeable feature from Table (4.2) is that there are two numbers, bVs andbk0, that are quite large. Since these parameters both occur in Eqn. (4.31) for I, this

implies that bI is a fast variable, so that bI changes rapidly in order to bring the right
hand side of Eqn. (4.31) close to zero. Thus, our Þrst quasi-steady state approximation

Table 4.2 Standard dimensionless parameters

Dimensionless parameter Dimensional deÞnition Standard valuebVm τVm/Km 0.50bVs τVs/Ki 6.8× 105bKs τKs/Km 0.27bVmax2 τVmax2/Km 65.3bK2 K2/Km 1.7bVmax1 τVmax1/Km 245.0bK2 K1/Km 0.14bL τL/Km 0.02bk0 τk0 8× 103bG0 G0/Km 0.8-2.2bKi Ki/KI 40.0
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Figure 4.6 Phase portrait of glucose
oscillations.

is to take

bI = 1bk0 bRs =
bVsbk0 (

bR4
m +

bL4)bK4
s +

bR4
m +

bL4 . (4.38)

Our second observation is that because bk0 is a large number, bG, governed by Eqn. (4.29),
is also a rapidly equilibrating variable, so we take the quasi-steady approximation

bG = bG0 − 1bk0 bR1 − 1bk0 bR2. (4.39)

However, since bVmax1/bk0 = 3.06 × 10−2 and bVmax2/bk0 = 8.2 × 10−3 are small, it is
legitimate to ignore bR1bk0 and bR2bk0 in (4.39) and takebG = bG0. (4.40)

With these simpliÞcations we are left with a two variable model which we can
readily analyze and simulate using XPPaut. We leave this simulation as an exercise,
to verify that indeed there are glucose oscillations with a period of about 1 (about 20
minutes in dimensional time). So that you can check your answer, in Fig. (4.6) is shown
the phase portrait for this oscillation.

4.4 Ligand Gated Channels

The Ca2+-activated potassium channel provides another example in which some tran-
sitions are much faster than others and this can be used to derive simpliÞed kinetics.
This channel has two open states and two closed states. The channel has two binding
sites for Ca2+and opens when one of the sites is occupied. Thus, the closed state may
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have zero or one Ca2+ion bound and the open state may have one or two ions bound.
The binding process is considered a fast process while the transition between open and
closed states is slow.

C [Ca2+]�fast� C · [Ca2+] �slow� O · [Ca2+] [Ca2+]�fast� O · ([Ca2+])2

To describe this process mathematically, we let the variables x1, x2, x3, and x4 de-
note the fractional occupancies of states C1, C2, O1 and O2. Then the transition rates
between these states are VA, VB, and VC, where

VA = k+a [[Ca
2+]]x1 − k−a x2, (4.41)

VB = k+b x2 − k−b x3, (4.42)

VC = k+c [[Ca
2+]]x3 − k−c x4. (4.43)

Of course, x1 + x2 + x3 + x4 = 1.
C1

A C2
B O1

C O2

x1 x2 x3 x4

does this need to be set off as a Þgure?
Since we assume that VA and VC (the association/dissociation steps for binding

Ca2+) are fast, we use the rapid equilibrium assumption to set VA = VC = 0. This
implies that

x1 = (
Ka

[[Ca2+]]
)x2 (4.44)

x3 = (
Kc

[[Ca2+]]
)x4, (4.45)

with dissociation constants

Ka = k
−
a /k

+
a , Kc = k

−
c /k

+
c . (4.46)

Next, to Þnd the evolution of the slow states, we combine states x1 and x2 into the
closed state, xC, and combine states x3 and x4 into the open state xO, with

x1 + x2 = xC , x3 + x4 = xO. (4.47)

Of course, because of our rapid equilibrium assumption,

x2 =
xC

1 +Ka/[[Ca2+]]
, (4.48)

x3 =
xO

1 +Kc/[[Ca2+]]
. (4.49)

The reduced equations follow from

dxC/dt = −Va + Va − Vb = −Vb (4.50)
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Figure 4.7 Diagram of a neuromuscular junction.

and, of course, xC + xO = 1. Therefore,

dxO
dt

= Vb = k
+
b x2 − k−b x3

=
k+xC

1 +Ka/[[Ca2+]]
− k−xO
1 +Kc/[[Ca2+]]

= k+xC − k−xO,
where k+ =

k+
b

1+Ka/[[Ca2+]]
, k− =

k−
b

1+Kc/[[Ca2+]]
. In other words, this process is equivalent

to the two state process C k+

k−O.
Parameters are known from experiments to be k+b = 480s−1, k−b = 280s−1, Ka =

k−a /k
+
a = 180e

−V/15.5µM, and Kc = k−c /k
+
c = 11e−V/13µM, where V , the voltage, is in

units of mV.

4.5 Neuromuscular Junction

A similar analysis works to Þnd a model of the acetylcholine receptor (AchR) in the
postsynaptic membrane of neuromuscular junctions. Neuromuscular junctions consist of
a presynaptic cell and a postsynaptic cell which are separated by a small synaptic cleft,
as depicted in Fig. (4.7). When an action potential reaches the nerve terminal, several
processes lead to the release of a chemical neurotransmitter, such as acetylcholine, from
the presynaptic cell into the synaptic cleft. The neurotransmitter binds to receptors on
the postsynaptic membrane which act as channels for some ion, such as sodium or
potassium.

A model for the opening and closing of the Ach receptor (see Fig. 4.8) is based on
the idea that a receptor is a four-state device, with three closed states and one open
state. The three closed states have 0, 1 or 2 Ach molecules bound to it, and the open
state requires that two Ach molecules be bound. We assume that the binding of Ach is
a fast process and the opening and closing of the channel is slow in contrast.



4.6: The Inositol Triphosphate (IP3) Receptor 95

R Ach  R Ach  R AchR*

C     C     C    O
1       1       3

2

fast         fast        slow

Ach Ach

Figure 4.8 Four-state model for the Ach receptor.
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Figure 4.9 Transition diagram for the eight-state IP3 receptor.

Using the rapid equilibrium approxmation, it is a straightforward exercise to
combine the three closed states into one and to reduce this process to an equivalent
two state process. In fact, it is readily found that if xO is the proportion of receptors
in the open state, then

dxO/dt = k34
k23[Ach]

k32

k12[Ach]

k21 + k12[Ach]
(1− xO)− k43xO. (4.51)

4.6 The Inositol Triphosphate (IP3) Receptor

The IP3 receptor is a Ca
2+channel located in the endoplasmic reticulum that is regu-

lated both by IP3 and by Ca
2+. Each receptor consists of three independent subunits,

each of which must be in the open state for the channel to be open. Each subunit
has one binding site for IP3 and two binding sites for calcium. Thus there are eight
possible state for the subunit. Binding with IP3 �potentiates� the subunit. The two
calcium binding sites activate and inactivate the subunit, and a subunit is in the open
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Table 4.3 Rate constants for the eight state IP3 receptor.

k15 = 400[IP3]µM
−1s−1 k51 = 52s

−1

k58 = 0.2[[Ca2+]]µM−1s−1 k85 = 0.21s−1

k48 = 400[IP3]µM−1s−1 k84 = 377.2s−1

k14 = 0.2[[Ca
2+]]µM−1s−1 k41 = 0.029s

−1

k12 = 20[[Ca2+]]µM−1s−1 k21 = 1.64s−1

state when IP3 and the activating calcium site are bound but the inactivating site is
unbound.

To make a mathematical model for this receptor we must Þrst give names to the
eight different states. We denote xi as the proportion of receptors in state i, where i is
the label of the vertex on the cube in Fig. (4.9). Thus, for example, x1 represents the
state in which all binding sites are unbound, and x6 is the open state of the subunit.

For these eight different states, there are 24 different rate constants kij . How-
ever, since each cycle must satisfy the thermodynamic constraint on kinetic constants,
there are six restrictions on these 24 parameters. Notice that the rate constants that
involve binding of a substrate must be proportional to the concentration of that sub-
strate. Thus, k15, k26, k37, and k48 are proportional to the concentration of IP3, while
the eight rate constants k12, k14, k23, k43, k58, k56, k67 and k87 are all proportional to the
Ca2+concentration. Now we make two simplifying assumptions. First we assume that
the rate constants are independent of whether activating Ca2+is bound or not, and
second we assume that the kinetics of Ca2+activation is independent of IP3 binding
and Ca2+inactivation. The Þrst of these implies that k14 = k23, k15 = k26, k58 = k67, and
k48 = k37, as well as for the reverse reactions. The second implies that k12 = k56 = k87 =
k43 and similarly for the reverse reactions. Thus we are left with only 10 rate constants.
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The parameter values that were used by DeYoung and Keizer are displayed in Table
(4.6).

An examination of the rate constants in Table 4.6 reveals that some processes are
much faster than others. In fact, according to this table, the binding (and unbinding)
of inactivating calcium is a slow process compared to the binding of IP3 and activating
calcium. For example, k15 and k48 are much larger than k58, k14, and k12. Therefore we
lump the eight variables into two groups with

y = x1 + x2 + x5 + x6 (4.52)

1− y = x3 + x4 + x7 + x8. (4.53)

Next, we assume that all the fast processes are in quasi-equilibrium.. That is, we assume
that the processes 1-5, 2-6, 3-7, 4-8 in which IP3 is bound and the processes 5-6, 8-7,
1-2, 4-3 in which activating calcium is bound, are in quasi-equilibrium. This gives us a
set of algebraic relationships which can be solved to Þnd the variables xi in terms of y.
For example,

x6 =
k15k12

(k51 + k15)(k21 + k12)
y. (4.54)

We substitute these into the differential equation for y,

dy

dt
= k41x4 + k85x8 + k76x7 + k32x3 − (k14x1 + k58x5 + k67x6 + k23x2) (4.55)

and Þnd the equation

dy

dt
= (

d1 + k85[IP3]

d2 + [IP3]
)(1− y)− d4cy. (4.56)

Using the parameter values given in Table 4.6, we Þnd d1 = 0.027µM s−1, d2 = 0.94µM,
d3 = 0.2µM

−1s−1. This equation is readily converted to an equation of the form

dy/dt = −(y − y
∞([Ca2+], IP3))

τ([Ca2+], IP3)
(4.57)

with an open probability

xO =

µ
[IP3][[Ca

2+]]y

(K1 + [IP3])(K2 + [[Ca2+]])

¶3
. (4.58)

Of course, the equilibrium open probability is

x∞O =

µ
[IP3][[Ca

2+]]y∞

(K1 + [IP3])(K2 + [[Ca2+]])

¶3
. (4.59)

A plot of the equilibrium open probability x∞O is plotted in Fig. (4.10) for several values
of [IP3]. Notice that the maximum open probability increases with increasing [IP3] and
the peak of the curve shifts to the right with increasing [IP3]. Both of these features
are observed experimentally.
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Exercises

1. Create an XppAut Þle for solving the domain Ca2+ inactivation mechanism in Fig.
(??). Use the parameter values k+1 = 0.7ms

−1, k−1 = 0.2ms
−1, k+2 = 0.05mM

−1ms−1,
k−2 = 0.005ms

−1, and [Ca2+d ] = 0.3mM. Include in your model an auxiliary variable
for calculating whole cell Ca2+ currents using ICa = gxO(V − VCa), with g = 5nS,
V = 20mV, and VCa = 60mV. Use XppAut to conÞrm the results in Fig. (4.3).

2. Use the data in Exercise 4.1 to create the simpliÞed version of the domain Ca2+

inactivation model based on the rapid equilibrium approximation. Using the initial
condition in Eqn. (4.12), solve the ODE using XppAut and compare your result for
the Ca2+ current (ICa = gxO(V − Vca)) to that in Fig. (4.3). Use Eqs. (4.9), (4.10)
and (4.11) to calculate the numerical value of the relaxation time, τ , and the Ca2+

current after inactivation is complete. Verify that Eqn. (4.12) is correct and use it to
show that the peak current is given by the expression Ipeak = g(1/(1+K1))(V −VCa).

3. On the fast time scale, it is a good approximation to neglect step 2 in the do-
main Ca2+ inactivation model in Fig. (??). Assuming that xC(0) = 1, use the
approximation to verify that on the fast time scale

dxO/dt = −(xO − 1

1 +K1

)/τact (4.60)

with K1 = k−1 /k
+
1 and τact = 1/(k

+
1 + k

−
1 ), the time constant for activation. Using

the parameters in Exercise 1, evaluate τact.
4. A model that simulates the voltage dependence of domain Ca2+ activation of
L-type Ca2+ channels in the pancreatic beta cell of mouse was developed by
Sherman, Keizer, and Rinzel using the mechanism in Fig. (??). They Þt data to
experimental voltage clamp records using the voltage-dependent kinetic constants:
k+1 (V ) = 0.78/(1 + exp[−(3 + V )/10])ms−1, k−1 = (0.78− k+1 (V ))ms−1, k+2 [Ca2+d ] =
7.56 · 10−4[Ca2+]

out
V/(1 − exp(V/13.4)mM−1ms−1, there is something wrong

with the units here. k−2 = 0.002ms
−1 with [Ca2+]

out
= 3mM the external Ca2+

concentration and V in mV. Create an XppAut Þle for this model with the current
as an auxiliary variable using the expression ICa = gxO[Ca

2+]
out
V/(1−exp(V/13.4)

3. Use the Þle to simulate voltage clamp currents in which the voltage is increased
from a holding potential of -100mV to depolarized test potentials with a duration
of 250msec. Record the peak and Þnal equilibrium currents and plot them as a
function of the test potential. Explain the inverted bell-shaped I − V curves.

5. Verify Eqn. (4.51) as a model for the Ach receptor.

3This is a special case of the Goldman-Hodgkin-Katz expression [ionzout]V/(1− exp(zFV/RT )
for the driving force, which is based on consideration of the rate at which an ion of charge z can
diffuse through a pore with a linear gradient of electrical potential. This generalization of the Nernst
expression in Eqn. (??) has proven particularly useful for modeling Ca2+ currents.
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6. What are the 6 thermodynamic constraints that must hold for the kinetic param-
eters of the full IP3 receptor model? Verify that these constraints hold for the
parameter values in Table (4.6).

7. Use Eqn. (4.56) to calculate y∞([Ca2+], IP3)). Plot the equilibrium open probability
for several values of [IP3].

8. Derive a model for ryanodine (RyR) receptors in cardiac cells. Assume that each
subunit of a receptor has two binding sites for Ca2+, one which activates the subunit
when Ca2+is bound and one which inactivates the subunit when Ca2+is bound.
Assume further that the binding of activating Ca2+is independent of inactivating
Ca2+, and that the binding of inactivating Ca2+is independent of activating Ca2+.
Show that as a result there are four independent rate constants, and that the
thermodynamic constraint is automatically satisÞed.
Let x0 be the fraction of receptors with no Ca

2+bound, x1 be the fraction of re-
ceptors with only activating Ca2+bound, x3 be the fraction of receptors with only
inactivating Ca2+bound and x4 be the fraction of receptors with both binding sites
bound. Draw a diagram of this reaction mechanism. Which of the rate constants
are proportional to the Ca2+concentration?
Using the rate constants k12 = 15[[Ca

2+]]µM−1s−1, k13 = 0.8[[Ca
2+]]µM−1s−1, k21 =

7.6s−1, k31 = 0.84s
−1, identify which processes are fast and which are slow. Use the

quasi-steady-state approximation to compress this into a two-state model. What
are the effective rate constants for this compressed two state model?

9. Find the reduced slow time scale equations for a four-state transporter, such as
the GLUT transporter described in Chapters 1 and 3 (exercise 9 check this (See
Fig. (4.11).) Assume that the 1-4 and 2-3 transitions are rapid compared to other
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Figure 4.11 Transition diagram for sodium and GLUT four-state transporters. These could easily be
placed side-by-side
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transitions by lumping states 1 and 4 and state 2 and 3 into two variables

x1 + x4 = y1 x2 + x3 = y2. (4.61)

where y1 + y2 = 1, and show that

dy1/dt = −k12x1 + k21x2 + k34x3 − k43x4. (4.62)

Solve the equilibrium conditions for x1 and x4 in terms of y1 and for x2 and x3 in terms
of y2. Show that

dy1/dt = −1
τ
(y1 − yss1 ) (4.63)

where

yss1 =
k(a)21 + k

(b)
21

k(a)12 + k
(a)
21 + k

(b)
12 + k

(b)
21

,

τ =
1

k(a)12 + k
(a)
21 + k

(b)
12 + k

(b)
21

.

k(a)12 =
k12

1 +K 0 , k(a)21 =
k21
1 +K

, k(b)12 =
k43K 0

1 +K 0 , k(b)21 =
k34K

1 +K
. (4.64)

Notice that this equation describes the transition between states 1 and 2 by two different
processes, depicted in Fig. (4.12) as process �a� and �b�.
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CHAPT E R 5

Whole Cell Models

Arthur Sherman, Yue-Xian Li, and Joel Keizer

07-28

In modeling whole cells we try to understand complex properties of cells by combining
together interlocking transport and regulatory mechanisms. We use a modular approach
and develop models of each individual process separately using available experimental
data. We then construct partial models by combining progressively more components
together to understand how the components work together. In order to understand how
the complete model works, we use separation of time scales or other features to develop
a simpliÞed model.

Three model systems are investigated in this chapter, the bullfrog sympathetic
ganglion neuron, the pituitary gonadotroph, and the pancreatic β-cell. The order chosen
is pedagogical and is in fact opposite to the historical order in which the models were
developed. These models are not intended to provide a complete description of all
features in cells, not even all features that have been modeled. Rather, they focus on
the consequences of integrating plasma membrane and ER membrane ßuxes into a
coordinated system for control of membrane potential and Ca2+ concentrations. We
will focus on the control mechanisms, but the controlled quantity, [Ca2+]i, is of great
importance for the life and death of cells. It is a key regulator of many cell processes,
such as secretion, gene transcription, and apoptosis. We further restrict our attention
here to models with a small number of discrete, well-mixed compartments; diffusion in
spatially extended compartments will be treated in Chapter (6). The models discussed
here are far from the only ones that have been proposed for the particular systems.
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refer to Keener and Sneyd chapter on calcium dynamics, Othmer review(s) for ip3 and
ryr and ca oscs.

These simpliÞed models incorporate a number of the examples of ion pumps and
voltage- and ligand-gated channels discussed in the previous channels, and provide se-
rious illustrations of the modular approach. A common dynamical theme in all three
models and their variants is oscillations, some driven by the ER, some by the plasma
membrane, and some by interactions between the two. As we saw previously in Chap-
ter (2) (Chap. 2), a ubiquitous way that cells produce oscillations is through the
combination of fast positive feedback with slow negative feedback.

[Add and cite in text or the exercises: Meyer-Stryer; Goldbeter-Dupont; Chay-
Cuthbertson; Zweifach-Lewis; Sneyd-Atri]

5.1 General Framework for Models of ER and PM

The most striking feature of Ca2+ is its low concentration, approximately 0.1 µM at
rest, and up to 1 µM or so at its peak. In contrast, Na+ and K+ are found in millimolar
concentrations. Cells need to keep [Ca2+]i so low because Ca

2+ binds to many proteins
and modiÞes their enzymatic properties. Thus, rises in Ca2+ must be kept brief and
highly localized to avoid runaway activation of enzymatic cascades. These requirements
are met by two basic mechanisms, buffering and sequestration. Buffers are specialized
Ca2+-binding proteins that soak up 95 � 99 % of the Ca2+ in the cytosol. Ca2+ is
sequestered by Ca2+-ATPases (SERCA) that pump it into internal stores, the sar-
coplasmic reticulum (SR) in muscle cells and the endoplasmic reticulum (ER) in other

in PMCA

cytoplasm

Ca 2+
e

Ca 2+
i

Ca 2+
ER leak

SERCA

RyR

Ca 2+ buffers

ATP ADP + Pi

ATP ADP + Pi

Figure 5.1 Add IP3R to this Þgure.
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cells. Other pumps, plasma membrane Ca2+-ATPases (PMCA), remove Ca2+ from the
cell. Store membranes contain ion channels, analogous to but different from plasma
membrane channels, that allow Ca2+ back out of the stores into the cytoplasm when
needed. See Fig. (5.1). Whereas all cells have pumps for negative feedback and home-
ostasis, some cells have evolved ion channels such as the Ryanodine Receptor (RyR)
and the IP3-Receptor, which are both activated and inhibited by Ca

2+and provide both
postive and negative feedback. The large ratios of bound to free Ca2+ and sequestered
to cytoplasmic Ca2+ mean that brief channel opening can lead to large excursions of
free cytoplasmic Ca2+ or oscillations that can be exploited for signalling.

Mitochondria and vesicles may also act as Ca2+ reservoirs and have their own
specialized uptake and release mechanisms for Ca2+ and other ions. These have not
been modeled as extensively, and will be treat only in passing here.

Exogenous Ca2+ buffers, called indicator dyes, that ßuoresce differentially depend-
ing on [Ca2+]i are the most common way to measure the concentration of free Ca

2+.
As we will see below, buffers change (generally, slow down) the dynamics of Ca2+ in
cells. Some cells possess Ca2+-dependent K+ or Cl−channels, and these are often used
as an alternative. A third approach is to exploit the luminescence of aequorin, a natu-
rally occuring luminescent protein found in jelly Þsh, which can be targeted to speciÞc
organelles in cells of other organisms by genetic techniques.

5.1.1 Flux Balance Equations with Rapid Buffering

We begin with a general description applicable to any cell with a cytosolic compartment
(subscripted by i) and an ER (subscripted by ER) and one species of Ca2+ buffer in
each compartment. That gives a total of four species, bound and free Ca2+ in each of
the two compartments.

We deÞne Ni = total number of Ca2+ ions, bound and free, in the cytoplasm and
NER = total number of Ca

2+ ions in the ER. Then

[Ca2+]toti =
Ni

Vi
, [Ca2+]totER =

NER

VER
(5.1)

where the V�s represent the volumes of the cytosol and ER.
The fundamental physical principle used in constructing the equations is conserva-

tion of Ca2+ ions. The number of ions in each compartment is determined by the balance
of ßuxes across each of the membranes separating the compartments. The most general
form is

dNi

dt
= J inPM − JoutPM − J inER + JoutER (5.2)

dNER

dt
= J inER − JoutER . (5.3)

The J �s have units of µmoles/sec and represent ßuxes through the following entities
commonly found in cells: J inPM , ßux through ion channels; J

out
PM = JPMCA, plasma mem-

brane Ca2+-ATPase; J inER = JSERCA, ER Ca
2+-ATPase; and JoutER , one or more of JIP3
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(IP3-receptor), JRyR (Ryanodine receptor), and Jleak (unregulated leak) (See Fig. (5.1)).
In terms of concentrations we have:

d[Ca2+]toti
dt

=
1

Vi
(J inPM − JoutPM − J inER + JoutER) (5.4)

= jinPM − joutPM − jinER + joutER

d[Ca2+]totER
dt

=
1

VER
(J inER − JoutER) (5.5)

=
Vi
VER

(jinER − joutER)

where we have absorbed the volumes into the j�s, giving them units of µM/sec.
Now we come to grips with the buffering equations. [Ca2+]tot consists of free Ca2+

plus Ca2+ bound to buffer, B. In the cytosol,

[Ca2+]i + [Ca
2+ · B]i = [Ca2+]toti (5.6)

[B]i + [Ca
2+ · B]i = [B]toti (5.7)

with similar expressions for the ER. We avoid adding a differential equation to describe
these reactions by assuming rapid equilibrium between Ca2+ and buffer:

[Ca2+]i =
Ki[Ca

2+ · B]i
[B]i

(5.8)

Combining Eqn. (5.6) and Eqn. (5.8) gives:

[Ca2+]toti = [Ca2+]i

µ
1 +

[B]i
Ki

¶
(5.9)

Combining Eqn. (5.7) and Eqn. (5.8) gives:

[B]toti = [B]i

µ
1 +

[Ca2+]i
Ki

¶
(5.10)

Finally, solving Eqn. (5.10) for [B]i and substituting into Eqn. (5.9) gives the desired
algebraic relation between [Ca2+]toti and [Ca2+]i:

[Ca2+]toti = [Ca2+]i

µ
1 +

[B]toti
Ki + [Ca2+]i

¶
. (5.11)

To get the balance equation for [Ca2+]i, we apply the chain rule and Eqn. (5.11) to
obtain

d[Ca2+]toti
dt

=
d[Ca2+]toti
d[Ca2+]i

d[Ca2+]i
dt

=
1

fi([Ca2+]i)

d[Ca2+]i
dt

, (5.12)

where

fi([Ca
2+]i) =

1

1 +
Ki[B]

tot
i

(Ki+[Ca
2+]i)

2

. (5.13)
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This is a form of the Rapid Buffering Approximation (RBA), specialized to cells that
may be considered spatially homogeneous. The extension to situations in which diffusion
of [Ca2+]i and buffer cannot be ignored is taken up in Chapter (6).

In general, fi is a function of [Ca
2+]i, but for low affinity buffers Ki À [Ca2+]i and

fi can be taken as constant:

fi ≈ 1

1 +
[B]tot

i

(Ki)

. (5.14)

In this case, fi can be interpreted as the fraction of [Ca
2+]toti that is free. Typical

measured values for fi are 0.01�0.05.
Combining Eqn. (5.12) and the corresponding equation for the ER with Eqn. (5.4)

and Eqn. (5.5) gives

d[Ca2+]i
dt

= fi(j
in
PM − joutPM − jinER + joutER) (5.15)

d[Ca2+]ER
dt

=
VifER
VER

(jinER − joutER). (5.16)

It is sometimes convenient to replace [Ca2+]i or [Ca
2+]ER by [Ca

2+]toti . This is equiv-
alent to using Eqs. (5.15), (5.16) because of the conservation condition NT = Ni+NER,
where NT is the total number of Ca

2+ ions in all the cell compartments. Dividing the
conservation condition by the cytosolic volume gives

NT

Vi
= [Ca2+]toti +

VER
Vi
[Ca2+]totER. (5.17)

Applying the RBA and assuming that both ER and cytoplasmic buffers are low affin-
ity (Eqs. 5.12, 5.14 and their analogs for the ER), [Ca2+]i and [Ca

2+]ER are each
proportional to the total Ca2+ in their respective compartments we have

[Ca2+]i = fi[Ca
2+]toti , [Ca

2+]ER = fER[Ca
2+]ER. (5.18)

Combining Eqs. (5.18) with Eqn. (5.17) yields

CT = [Ca
2+]i + σ[Ca

2+]ER (5.19)

where

CT =
fiNT

Vi
and σ =

VERfi
VifER

(5.20)

with CT ,σ, fi all constants. CT is the �total free Ca
2+� of the cell with the cytosolic

volume as the reference volume. Vi/fi and VER/fER are called the �effective volumes�
of the cytosol and ER respectively, that is, the volumes taking into account the fraction
of Ca2+ that is free in each compartment. σ is then the ratio of effective volumes.

Differentiating Eqn. (5.19) we obtain

dCT
dt

= fi(j
in
PM − joutPM), (5.21)
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which is simpler than Eqn. (5.16) for [Ca2+]ER. [Ca
2+]ER can be recovered from the

algebraic relation

[Ca2+]ER = (CT − [Ca2+]i)/σ. (5.22)

This formulation is particularly useful in the closed-cell models below. In those
models, we assume that that there is no net ßux of Ca2+ in or out of the cell. Then,
jinPM = j

out
PM = 0, so CT is constant. This allows us to replace Eqn. (5.16) by Eqn. (5.22),

reducing the number of differential equations by one.
Go further into non-dimensional form of equations to show ratio of ER/PM

surface area.

5.1.2 Expressions for the Fluxes

The Þnal step in specifying particular models is to replace the general terms
jinPM , j

out
PM , j

in
ER, and j

out
ER by appropriate biophysical expressions. Efflux from the cell is

generally mediated by a pump ßux, jPMCA, and inßux into the ER from the cytosol by
jSERCA. Ca2+ pumps were discussed in detail in Chapter (3). In the whole cell models
we generally use the empirical, Hill-type formulas for pump rate of the form

jPUMP =
v[Ca2+]i

2

K2 + [Ca2+]i
2 (5.23)

rather than detailed kinetic models (cf. Eq. 3.37). Here v is proportional to the total
number of SERCA or PMCA pumps and to the rate of a single pump.

Efflux from the ER to the cytosol often includes a constant, unregulated leak
conductance of the form

jleak = v · ([Ca2+]ER − [Ca2+]i) (5.24)

where v is the leak permeability ([Ca2+]ER−[Ca2+]i) is the thermodynamic driving force
for a symmetric channel (See Exercise (2)). Switch v to P?

Interesting dynamics, such as oscillations, however, generally require nonlinear feed-
back on the efflux rate by Ca2+. This can be mediated by the RyR, for which a detailed
model is presented in Section (5.2), or the IP3R, which was discussed in Chapter (??)
and is further developed in Section (5.3).

Ca2+ generally enters cells via voltage-dependent ion channels. Ionic currents are
measured in pA or nA, so an additional factor is needed to convert to µmoles:

jinPM = −αICa (5.25)

where α = 1/(2FVi), F = 96480 C mol−1 is Faraday�s constant (F = eA = the
elementary charge × Avogadro�s number), and the factor 2 accounts for the two positive
charges of a Ca2+ ion. As an example, if ICa is measured in pA, and cytosolic volume is
measured in µm3, jinPM will have units of M msec−1. Note that by the Hodgkin-Huxley
convention, an inward cation current such as ICa is negative, so the ßux is positive.
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5.2 Calcium Oscillations in the Bullfrog Sympathetic
Ganglion Cell

5.2.1 Review of the biology

Bullfrog sympathetic ganglion neurons are excitable cells with a full complement of
voltage-dependent ion channels (see W. M. Yamada, C. Koch, and P. R. Adams, Mul-
tiple Channels and Calcium Dynamics, in Methods in Neuronal Modeling, 2nd Edition,
MIT Press, 1998). However, the Ca2+ oscillations modeled here are driven by nonlin-
earity in the ER, with the plasma membrane playing only a passive role. As early as
1976, Kuba and Nishi (JNP 39:547 �76) observed rhythmic hyperpolarizations of the
rest potential when the neurons were exposed to caffeine.

These caffeine-induced oscillations also occur when the membrane voltage is
clamped at a Þxed value, suggesting that voltage-gated ion channels on the plasma
membrane are not involved in producing the oscillations. Caffeine has been found to
activate the RyR by shifting the Ca2+-dependence of channel opening to lower and more
physiological levels of [Ca2+]i. Ryanodine, a speciÞc ligand to RyR, blocks the response
of these neurons to caffiene. This is consistent with the fact that ryanodine blocks RyR
channels by locking them into a low conductance state. These oscillations are of relax-
ation type with very long period (several minutes). The [Ca2+]i spikes are characterized
by a sharp upstroke followed by a plateau phase and a subsequent downstroke. The
upstroke is associated with the dumping of Ca2+ by the ER store, the plateau phase
is largely due to Ca2+-extrusion, and the downstroke is linked to Ca2+-uptake by the
store. Sustained Ca2+ entry is indispensable during the interspike intervals, suggesting
that after each spike store reÞlling driven by Ca2+ inßux is necessary for the generation
of the subsequent spike. Therefore, increasing the rate of Ca2+ entry by depolarizing
the membrane leads to shortened interspike interval and increased amplitude (Friel and
Tsien, �92, Friel, �95, Nohmi et al, �92). Ca2+-dependent gating properties of the RyR
channels were further investigated by Györke and Fill in 1993, providing data for the
development of a mathematical model based on channel kinetics. Although caffeine-
induced Ca2+ oscillations are not likely to occur in bullfrog sympathetic neurons under
physiological conditions, it is good model for studying RyR-mediated Ca2+ oscillations
in neurons.

5.2.2 Model for RyR Kinetics

We begin with equations for the RyR receptor itself as studied in conditions where
Ca2+ is a parameter, imposed by the experimenter. For example, in the experiments
of Györke and Fill (Science, 260:807�809, 1993), cardiac RyRs in lipid bilayers were
exposed to controlled Ca2+ elevations by ßash photolysis of a caged Ca2+ compound,
DM-nitrophen. (See Exercise (7)).

Here we present a minimal model designed to capture the key features observed
by those authors. Like the IP3-receptor, the RyR exhibits fast activation and slow
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inactivation in response to a rise in Ca2+. In contrast, the steady-state open probability
is monotonic with respect to [Ca2+]i. The state diagram devised by Keizer and Levine
(5.2) consists of two closed states, C1 and C2, and two open states, O1 and O2. At rest
(corresponding to a background Ca2+ level of 0.1 µM), most of the receptors are in
state C1.

Both open states have the same conductance, so the net open probability PO =
PO1 + PO2. The receptors respond to a step increase in Ca

2+ with a rapid rise in PO
as states O1 and O2 are populated, followed by a slow decline to a steady, plateau
level as states ßow into C2 Fig. (5.3), left panel, solid curve. Fig. (5.3), right panel,
shows the peak and plateau values attained after a step from [Ca2+] = 0.1 µM to the
indicated value. (Note that the jump to the peak depends on the initial conditions,
which determine the number of receptors in C1 available to be recruited by the Ca

2+

step.) During the short time shown in Fig. (5.3), there is little back ßow out of C2, but
a further increase in [Ca2+]i draws more receptors out of C1 into the open states Fig.
(5.3), left panel, arrow and dashed curve.

The full 4-state model are described by 3 independent odes plus a conservation
condition for the total number of channels: PO1 + PO2 + PC1 + PC2 = 1. We can apply
the methods of Chapter (??) to derive a quasi-steady-state approximation (Exercise 3)
assuming that PC2 is slow, while the other states are in rapid equilibrium:

PO ≈ P slow
O =

w · (1 + ([Ca2+]i/Kb)
3)

1 + (Ka/[Ca2+]i)4 + ([Ca2+]i/Kb)3
(5.26)

where P slow
O is proportional to w = 1 − PC2, which is the fraction of non-inactivated

receptors. In terms of probabilities,

Pr{Open} = Pr{Not Inactivated} · Pr{Open|Not Inactivated}. (5.27)

Given [Ca2+]i, w is calculated from the differential equation

dw

dt
=
(w∞([Ca

2+]i)−w)
τ([Ca2+]i)

(5.28)

with

w∞([Ca
2+]i) =

1 + (Ka/[Ca2+]i)4 + ([Ca2+]i/Kb)3

1 + (1/Kc) + (Ka/[Ca2+]i)4 + ([Ca2+]i/Kb)3
(5.29)

and

τ([Ca2+]i) =
w∞([Ca

2+]i)

k−c
. (5.30)

As for the gating variables in Chapter (2), it is natural to write a pseudo-exponential
rate equation for w because changes in w are exponential for Þxed [Ca2+]i. Note that the
rate constants of the fast processes no longer appear, just the dissociation constants,
deÞned by K4

a = k−a /k
+
a , K

3
b = k−b /k

+
b , and Kc = k−c /k

+
c . The slow time scale τ is

inversely proportional to k−c , the rate of transition out of C2.
Refer to other models (eg. Tang-Othmer).
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Figure 5.2 Kinetic states of the Keizer-Levine model for the
RyR.
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Figure 5.3 Left: Timecourse of response of PO to a step increase in c from 0.1 to 0.35 µM (solid).
Dotted curve shows �adaptation� when a second step to 0.7 µM is applied at t = 2 sec. Right: Peak and
steady-state levels of PO for different values of c (Equivalent to Keizer-Levine Figure 2C, D; made with
klstates.ode and klss.ode). Compare to Györke and Fill, Figs. 3 and 2B. Parameters: k+a = 1500 µM−4

s−1, k−a = 28.8 s
−1, k+b = 1500 µM

−3 s−1, k−b = 385.9 s
−1, k+c = 1.75 s

−1, k−c = 0.1 s
−1.

5.2.3 Closed Cell Model

We proceed to write down the equations for a closed cell using Eqn. (5.15) (with jinPM =
joutPM = 0) together with appropriate expressions for the ßuxes due to the ryanodine
receptors, a leak out of the ER, and a SERCA pump:

d[Ca2+]i
dt

= fi(jRyR + jleak − jSERCA). (5.31)

The RyR ßux is

jRyR = v1PO · ([Ca2+]ER − [Ca2+]i), (5.32)
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where v1 is proportional to the number of RyR�s and PO is the probability that a
receptor is open. (Note that here we are generalizing Eqn. (5.24) for a symmetric leak
channel, but symmetry is only an approximation for the RyR. See Exercise (2). We use
the quasi-steady-state approximation Eqn. (5.26)�Eqn. (5.30) of the previous section for
PO. Because of conservation of ions, we do not need a differential equation for [Ca2+]ER,
but just the algebraic relation Eqn. (5.22).

The leak is given by

jleak = v2([Ca
2+]ER − [Ca2+]i), (5.33)

and the pump ßux is

jSERCA = v3
[Ca2+]i

2

[Ca2+]i
2
+K3

2
. (5.34)

The closed cell model consists of the two differential equations for [Ca2+]i (Eqn.
5.31) and w (Eqn. 5.28) plus the associated algebraic equations.

With the parameters given in Fig. (5.4) (corresponding roughly to the small store
case in Keizer-Levine), the model is not able to produce oscillations, but instead is
bistable; it can assume either a high-[Ca2+]i steady state or a low-[Ca

2+]i steady state.
This behavior can be understood by looking at the nullclines (This is possible because
we reduced the kinetic equations for the RyR to one slow equation.) In the closed-cell
model total Ca2+ (CT ) is constant, and this is a natural parameter to use to characterize
the system. For low values of CT , the steady-state [Ca

2+]i is low, and w is high (few
receptors are adapted). For high values of CT , steady-state [Ca

2+]i is high, and w is low
(many receptors are adapted). For intermediate values of CT , there are three steady
states. Examination of the eigenvalues of the jacobian in this case reveals that the
low and high steady states are stable nodes (see Appendix), while the middle steady
state is a saddle. Sample nullclines are plotted in the top panel of Fig. (5.4), and the
summary of how the steady states vary with CT (i.e.the bifurcation diagram) is plotted
in the bottom panel. This global view reveals a large region of bi-stability or hysteresis
bracketed by two saddle-node bifurcations (the turning points, where the determinant
changes sign) that give birth to all of the steady states in the system. Such features
are worth study because they are ubiquitous in biological models. However, there are
no Hopf bifurcations (points where the trace of the Jacobian changes sign) that give
rise to oscillations Geometrically, this is because for no value of CT does the w-nullcline
intersect the [Ca2+]i-nullcline with a more negative slope.

By making a small change in the Ca2+-handling parameters it is possible to obtain
oscillations with the closed-cell model. See Exercise (4). Nonetheless, Keizer and Levine
concluded that that this is not a good model for the oscillations observed by Friel and
Tsien; they are not robust (i.e. the oscillations only exist for a small range of CT , and it
is difficult to get oscillations with period greater than one minute. This is because the
time scale of the oscillations is determined by the reciproal of kc

−, which is about 10
seconds. In order to obtain robust oscillations on the minute time scale, it is necessary
to add another, slower process to the system, which we do in the next section.
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Figure 5.4 Top: Nullclines for [Ca2+]i (solid), w (dashed) for closed-cell Keizer-Levine model. Bottom:
Intersections of nullclines (steady states)in top panel for various values of CT . Parameters: As in Fig. (5.2)
plus: fi = 0.01, v1 = 5 s−1, v2 = 0.2 s−1, v3 = 100 µM s−1, K3 = 0.2 µM, σ = 0.02, CT = 1.0 µM,
Ka = 0.4 µM, Kb = 0.6 µM, Kc = 0.1 µM, and kc

− = 0.1 s−1. Made with klclose.ode. Yue-Xian: Check
for HB.

5.2.4 Open Cell Model

In the previous section we saw that adaptation of the RyR is not likely the mechanism
behind slow oscillations in the BFSG cell, and that another slower process is needed.
A natural extension suggested by the analysis of the closed cell is to make CT a slow
variable rather than a constant parameter. Biophysically, this allows for larger variation
in the Þlling state of the ER. We will see that in each cycle the stores almost completely
empty and reÞll. In other words, the net ßux in and out of the cell over a cycle is 0, but
there is a large efflux at some points in the cycle that is balanced by a large at other
points.
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The open cell expands on the closed cell model by adding an equation to describe
changes in CT due to ßuxes into the cell and PMCA pumps that remove Ca2+,

dCT
dt

= fi(jin − jPMCA). (5.35)

The PMCA ßux is given by

jPMCA =
vout[Ca

2+]i
2

K2
out + [Ca

2+]i
2 . (5.36)

Since oscillations occur under voltage-clamp, we can represent inßux of Ca2+as a con-
stant, jin (understood as inßux across the plasma membrane). The equation for [Ca

2+]i
must also be augmented by the additional ßuxes:

d[Ca2+]i
dt

= fi(jRyR + jleak + jSERCA + jin − jPMCA). (5.37)

The open cell model thus consists of three differential equations Eqn. (5.28), Eqn.
(5.35), and Eqn. (5.37) and associated algebraic expressions for the ßuxes. We can
collapse this system back into just two equations for [Ca2+]i and CT . This is justiÞed
because variation in w is fast compared to the oscillation period. (See Exercise (6)).
We eliminate the equation for w by writing w = w∞([Ca

2+]i). The RyR channel ßux is
then given by

jRyR =
v1w∞([Ca

2+]i)(1 + [[Ca
2+]]/Kb)

3

1 + (Ka/[Ca2+]i)4 + ([Ca2+]i/Kb)3
. (5.38)

Solutions of the reduced open cell model (Eqn. (5.35) and Eqn. (5.37) with jRyR
replaced by the expression in Eqn. (5.38)) are shown in Fig. (5.5). With adequate Ca2+

inßux, oscillations of the right shape and duration are seen. However, if Ca2+ inßux is
suppressed, say by removal of external Ca2+, the oscillations cease immediately, also in
agreement with experiment (ref).

The closed cell model can be viewed as the fast subsystem of the open cell. That is,
the bifurcation diagram of the closed cell model with CT as a parameter is a phase plane
of the reduced open cell model with CT as a slow variable (slow compared to [Ca

2+]i). We
illustrate this by projecting the trajectory of the open cell onto the diagram computed
with the closed cell supplemented with the nullcline for CT . We can predict further
from this that if jin is increased so that the CT nullcline intersects the s-shaped [Ca

2+]i
nullcline above the upper limit point or below the lower limit point, there will be no
oscillations. (See Exercise (5)). This is conÞrmed by the bifurcation diagram of the
reduced open cell with respect to jin Fig. (5.7). Within the oscillatory range, variation
of jin produces a broad range of frequencies, but almost no change in amplitude. This
follows from the relaxation oscillator character of the model (compare with discussion
of the Morris-Lecar model, Chapter (2), Fig. 2.9).
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Figure 5.5 Reduced open cell Keizer-Levine model. At time = 50 seconds, oscillations are initiated by
stepping jin from 0 to 1.5. At time = 400 seconds, oscillations are terminated by reducing jin back to 0.
Parameters as in Fig. (5.4) plus: vout = 5.0 µM s−1, Kout = 0.6 µM, jin = 1.5 µM s−1. (Equivalent to
KL Fig. 5. Made with klopen red.ode.)
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Figure 5.6 Equivalent to KL Fig. 3. Made with klclose.ode (S-curve) and klopen red.ode (trajectory).
S-curve is [Ca2+]i nullcline, horizontal line is CT nullcline. Direction of motion along trajectory indicated
by arrows. Parameters as in Fig. (5.4).

5.3 The Pituitary Gonadotroph

5.3.1 Review of the biology

Our next example of a whole cell model is the coupling of electrical signaling and
Ca2+ signaling in anterior pituitary gonadotrophs. Gonadotrophs release gonadotropins
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Figure 5.7 Equivalent to KL Fig. 8. Made with klopen red.ode. NOTE: cytosolic misspelled

(gonad-stimulating hormones) in response to the GnRH (gonadotropin-releasing hor-
mone) that comes from GnRH-secreting neurons in the hypothalamus. Ca2+ signaling
is crucial for these cells to fulÞll their secretory functions which are part of the com-
plex neuro-endocrine control of reproduction in mammals. Physiological levels of GnRH
have been shown to trigger large amplitude Ca2+ oscillations in cultured gonadotrophs.
It has further been shown that these oscillatory Ca2+ signals are directly coupled to
the exocitosis of hormone-containing vesicles in these cells (Tse et al, 1992). These
Ca2+ signals are complicated by the ability of gonadotrophs to generate Ca2+ action
potentials that drive Ca2+ from the extracellular medium into the cell in an oscillatory
manner. Thus, gonadotrophs are equipped with two distinct mechanisms of generating
dynamic Ca2+ signals, one due to voltage-gated Ca2+ entry (PM oscillator) and the
other due to the oscillatory release of Ca2+ from the intracellular store (ER oscillator).
This makes gonadotroph an ideal system to study complex Ca2+ signaling mechanisms
and to apply the modular approach in developing mathematical models. Therefore, the
model of Ca2+ signaling in gonadotrophs consists of two coupled dynamic signaling
systems: ER-mediated, cytosolic Ca2+ oscillations and electrical activity in the plasma
membrane.

5.3.2 The ER oscillator in a closed cell

As for the bullfrog, it is useful to study the gonadotroph Þrst in the closed-cell case, when
the ER oscillator is decoupled from the PM oscillator. This allows us to concentrate on
the intracellular mechanisms that are independent of the inßuence of Ca2+ exchanges
across the plasma membrane.

ER-mediated Ca2+ oscillations in gonadotrophs are linked to the activation of IP3
receptor channels. In contrast to the caffeine-induced and Ca2+ oscillations in the bull-
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frog sympathetic neurons, mediated by the RyR, the ER-dependent Ca2+ oscillations
in gonadotrophs are induced by the endogenous intracellular messenger IP3 produced
when the physiological ligand GnRH binds to its receptors on the surface of the cell.
Agonist-induced Ca2+ oscillations in a large number of cell types including gonadotrophs
are generated by the dynamic interactions between IP3 channels and SERCA pumps
expressed in the membrane of the intracellular Ca2+ store (ER or SR). Of crucial impor-
tance is the Ca2+-dependent gating properties of the IP3 channels. As we have already
discussed in previous chapters, cytosolic free Ca2+ can both activate and inactivate the
opening of IP3 channels. This leads to the characteristic bell-shaped Ca

2+-dependence
of steady-state channel opening with the peak typically located at the mid submicro-
molar level of Ca2+ (see Fig. (??) in Chapter (??); ref. Iino, Bezprozvanny, Parker and
Ivorra). It has also been shown that Ca2+-dependent activation occurs on a faster time
scale than Ca2+-dependent inactivation (Finch etal, Parker and Ivorra).

The De Young-Keizer model that was discussed in Chapter (??) was the Þrst model
to incorporate all these experimental data. Other models based on similar data were
also developed later (Atri etal, Othmer and Tang). Differences in the time scales of
channel-gating are attributed to differences in the binding constants of IP3 and Ca

2+

to their binding sites on the IP3 channels. This assumption, although not necessarily
an accurate description of the real system, leads to a simple model that gives results
that are identical to the observed ones. Whether the time scale differences are actually
due to mechanisms other than the differences in the binding constants does not give a
mathematically distinguishable model. Here we use a simpliÞed version of the model
due to Li and Rinzel (see Eqn. (??)). For a closed cell at a Þxed level of IP3, the Li-
Rinzel simpliÞcation involves only two dynamic variables: C � the cytosolic Ca2+ and h
� the fraction of channels not inactivated by Ca2+. This simpliÞed model gives as good
a Þt to the experimental data as the original model it was based on.

V e
i

dC

dt
=

"
L+ P

µ
I

I +Ki

¶3 µ C

C +Ka

¶3
h3
#
(CER −C)− VeC

2

C2 +K2
e

(5.39)

dh

dt
= A [Kd − (C +Kd)h] (5.40)

where I is the IP3 concentration; CER is the ER Ca
2+ concentration; V e

i is the effective
volume of the cytosol; P is the maximum total permeability of IP3 channels and and
L is the leak permeability; Ve is the total, maximum SERCA pump rate; Ke speciÞes
the Ca2+ level required for half maximal activation of the pumps; Ki, Ka, and Kd

are the dissociation constants of the IP3, Ca
2+-activation, and Ca2+-inactivation sites

respectively. As discussed earlier, it is often advantageous to replace CER by (CT−C)/σ.
For any model, it can greatly deepen our understanding to scale the variables and

parameters to achieve a dimensionless form of the equations. This process often reveals
that some of the parameters do not affect the dynamical behavior independently, and
they can be combined. In the present case, the number of parameters can be reduced
from 10 in the original equations (including σ) to 6 in the scaled form. (Compare with
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Eqns. (5.41), (5.42)). There are often multiple ways of scaling the same system. One
strategy is to scale all the variables so that their magnitude is of order one, which facil-
itates comparison of magnitudes, and to achieve a maximum reduction in the number
of independent parameters. The h variable in the equations above is already dimen-
sionless. We can scale C by either Ka or Kd. We choose Kd since this leaves only one
independent parameter in the h equation. Once we have made this choice, CER, Ka and
Ke should also be scaled byKd: c = C/Kd, cT = CT/Kd, ka = Ka/Kd, and ke = Ke/Kd.
It is natural to scale the IP3 concentration I by Ki: i = I/Ki. Finally, we scale time to
obtain τ = ( P

σV e
i

)t. As a result, L, Ve, and A need to be scaled accordingly: l = L/P ,

FIX: ve = σKdP )Ve, and a = (
σV e

i Kd

P
)A. The Þnal result is:

dc

dτ
=

"
l +

µ
ich

(i+ 1)(c+ ka)

¶3#
(cT − (1 + σ)c)− vec

2

c2 + k2e
(5.41)

dh

dτ
= a[1− (c+ 1)h]. (5.42)

Agonist-induced and IP3R-mediated Ca
2+ oscillations in different cell types can

have very different frequency, amplitude, and spiking proÞle. However, they all share
the following features: (1) oscillations occur only at intermediate levels of IP3 concen-
tration; (2) the oscillation amplitude is almost constant for different levels of IP3; (3)
the oscillation frequency increases as the IP3 level increases; (4) the oscillations can
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Figure 5.8 Made with lrclose.ode. Steady-state (curves) and periodic (circles) solutions of the closed
cell model plotted against the parameter i. The amplitude remains almost unchanged within the range of
i values that produce oscillations. The inset shows the oscillation period is a decreasing function of i.
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occur in the absence of extracellular Ca2+. Since the above model was based on key
experimental data and is a general model of IP3-triggered Ca2+ oscillations, it should re-
produce all these common features. The feature (4) is automatically satisÞed here since
the model is for a closed cell that is isolated from the extracellular medium. Fig. 5.8
shows the model indeed exhibits all the other features.

This very simple model not only reproduces well established experimental observa-
tions but also predicts other possible ways Ca2+ oscillations can be induced. These can
be easily shown by the phaseplane analysis of Eqns. (5.41-5.42). The equations for the
two nullclines can be solved explicitly.

The c-nullcline:h =

µ
1 +

1

i

¶µ
1 +

ka
c

¶ ∙
vec

2

(c2 + k2e)(cT − σc)
− l
¸ 1
3

(5.43)

The h-nullcline:h =
1

1 + c
(5.44)

The c-nullcline is �N-shaped� between the two asymptotes: one at a larger value c =
cT/σ and another one at a smaller value c ≈ ke

p
lcT/ve (notice that k and cT are much

larger than this value since l is very small). Show how this gives an analytical way
of determining the shape of the c-nullcline; applies to KL too. The h-nullcline
is a monotonically decreasing function of c. These two nullclines can intersect each
other at either one single point or at three points depending on the choice of parameter
values. Since we are interested in the conditions for the occurrence of oscillations, we
only focus here on the case when the two intersect at one single point (Fig. 5.9). This
point is the equilibrium or steady state solution of the system at which the rate of Ca2+

release from the store exactly matches the rate of Ca2+ uptake. Oscillations occur when
this steady state becomes unstable.

Phaseplane analysis Fig. (5.9) indicates that instability of the steady state can
be achieved in several possible ways. In all cases, a basal level of IP3 is a necessary
prerequisite. Notice that the h-nullcline is independent of any parameter and remains
unchanged in all panels (the solid, monotonically decreasing curve). In the top panel, the
c-nullcline is plotted for three different values of i. The c-nullcline moves downward as
i increases (see eq.(5.43)). This is because in order to maintain balanced rates of Ca2+-
release and uptake more channels need to be inactivated at the same level of c at higher
values of i when the channels are more permeable. Instability occurs at intermediate
values of i, i.e. when the c-nullcline is moved downward so that it crosses the h-nullcline
at locations where the slope of the latter is more negative. But the downward movement
of the c-nullcline can also be achieved at Þxed, basal i levels that are not themselves
high enough to distablize the equilibrium. One alternative is to decrease the value
of ve (middle panel). This can be achieved experimentally by applying a drug called
thapsigargin that speciÞcally blocks the SERCA pump activity. Another alternative is
to increase the leak permeability of the ER membrane (bottom panel). This can be
realized by applying ionomycin, a drug that makes holes in the ER membrane. There
are two other alternatives to cause instability at basal levels of i (homework problem).
One is to lower the value of ka which means increased affinity of Ca

2+ to the activation
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Figure 5.9 Made with lrclose.ode.

site. The other is to increase cT , which is equivalent to overloading the ER store that
is known experimentally to result in increased excitability of the system.
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5.3.3 Open cell model with constant calcium inßux

Now let us study the same model in the case when the cell is no longer closed. In an open
cell, Ca2+ can ßow into the cell from extracellular medium and vice versa. As in the
bullfrog, cT is no longer a constant � unbalanced Ca

2+ exchange across the cell surface
will change its value. Such an open cell model involves three dynamical variables: c, ce,
and h. The equations are

dc

dτ
= jrel(c, h, cT )− jfil(c) + ²

"
jin − vpc

2

c2 + k2p

#
(5.45)

dce
dτ

= −c−11 [jrel(c, h, cT )− jfil(c)] (5.46)

dh

dτ
= a [1− (c+ 1)h] (5.47)

where jrel(c, h, cT ) =
h
l + ( ich

(i+1)(c+ka)
)3
i
(cT − σc) and jfil(c) = vec

2

c2+k2e
. The Ca2+ inßux

density jin and maximum Ca2+ efflux density vp are both multiplied by a small pa-
rameter ² that is proportional to the ratio of plasma membrane and ER membrane
surface area (compare λ discussed in intro). This needs to be explained more, here
or earlier. Notice that cT = c+ c1ce. The second equation can be simpliÞed by using
the total Ca2+, cT , as the third variable.

dc

dτ
= jrel(c, h, cT )− jfil(c) + ²

"
jin − vpc

2

c2 + k2p

#
(5.48)

dh

dτ
= a[1− (c+ 1)h] (5.49)

dcT
dτ

= ²

"
jin − vpc

2

c2 + k2p

#
(5.50)

The nondimensional formulation makes it clear that cT is usually a slow variable since
² is usually very small.

For simplicity, we Þrst study the case when jin is a constant. This corresponds to
the experimental situation in which the cells are voltage clamped (ref?). Fig. (5.10)
(top two panels) shows a case in which the cell is clamped at a voltage that is not too
negative, and jin is large enough to sustain large amplitude Ca

2+ oscillations and a
Þlled store. However, when the clamping voltage is switched to a more negative value,
jin can become negligibly small, so that there is only Ca

2+ extrusion but no Ca2+ inßux
at the cell surface. A similar situation can occur when the cells are placed in Ca2+-
defficient or zero Ca2+ medium. Contrary to the caffeine-induced Ca2+ oscillations in
bullfrog sympathetic neurons (cf. Fig. (5.5)), the absence of Ca2+ inßux does not kill
the oscillation immediately. Instead, the amplitude gradually decreases as the store
empties and stops only when the store is nearly depleted.

This phenomenon can be understood by the bifurcation analysis of the �fast sub-
system� of the open cell model. Recall that cT is a slow variable and can be treated as
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a parameter of the fast subsystem. Assuming that ² = 0, this fast subsystem is identi-
cal to the closed cell model presented in the previous subsection. In Fig. 5.10 (bottom
panel) is shown the bifurcation diagram of this model against cT while holding the
vlaue of i Þxed. Superimposed on this bifurcation diagram is the trajectory of the full
open cell model taken from the top panels.
Make this para an exercise?
Further analysis of the open cell model demonstrated (Li and Rinzel, 1994) that

slow Ca2+ oscillations driven by Ca2+ inßux similar to those observed in the bullfrog
sympathetic neuron can also be generated by IP3 channels. At slightly different param-
eter values, the fast subsystem can become bistable against cT . In this case, oscillations
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similar to those shown in Fig. 5.5 occur when jin is not zero. Switching jin to zero
during the quiet phase will prevent the subsequent spikes from happening, thus killing
the oscillation immediately. The frequency of such a slow, Ca2+-inßux dependent type
of Ca2+ oscillation is closely related to the rate of Ca2+ inßux, the larger the value of jin
the higher the frequency. As in the reduced open-cell version of Keizer-Levine, the time
scale of Ca2+-dependent channel inactivation is of no signiÞcance for such oscillations
since it is much faster than that of cT . Therefore, we can replace h by its steady state
value 1

1+c
in Eqn. (5.48) and eliminate the h equation:

dc

dτ
= jrel(c, cT )− jfil(c) + ²

"
jin − vpc

2

c2 + k2p

#
(5.51)

dcT
dτ

= ²

"
jin − vpc2

c2 + k2p

#
(5.52)

where jrel(c, cT ) =
h
l + ( ic

(i+1)(c+ka)(c+1)
)3
i
(cT − σc).

5.3.4 The PM oscillator

The PM oscillator has been extensively studied experimentally. These studies have
revealed all the major types of ion channels that are expressed in gonadotrophs as
well as the detailed gating properties of these channels. The oscillations in the PM
potential occur spontaneously in the absence of any hormonal signal. They are generated
by several voltage-gated ion currents including L-type (noninactivating) and T-type
(transient) Ca2+ currents, a Na+ current which is not essential, and a delayed rectiÞer
K+ current. There exists another K+ channel that is of great importance to this cell: the
K(Ca) (Ca2+-activated K+) channel that is sensitive to aparmin (ref. Hille). Although
the K(Ca) channels are not involved in producing the voltage spikes, they provide the
key link between ER oscillator and the PM oscillator. This is because these channels
are activated when cytosolic Ca2+ level reaches peak values, resulting in the disruption
of tonic spiking in PM potential and the hyperpolarization of the cell. A realistic model
of this oscillator based on experimental data can be found in Li et al, Biophys.J.,69:785-
795(1995). Here, however, we use a much simpler model of the PM oscillator based on
a modiÞed Morris-Lecar model to demonstrate how the system works. All we need is a
model that generates Ca2+ action potentials spontaneously such that each AP spike is
associated with the entry of a quantum amount of Ca2+ into the cell. The Morris-Lecar
model (see Section 2.3) is the simplest possible model of this kind, involving only an
L-type Ca2+ current and a delayed rectiÞer K+ current. The main modiÞcation involves
introducing the K(Ca) current, which is absent in the original Morris-Lecar model but
is crucial for gonadotrophs. The equations governing this model are

Cm
dV

dt
= −gCam∞(V )(V − VCa)−

∙
gKn+

gK(Ca)C
4

C4 +K4

¸
(V − VK) (5.53)
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dn

dt
= (n∞ − n)/τ(V ) (5.54)

where C is the Ca2+ level in the cytosol and is a parameter for the plasma membrane
model. At low levels of Ca2+, the system generates continuous spiking. When C is
larger than a certain threshold value, it hyperpolarizes the membrane potential. Note
that Iapp and the leak currents are removed from the original model (Eqn. 2.17) and a
K(Ca) current is introduced. Also, when the plasma membrane voltage undergoes tonic
spiking, Ca2+ enters the cell. We take this into account in the next section.

5.3.5 Bursting driven by the ER in the full model

A full model of Ca2+ signaling in agonist-stimulated gonadotrophs involves both the
ER oscillator and the PM oscillator. Having studied all the ingredients of this model,
we now combine the modules into a complete, realistic model described by the following
Þve differential equations:

Cm
dV

dτ
= −ICa − IK − IK(Ca) (5.55)

dn

dτ
= (n∞ − n)/τ(V ) (5.56)

dc

dτ
= jrel(c, h, cT )− jfil(c) + ²

"
−αICa − vpc

2

c2 + k2p

#
(5.57)

dh

dτ
= a[1− (c+ 1)h] (5.58)

dcT
dτ

= ²

"
−αICa − vpc

2

c2 + k2p

#
(5.59)

where ICa = gCam∞(V )(V − VCa), IK = gKn(V − VK), IK(Ca) = gK(Ca) c4

c4+k4
(V − VK),

and α converts the current ßux into the ion ßux of Ca2+ (Eqn. 5.25).
The effects of the ER oscillator on the PM oscillator are determined by the IK(Ca)

current. Whenever Ca2+ is high, it activates IK(Ca) which hyperpolarizes the PM po-
tential and inhibits the PM oscillator. The effects of the PM oscillator on the ER
oscillator are determined by the term −αICa which describes the Ca2+ inßux through
voltage-gated Ca2+ channels. As shown in the previous section, this inßux leads to fuller
ER store and makes the ER more excitable. Thus, the voltage spikes activate the ER
oscillator. The interaction of the two oscillators gives rise to bursting of the PM poten-
tial (Fig. 5.11). Such bursting is mainly driven by the ER oscillator that periodically
hyperpolarizes the plasma membrane. However, the PM oscillations are indispensable
for maintaining the bursting since the Ca2+ entry that accompanies each voltage spike
compensates the loss of Ca2+ to the extracellular medium and is thus key in preventing
the store from depleting (see Li etal 1997 for details of such interactions).

In the bottom panel of Fig. (5.11), the bifurcation diagram of the fast subsystem
(the PM oscillator) with respect to c is plotted. Superimposed on this bifurcation di-
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agram is the trajectory of the bursting shown in the top panels. Notice that the PM
voltage V follows the diagram well during the spiking phase, when c changes slowly.
But during the c spike, which is fast, the trajectory does not follow very closely.
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5.4 The Pancreatic Beta-Cell

5.4.1 Review of the biology

The primary importance of pancreatic β-cells is that they are the cells that secrete in-
sulin, the hormone that maintains blood plasma glucose within narrow limits in the face
of variable food ingestion and metabolic activity patterns. Glucose is important as the
fuel of choice for most tissues, but is subtly toxic if elevated in the blood for long periods
of time. This is the hallmark of the disease diabetes, in which glucose is uncontrolled or
poorly controlled, leading to blindness, kidney failure, limb amputation, cardiovascular
disease and death. The causes of diabetes remain elusive, but most experts in the Þeld
agree that β-cell failure or insufficiency plays a signiÞcant role (general diabetes ref).

From a cell physiological point of view, the β-cell closely resembles the pituitary
gonadotroph. Both are endocrine cells in which secretion is controlled by [Ca2+]i, which
is in turn regulated to a large degree by bursting, and they share many mechanistic
elements such as K(Ca) channels and IP3 receptors. However, there are important
and interesting differences from that point on. Bursting in β-cells is primarily driven
by the plasma membrane oscillator, though the ER probably plays a signiÞcant, if
still indeterminate, role in the burst mechanism. This characteristic is shared with
many neurons, and β-cells provided an early paradigm for modeling of bursting. An
in-depth treatment of this subject is beyond our scope, but the reader may consult
(Rinzel-Ermentrout chapter in Koch and Segev; bursting chapter in Twinjim).

We will focus on membrane potential driven [Ca2+]i oscillations, though β-cells
have occasionally been observed to exhibit driven by the ER, similar to those in go-
nadotrophs. Ironically, the Keizer-DeYoung model for the IP3 receptor was originally
developed to explain this marginal phenomenon in β-cells, and was then ready to hand
for application to gonadotrophs.

An important aspect of β-cell function that we will also have to neglect in this
chapter is the organization of the cells into electrically coupled populations, called the
islets of Langerhans. Here we take advantage of the observation that the cells in an
islet are synchronized; this allows us to study a simple single-cell model, which can be
taken as representative of the whole islet. More subtle effects of electrical coupling will
be discussed in Chapter (8) (Chap. 8).

5.4.2 Chay-Keizer model

The model we use to illustrate β-cell bursting is based loosely on [SRK88], recast in
Morris-Lecar form. Bursting occurs in response to glucose, so no applied current is
needed. Morris-Lecar by itself can account for the spiking during the active phase of a
burst. In order to obtain cycling between bursting and silent phases, we need to add a
slow, negative feedback current. The Þrst hypothesis, proposed by Atwater and Rojas
and made into a mathematical model by Chay and Keizer (1983), was that bursting
was mediated by a K(Ca) current. The idea was that [Ca2+]i would build up slowly
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during the spiking phase until the inhibitory effect of the increased K+ current reached
a level where spiking is terminated. The K(Ca) current is represented as

IK(Ca) = gK(Ca)
[Ca2+]i

Kd + [Ca2+]i
(V − VK). (5.60)

The modiÞed Morris-Lecar equations, suplemented by a slow equation for [Ca2+]i, are

Cm
dV

dt
= −ICa(V )− IK(V, n)− IL(V )− IK(Ca)(V, [Ca2+]i) (5.61)

dn

dt
=
n∞(V )− n
τ(V )

(5.62)

d[Ca2+]i
dt

= fi(−αICa(V )− kc[Ca2+]i) (5.63)

where fi is the fraction of free [Ca
2+]i, and α = 10

3/(2FVi) converts current in fA to
concentration µM/msec (cf. Eqn. (5.25)). kc[Ca2+]i represents a linearized form of the
PMCA. Numerical results are shown in Fig. (5.12). The middle two panels demonstrate
Þrst of all that bursting can occur without participation of the ER; all that is needed is
a slow negative feedback process, here supplied by [Ca2+]i. The sequence of panels also
illustrates how β-cells sense and modify their electrical activity in response to glucose.
As glucose concentration increases, the rate of the PMCA is here hypothesized to in-
crease as well. For low glucose (low pump rate), the cell is electrically silent (top panel).
For glucose above a threshold concentration, bursting appears (second panel). Further
increases in glucose result in longer active spiking phases, or plateaus, and shorter silent
phases (third panel). Finally, for very high glucose, the cell remains permanently in the
active phase, spiking continuously. This tableau corresponds to in vitro experiments
in which a Þxed glucose can be applied. in vivo, the induced electrical activity and
resultant Ca2+ inßux causes insulin secretion, which in turn brings the level of plasma
glucose down. This organism-level negative feedback loop has been observed in a few
heroic experiments (ref).

o Explain bursting biophysically (slow negative feedback, bi-stability).
o mention Ca-Ca, J models (references)
o Explain homoclinic orbits in the phase plane.
o Explain bursting via bifurcation diagram. Paradigm for fast-slow decomposition

applicable to many forms of bursting. Relate to relaxation oscillators; small τ . Mention
averaging? Equivalent nullcline? (Refer to Rinzel �87 and Bertram �95 on classiÞcation
of bursting.)

The ability of the Þrst Chay-Keizer model to explain these subtle alterations in
electrical activity as glucose varies was a major success, but closer observation reveals
that, even though the cell is visibly more active electrically, the mean [Ca2+]i does not
change much. Shortly after the model came out, a new ATP-dependent K+ channel
was discovered (ref), IK(ATP ). This current is inhibited by ATP and activated by ADP
and provides a key link between glucose metabolism and membrane potential. In its
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Figure 5.12 Bursting and glucose sensing of the Chay-Keizer model, Eqn. (5.61)�Eqn. (5.63). Param-
eters: Cm = 5300 fF, gCa = 1000 pS, VCa = 25 mV, gK = 2700 pS, VK = −75 mV, Iapp = 0,
V1 = −20 mV, V2 = 24, V3 = −16 mV, V4 = 11.2 mV, φ = 0.035 ms−1, gL = 150 pS, VL = −75
mV, gK(Ca) = 2000 pS, Kd = 5 µM, f = 0.001, α = 4.5 × 10−6 units, and kc as indicated. Made with
mlbeta.ode.

simplest form, IK(ATP ) is modeled as a K
+-selective leak current,

IK(ATP ) = gK(ATP)(V − VK), (5.64)

whose conductance decreases as glucose concentration increases. Fig. (5.14) shows the
same conditions as Fig. (5.12B), but with gK(ATP) decreased from 150 to 135 pS, which
represents a modest increase in glucose and increases plateau fraction, Further decreases
in gK(ATP ) convert the bursting to continuous spiking and sufficient increases in gK(ATP )
suppress bursting, as in Fig. (5.12A). Thus, in all these respects gK(ATP ) reproduces all
the effects of kc, but in addition, predicts changes in the mean [Ca

2+]i. (exercise to
explain the difference)
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Figure 5.14 Glucose sensing of the Chay-Keizer model Eqn. (5.61)�Eqn. (5.63) modiÞed by inclusion of
IK(ATP ) (Eqn. 5.64) in place of IL. Parameters as in Fig. (5.12B) except: kc = 0.15 ms
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With these distinct predictions in hand, theorists and experimentalists eagerly
awaited the Þrst recordings of [Ca2+]i in bursting islets. Unexpectedly, both predic-
tions were incorrect � [Ca2+]i did not slowly rise and fall, but rather rapidly reached a
plateau during the active phase (Valdeolmillos, 1989). Although [Ca2+]i did fall slowly
in many cases during the silent phase, this observation cast doubt on the role of [Ca2+]i
as a slow feedback variable and resulted in the K-Ca channel losing favor in particu-
lar. Partial resolutions of this issue are provided by the Keizer-Magnus model, and the
contribution of the ER, discussed in the next two sections.
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Figure 5.15 Bursting driven by oscillations of gK(ATP ) in the Keizer-Magnus model, Eqn. (5.67)�Eqn.
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5.4.3 Keizer-Magnus model

Keizer and Magnus (1989) proposed that gK(ATP ) played not simply a modulatory
role in bursting, but could itself provide slow negative feedback. The central point of
their hypothesis was that a rise in [Ca2+]i would lead to mitochondrial uptake of Ca

2+

and dissipate the mitochondrial membrane potential that provides the energy for ATP
synthesis. (Review basic facts: electron transport chain pumps out protons; ßux of
protons back into the mitochondria through the ATP synthase molecule and generates
ATP from ADP.) Thus, as [Ca2+]i rises, ATP falls and ADP rises. The closure of the
K(ATP) channel by ATP is antagonized by ADP, so the rise in [Ca2+]i will result in
an increase in gK(ATP ). Keizer and Magnus derived the following expression for gK(ATP )
based on the assumption (now thought to be incorrect, but see exercise) that ATP and



5.4: The Pancreatic Beta-Cell 129

ADP compete for the same binding site:

gK(ATP ) = ḡK(ATP)
1 + [ADP ]/K1

1 + [ADP ]/K1 + [ATP ]/K2

. (5.65)

If one assumes further that

[ADP ] + [ATP ] = Atot (5.66)

where Atot is constant, just one more expression is needed for the dependence of [ADP ]
on [Ca2+]i to complete the negative feedback loop. Adding a simple phenomenologi-
cal equation for the mitochondrial dynamics to Chay-Keizer (modiÞed by inclusion of
IK(ATP )) yields the following system of four differential equations:

Cm
dV

dt
= −ICa − IK − IK(ATP ) − IK(Ca) (5.67)

dn

dt
=
n∞(V )− n
τ(V )

(5.68)

d[Ca2+]i
dt

= fi(−αICa(V )− kc[Ca2+]i) (5.69)

d[ADP ]

dt
= kmito

µ
[ATP ]− [ADP ] exp

µ
R

µ
1− [Ca

2+]i
R1

¶¶¶
. (5.70)

Negative feedback proceeds from V through [Ca2+]i and [ADP ] to gK(ATP ). Thus, pro-
vided that kmito is sufficiently small, [Ca

2+]i can provide indirect negative feedback
onto gK(ATP ) without itself being slow. Eqn. (5.15) shows bursting in which [Ca2+]i
rises rapidly at the beginning of the active phase of a burst, in agreement with experi-
ment, though in this simple model, it must then also fall rapidly at the end of the active
phase, which does not agree with the data. One way to achieve the required asymmetry
is to bring in the ER (next section). Nonetheless, the model represents an advance in
that the higher value of fi = 0.01 used is more in line with experiment.

The glucose sensing is also improved in the sense that it has been moved one step
closer to metabolism. A rise in the parameter R increases the rate of [ATP ] production,
that is, mitochondrial [ATP ] production is more resistant to a rise in [Ca2+]i, so this
corresponds to a rise in glucose concentration. See Magnus, AJP for a more detailed
model of the mitochondria, including predictions for the dynamics of mitochondrial
Ca2+.

5.4.4 Muscarinic potentiation and other roles of the ER

Another physiological stimulus for insulin secretion is acetylcholine (ACh), secreted
from vagal nerves originating in the hypothalamus and terminating in the pancreas.
Although glucose alone is capable of stimulating secretion, and ACh is ineffective in
the absence of glucose, it can be argued that ACh is the more relevant signal under
normal conditions. The brain (and the gut, through other hormones) communicate to
the islets that food is on the way and to start secreting insulin in advance without
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waiting for plasma glucose to rise. If the system is functioning properly, glucose does
not rise much at all.

At the cellular level, ACh works by binding to muscarinic (M3) ACh receptors,
initiating production of IP3 and dumping the stores, similar to GnRH in gonadotrophs.
Thus, in order to include muscarinic effects on islets, we must include the ER. We will
Þnd that the ER can also have a profound effect on the kinetics of [Ca2+]i oscillations
and bursting through feedback onto gK(Ca). The simplest way to illustrate these points
is to append an equation to the Chay-Keizer model:

Cm
dV

dt
= −ICa − IK − IK(ATP ) − IK(Ca) (5.71)

dn

dt
=
n∞(V )− n
τ(V )

(5.72)

d[Ca2+]i
dt

= fi(−αICa(V )− kc[Ca2+]i)

+
fi
λ
(P ([Ca2+]ER − [Ca2+]i)− kSERCA [Ca2+]i) (5.73)

d[Ca2+]ER
dt

=
fi
σλ
(−P ([Ca2+]ER − [Ca2+]i) + kSERCA [Ca2+]i) (5.74)

This model is essentially equivalent to Theresa Chay�s last β-cell model (BJ �97). For
simplicity, negative Ca2+ feedback through the mitochondria onto gK(ATP ) is omitted,
but can be incorporated as well as or in place of gK(Ca) (Exercise).

Fig. (5.16) shows this model with parameters chosen to highlight the possible role
of the ER in bursting. fi is 0.01, as in the Keizer-Magnus example, which means that
in the absence of the ER only very fast bursting can occur. Thus, bursting with periods
of 10 � 60 seconds, as typically observed in islets, depends on slow kinetics supplied by
the ER. Note that [Ca2+]ER rises and falls slowly the way [Ca

2+]i does in the original
Chay-Keizer model. In contrast, [Ca2+]i shows two distinct time scales, fast jumps at
the beginning and end of a burst, and a slow tail during the silent phase. The fast
jumps reßect the intrinsic kinetics of [Ca2+]i, while the slow tail reßects the slow release
by the ER of Ca2+ taken up during the active phase. The relative prominence of the
fast and slow components of [Ca2+]i is controlled by λ, while the burst period depends
strongly on the effective ER volume, σ (Exercise 16). This result demonstrates that it
is possible for negative feedback to operate through the K(Ca) channel, or some other
Ca2+-sensitive channel, even though [Ca2+]i does not itself appear to be slow.
This section could be shortened by combining Fig. (5.16) and Fig. (5.17),

adding just one panel at the end of the Þrst showing fast v with elevated P. In
words, same if kSERCA = 0 or λER →∞ (no ER).

The role of the ER in β-cell electrical activity is controversial and not yet fully
understood, but the simple model of Fig. (5.16) is adequate to shed light on several
key experimental observations. It is consistent with experiments showing that the slow
tail is abolished by thapsigargin (Henquin). It also offers a possible explanation for
some of the effects of ACh, which dramatically increases burst frequency, raises [Ca2+]i,
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Figure 5.16 ER-dependent bursting in augmented Chay-Keizer model, Eqn. (5.71)�Eqn. (5.74). Param-
eters as in Fig. (5.14) except: gK(ATP ) = 150 pS, fi = 0.01, plus: P = 0.0008 ms

−1, λ = 2, σ = 0.032,
kSERCA = 0.6 ms

−1. Made with cker.ode.

and enhances insulin secretion. In Fig. (5.17), top two panels, the effects of a step
increase of IP3 are modeled as a 100-fold increase in ER efflux permeability, P . After
a brief transient hyperpolarization caused by a spike of released Ca2+, burst frequency
increases. [Ca2+]ER (not shown) drops rapidly to near 0. However, there is no gross
depolarization or rise in mean [Ca2+]i. The latter effects can be obtained by further
assuming that ACh activates an additional inward current Fig. (5.17), bottom two
panels. That current is modeled here as a store-operated current (SOC), possibly related
to the calcium release activated current (ICRAC) seen in non-excitable cells:

ICRAC = gCRAC(V − VCRAC) (5.75)
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Figure 5.17 Rough model of muscarinic bursting using the Chay-Keizer model augmented with an ER,
Eqn. (5.71)�Eqn. (5.74). Parameters as in Fig. (5.16), but at t = 40 seconds, P is stepped from 0.0008
ms−1 to 0.08 ms−1. In the bottom two panels, in addition ICRAC , with gCRAC = 20 pS and VCRAC = −30
mV, rapidly turns on at t = 40 as [Ca2+]ER drops (not shown). [Ca

2+]i spike is cut-off. Made with cker.ode.

where gCRAC increases as [Ca2+]ER decreases. An alternative is that ACh activates
an inward current directly, possibly by stimulating production diacyl glycerol (DAG),
rather than indirectly, by dumping the stores.

The examples discussed here represent only the tip of the iceberg of the β-cell Þeld.
The precise contributions of the mechanisms we have treated, K(Ca) channels, gK(ATP )
channels, and the ER, are not settled, but it seems likely that complex interactions of
all three will be necessary to explain the diverse phenomena observed. The mechanisms
of other important regulators of cell electrical activity and [Ca2+]i, such as cAMP and
epinephrine remain to be elucidated. Nonetheless, the basic mechanisms and concepts
presented here should fortify the reader sufficiently to proÞtably explore the exercises
below and the literature on his or her own.
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5.5 Chapter Summary

Brießy restate common themes; point to literature, further reading.

5.6 Exercises

1. Generalize Eqn. (5.13) to the case of two or arbitrarily many buffers.
2. The expression for ER leak Eqn. (5.24) can be derived from a symmetric cycle
model (Fig. 5.18) representing a pore that can exist in either an unbound state
(1) or a bound state (2) and bind Ca2+ on either the ER or the cytosolic side. A
cycle from 1 to 2, binding Ca2+ on the ER side, and back to 1, releasing Ca2+ on
the cytosolic side transports 1 ion from the ER to the cytosol. Assume symmetry,
that is, the rates of binding [Ca2+]i and [Ca

2+]ER are equal, k
a∗
12 = kb∗12 = k∗12 and

the rates of releasing [Ca2+]i and [Ca
2+]ER are equal, k

a
21 = k

b
21 = k21, and use the

diagrammatic method of Chapter (3) to show that

Jss = Jssb21 =
k∗12
2
([Ca2+]ER − [Ca2+]i) (5.76)

in an appropriate limit. ([Ca2+]ER − [Ca2+]i is called the thermodynamic driving
force.)

3. (From HW # 4, Ex. 3). (a) Write down the mass action equations corresponding
to the Keizer-Levine kinetic diagram in Fig. (5.2) and calculate the steady-state
fraction of open channels (those in states O1 or O2) as a function of Ca

2+. Com-
pare to the plateau curve in Fig. (5.3). (b) Approximate the peak open fraction
following a step of Ca2+ from rest by assuming the C2 does not change over short
times. Compare to the peak curve in Fig. (5.3). (c) Derive the quasi-steady-state
approximation Eqn. (5.26)�Eqn. (5.30). Hint: Combine the result in (b) with a dif-
ferential equation for w = 1− PC2 assuming transitions among O1, O2, and C1 are
in rapid equilibrium. Simulate the two-pulse experiment of Fig. (5.3) and verify
that the quasi-steady-state approximation retains the feature of adaptation. (d)

2+ Ca2+
ER i

b

1

a

Ca

Figure 5.18 Kinetic diagram for ER leak
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Draw the reduced diagram. What are the expressions for the reduced rate con-
stants? (e) Compare the K-L model to other RyR models in the literature, such as
Tang-Othmer (others?).

4. (Replaces HW # 5, Ex. 1 � K-L: closed cell.) (a) By calculating the jacobian of
the closed-cell Keizer-Levine model, show that for oscillations to arise via a Hopf
bifurcation, it is necessary for the w and c nullclines to intersect with negative
slope and with the w nullcline steeper. (b) Using the result of (a), Þnd parameter
values for which there are oscillations. by graphing the nullclines (this can be done
analytically by solving the w and [Ca2+]i equations in terms of w or by using
the Nullcline function within Xpp). (Hint: One way is to play with the affinity of
the SERCA pump.) (c) Use XppAutto construct the bifurcation diagram for the
modiÞed system and plot the period vs. CT . Correlate changes in the period with
changes in the phase plane, particularly the invariant sets of the saddle point. (d)
Find the s-curve analytically by isolating CT .

5. Using XppAut plot period vs. jin for the reduced open cell model. Compare the
range of jin for which there are oscillations predicted by the phase plane to those
calculated in the bifurcation diagram. Using the phase plane in Fig. (5.6), ex-
plain the variation in period. Compare with β-cell; compare with gonadotroph
(frequency-dependent speciÞcity � get correct jargon. Refer to Tsien; Lewis Nature
papers?)

6. (replaces HW # 5, Ex. 2, K-L: 3 var open cell) (a) Solve the open cell system and
Þnd values of jin that support oscillations. Compare the extent of store dumping
with the closed cell oscillations (Exercise 4). Plot the ßuxes across the plasma
membrane and ER through the cycle. (b) Investigate the effect of increasing kc

− and
explain what this implies about the reduced open cell model with w = w∞([Ca

2+]i).
(c) Construct the bifurcation diagram with jin as a parameter and compare to Fig.
(5.7).

7. Objections were raised to the experiments of Györke and Fill (Sci. 263:986, 1994),
arguing that adaptation was an artifact of a Ca2+ spike when Ca2+ is uncaged.
Make a model of this situation incorporating the kinetics of Ca2+ binding to DM-
nitrophen and form your own opinion of this controversy. To what extent does the
Keizer-Levine model of BFSG oscillations depend on adaptation.

8. Compare the reduced open-cell model to the Friel-Tsien model (BJ �95) in terms of
bifurcation structure and biophysical elements. Try to replace jRyR in Keizer-Levine
with the simple Hill function representation of Friel and Tsien.

9. Gntroph with Ca-dependent beta (fraction of free calcium) (Wagner-Keizer �94):
More careful treatment of buffering only changes the picture quantitatively.

10. Show that with h = h∞([Ca
2+]i) you can get slow oscillations in the open-cell

gonadotroph model paced by IICR, not IP3R inactivation; See PNAS �94 Fig.2 or
Fig. 5, bottom trace. These are roughly equivalent to Keizer-Levine reduced open
cell.

11. Modify bell-shaped curve as in PNAS �94 Fig. 1. Use to get PNAS �94 Fig. 2 (hard).
12. Gntroph: long-term emptying-reÞlling story (BJ97, TEM96 review article).
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13. Play with homoclinics: Draw bifurcation diagram; grab points just before and after
homoclinic; study the v-w phase planes, especially the invariant sets. Will need a
separate Þle for the fast subsystem. Compare Utah book, Fig. 4.

14. To get bursts with a period approximating those seen experimentally, we had to
set f = 0.001. Experimental values are in the range 0.01 � 0.05. What is the burst
period with such values? What can you change to increase the burst period (Hint:
One way is to increase the range of [Ca2+]i values.)

15. Set f = 0.01 in CK; derive Eqn. (5.65); compare to Magnus and Keizer I, AJP, and
Hopkins et al, and substitute theirs. What happens in KM if gkca is not 0? (get
mixed fast and slow). Study effects of R: mean [Ca2+]i rises with no change in silent
or active phase [Ca2+]i. Make a model in which a rise in [Ca

2+]i increases [ATP ]
consumption, instead of hindering [ATP ] production (Henquin) Gall-Susa/Chay as
another example of how ER can slow bursts even with larger values of f .

16. Study the effects of σ, P , λ, and kSERCA in the Chay-Keizer model with ER. Explain
the effects of these four parameters by examining two bifurcation diagrams, one with
respect to [Ca2+]i as the bifurcation parameter, with [Ca2+]ER also a parameter, and
one with respect to [Ca2+]ER as the bifurcation parameter and treating [Ca

2+]i as a
fast variable. Explain how [Ca2+]ER can act as a slow variable even though it does
not appear in the V equation.

17. In an alternative model for muscarinic bursting in β-cells, the ER does not actively
participate in bursting but switches the cell from a slow burst mechanism to a fast
one. Bertram et al. (1995). This scenario can be demonstrated with the Keizer-
Magnus model making the following changes:

18. Something that leads on to the phantom?
19. Two-parameter study of effects of phi. Compare to Bertram et al., 1995

(ClassiÞcation).
20. β-cell-like bursting can be obtained by slow inactivation of an inward current rather

than slow activation of an outward current. Add a slow inactivation factor to ICa
and adjust other parameters as needed to obtain bursting. What parameter(s) can
be used as glucose sensors (that is, can raise plateau fraction while preserving
approximate spike amplitude invariance)?

21. An unusual burst model has spiking that stems from excitable, not oscillatory, fast
dynamics [?]. Analyze its slow phase plane dynamics using the method of averaged
nullclines [?, ?].

22. Classify the burst mechanism in Sherman et al., 1990 (Ca-Ca model) (Equations
can also be found under �Non-Planar Fast Subsystem� on the Web page for this
chapter).

23. Explore the behavior of the extended model with ER when ICRAC is included, but
not ikca and vice versa.

24. Find parameters to make the ER equations oscillate, and try to replicate Keizer
and DeYoung�s [?] agonist-induced bursting.
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6.1 Formulation

6.1.1 Conservation law in one dimension

Many equations in biology are derived using conservation laws. A conservation law is
simply a mathematical statement that some quantity is balanced throughout a process.

Consider a chemical species C whose concentration c(x, t) varies in both time and
space, where the spatial variation is restricted to only one spatial direction x. This
situation is shown in Fig. (??), where C is contained in an inÞnitely long, thin tube,
and the concentration is assumed to be constant in any cross-sectional slice. Then in
any arbitrary interval xa < x < xb, a conservation law can be written:

time rate of change of the total amount of C =

net rate that C ßows in + rate that C is produced (6.1)
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At any time t, the total amount of C in the interval can be computed by integrating
c(x, t) over the interval:

total amount of C =

Z xb

xa

c(x, t)Adx. (6.2)

It is important to distinguish between the units of c (concentration, or amount/unit
volume) and the units of �total amount�. Thus, if c has units of micromolar
(micromol/liter), then the total amount has units of micromoles.

Now suppose that C is free to randomly move about inside the tube, so that C
moves in and out of the interval by passing through the slices at x = xa and x = xb. If
for any time t we denote by J(x, t) the rate at which C moves across a slice at x from
left to right, then the net movement, or ßux, of C into the interval is

net rate of entry of C = AJ(xa, t)−AJ(xb, t), (6.3)

where A is the area of the cross-sectional slice. Again, the units are important. Since
the net rate of entry has units of amount/unit time, and A has units of area, the ßux
rate J(x, t) has units of amount/unit area/unit time. It is also important to remember
that J(x, t) is positive when the motion is to the right, and negative when the motion
is to the left. This leads to the sign convention in the ßux equation: when J(xa, t) is
positive, C exters the interval, and when J(xb, t) is negative, C leaves the interval.

The total amount of C in the interval can also change due to the production of C
within the interval. Let f(x, t, c) denote the rate of production of C at the location x
and time t. Then the total amount of C produced in the interval at time t is given by

net rate of production of C =

Z xb

xa

f(x, t, c(x, t))Adx (6.4)

Note that the presence of c in the deÞnition of f allows for the possibility that the rate
of production of C depends on c itself. Since the units of the net rate of production of
C are amount/unit time, the units of f must be amount/unit time/unit volume. When
f is positive, it is called a source (because it leads to an increase in the total amount of
C), and when f is negative, it is called a sink. Thus, f is often called a source function.

The conservation equation can now be rewritten mathematically:

d

dt

Z b

a

c(x, t) dx = J(xa, t)− J(xb, t) +
Z xb

xa

f(x, t, c(x, t)) dx (6.5)

where the constant A has been cancelled. The ßux terms can be replaced by noting
that

J(xb, t)− J(xa, t) =
Z xb

xa

Jx(x, t) dx, (6.6)

allowing all the terms in Eqn. (6.5) to be written as integrals:

d

dt

Z xb

xa

c(x, t) dx =

Z xb

xa

J(x, t) dx+

Z xb

xa

f(x, t, c(x, t)) dx. (6.7)
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If the solution is smooth enough, then the differentiation and integration can be
interchanged, and Eqn. (6.5) can be rewritten asZ xb

xa

[ct(x, t) dx− Jx(x, t)− f(x, t, c(x, t))] dx = 0. (6.8)

Since the interval was arbitrary, the only way this equality can hold is if the integrand
is zero. Therefore, we can replace Eqn. (6.8) by the equivalent conservation law in
differential form,

ct + Jx = f(x, t, c). (6.9)

Note that, in this equation there are two independent variables (x and t), and that the
equation contains partial derivatives with respect to both. Such equations are called
partial differential equations, and, since time is one of the independent variables, we
call Eqn. (6.9) an evolution equation.

In our derivation of Eqn. (6.9), both the time t and the interval xa < x < xb were
arbitrary. As a result, Eqn. (6.9) holds for all t, and for all x in the tube. That is,
the spacetime domain, or the domain of deÞnition, on which Eqn. (6.9) is deÞned is
R2. However, this choice was merely a matter of convenience, as the derivation did not
depend on the actual length of the tube, or the actual time; thus, it is reasonable to
expect Eqn. (6.9) to hold for arbitrary domains.

6.1.2 Fick�s Law of Diffusion

Eqn. (6.9) is a single equation relating two unknowns�the concentration c and the ßux
J�and is therefore underdetermined. In order to resolve this problem, an additional
equation relating c and J is needed. Such an equation is called a constitutive rela-
tion, or an equation of state, and in contrast to conservation laws, is generally derived
empirically or determined experimentally.

One such constitutive relation is Fick�s law, which states that C moves from regions
of high concentration to regions of low concentration, with a rate proportional to the
concentration gradient. More precisely,

J(x, t) = −Dcx(x, t), (6.10)

where the proportionality constant D is called the diffusion constant, and the negative
sign ensures that C moves down the concentration gradient. It is important to note
that the units of D are length2/unit time, and that these units do not change even if
c is allowed to vary in more than one spatial direction. Point out that the value of D
depends on the medium in which C is diffusing, as well as the size, weight, etc.

Using Fick�s law, Eqn. (6.9) can be rewritten as a reaction�diffusion equation,

ct −Dcxx = f(x, t, c). (6.11)

In this equation, Dcxx is called the diffusion term, and f is called the reaction term.
When f is zero, that is, when there are no sources or sinks, Eqn. (6.11) becomes the
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diffusion equation,

ct −Dcxx = 0. (6.12)

This equation is also called the heat equation because of its utility in modeling the ßow
of heat.

6.1.3 Advection

Now imagine that besides the random motion of C, there exists in the medium a
macroscopic ßow with speed v along the x-axis. Then, during a small time ∆t, all of
the C between x = xa and x = xa − v∆t would enter the interval by ßowing through
the slice at x = xa. The total amount of C entering during this time can be found
by multiplying the concentration, c(x, t), by the corresponding volume, Av∆t. The
corresponding ßux rate is, therefore,

J(x, t) = vc(x, t), (6.13)

and is often called the drift, or convective, ßux. Note that whereas the diffusive ßux
was proportional to the concentration gradient, the convective ßux is proportional to
the concentration itself.

If the random and biased directional motions co-exist, the total ßux is just the
linear superposition of the diffusive and drift ßuxes:

J(x, t) = vc(x, t)−Dcx(x, t). (6.14)

Using this constitutive relation, Eqn. (6.9) becomes a reaction�advection�diffusion
equation,

ct + vcx(x, t)−Dcxx = f(x, t, c). (6.15)

6.1.4 Boundary and Initial Conditions

As we saw in Chapter (1), a differential equation typically generates a family of solu-
tions, not just one. We must use additional constraints�initial conditions and boundary
conditions�to pick out the one which solves the problem of interest. Here we discuss
how these additional constraints inßuence the solutions of partial differential equations.

The general solution of a partial differential equation is a family of solutions de-
pending on one or more arbitrary functions, analogous to the general solution of an
ODE, which is a family of solutions depending on one or more arbitrary constants.
Often, however, we are not interested in the family of solutions, but in selecting one
particular solution. In the case of ODEs, this was accomplished for initial value prob-
lems by specifying one or more initial conditions, and for boundary value problems by
specifying one or more boundary conditions. A similar approach can be taken with the
transport equations, the only difference being that, because the equations contain both
space and time, both initial and boundary conditions must be speciÞed.
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EXERCISES: Þnite domain, inÞnite domain, semi-inÞnite domain, what do you do
about boundary conditions?

Because evolution equations deÞne how a system evolves in time, an initial condition
is needed to deÞne the state of the system at the starting time. This requires the choice
of a starting time, which, roughly speaking, is chosen to be some time that precedes
the phenomenon of interest, and at which the state of the system is either known, or
can be approximated. Thus, the choice of the starting time and the initial condition
are intimately linked. Often, both follow directly from experiment: the start of the
experiment corresponds to the starting time of the model. It is also often the case that
the initial condition is speciÞed when the system is at equilibrium. Another important
aspect of the initial condition is that of equilibrium. In systems of partial differential
equations, it is often necessary to ensure that all of the initial variable states are at
some sort of equilibrium; this is expecially true if the biological system being modeled
is assumed to be at equilibrium at the outset.

When the spatial domain is Þnite, boundary conditions must be speciÞed at all
boundaries. For example, if the spatial domain is xa < x < xb, we require boundary
conditions at both x = xa and x = xb. Boundary conditions can take one of three
forms. The Neumann boundary condition constrains the solution to take on a speciÞc
functional form, that is, c(xa, t) = f(t). The Dirichlet boundary condition constrains the
solution�s spatial derivative to take on a speciÞc functional form, that is, cx(xa, t) = g(t).
If g is zero, this boundary condition is often called a �no ßux� boundary condition.
Finally, the Robin boundary condition combines both the Neumann and the Dirichlet
boundary conditions, taking the form c(xa, t) + α(t)cx(xa, t) = h(t), where α(t) is a
given function of t.

Boundary conditions are necessary even when the spatial domain is not Þnite.
However, inÞnite domains present the minor inconvenience that there is no speciÞc
(Þnite) location at which to specify the boundary condition. In such cases, the solution
is required to exhibit some speciÞc behavior at large distances. For example, we may
specify that the solution tend to zero as x tends to inÞnity. In practice, it is often
convenient instead to use a large but Þnite domain, and to then specify Dirichlet or
Neumann conditions at the boundaries. In this case, the boundaries must be far enough
away that they do not affect the solution. However, this approach requires a priori
knowledge of the exact behavior of the solution at large distances.

6.2 Diffusion in One Dimension

6.2.1 Diffusion in a Long Dendrite

As a Þrst example, we consider the time course of calcium undergoing simple diffusion
in a very long dendrite. Suppose that at some point x0 we photorelease caged calcium
in a very small region around x0. If we denote by c(x, t) the concentration of calcium
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along the length of the dendrite at each time t, the the model is as follows:

ct = Dcxx, (6.16)

c(x, 0) = C0δ(x− x0), (6.17)

where C0 is the total amount of released calcium, δ(x) is the Dirac delta function,
−∞ < x <∞ and t > 0. Note that because the dendrite is very long, the model treats
it as inÞnite in length, and we therefore do not need to specify boundary conditions. It
can be shown that the solution of this model is

c(x, t) =
C0√
4πDt

exp

Ã
−(x− x0)

2

4Dt

!
, (6.18)

which is illustrated in Fig. (??). Note that, for each Þxed t, this solution is a Gaussian
function, and that over time, the Gaussian becomes wider and the maximal value (at
x0) declines,

c(x0, t) =
C0√
4πDt

. (6.19)

It is left to the reader to show that this solution satisÞes the diffusion equation.

6.2.2 Diffusion in a Short Dendrite

As a second example, we consider the case of a shorter dendrite, where the boundaries
are no longer able to be neglected. Suppose that the dendrite is 40 microns in length,
and that this time, caged calcium is photoreleased uniformly in the left half of the
dendrite. Then an appropriate model is:

ct = Dcxx, (6.20)

c(x, 0) = C0H(x− 20), (6.21)

cx(0, t) = 0, (6.22)

cx(40, t) = 0, (6.23)

where now C0 is the concentration of calcium released, H(x) is the Heaviside function,
0 < x < 40 and t > 0. Because the dendrite is short, we have speciÞed (no-ßux)
boundary conditions at both ends. These no-ßux boundary conditions might correspond
to the two ends of the dendrite being sealed off, for example. The solution of this model
is illustrated in Fig. (??).

6.2.3 Numerical solution of heat equation

THIS IS MUCH TOO COMPLICATED A TOPIC TO BE EMBEDDED
INSIDE THIS ALREADY-TOO-LONG CHAPTER. THIS REQUIRES IT
TO BE VERY SHORT. HOWEVER, IT MUST BE DEEP ENOUGH THAT
THEY WILL BE ABLE TO USE IT AS-IS, AS WELL AS EXTEND IT
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TO MORE COMPLICATED CASES The numerical solution of partial differen-
tial equations requires fairly sophisticated techniques, and we will not treat this topic
here. We do, however, present one simple approach for the diffusion equation that is
adequate for our purposes, and which can be implemented in XppAut.

Consider again the problem of photoreleasing caged calcium in the center of a
dendrite 100 microns long. Again, we deÞne the spatial domain to extend from −100
microns to 100 microns, and the starting time to be the time at which the caged
calcium is photoreleased (which we take to be t = 0). We begin by subdividing the
spatial domain into I equally-sized intervals, with ∆x = 200/I denoting the length
of the intervals. If the I + 1 endpoints of these intervals are denoted by xi, where
i = 0, 1, 2, . . . , I, then we can deÞne an approximation to c(x, t) at these points by
c(xi, t) = ci(t). In-between the discretization points, we assume c(x, t) is linear.

We now introduce an approximation to the diffusive term at each discretization
point. Using the deÞnition of the derivative, we simply ignore the limit, and use the
approximation

General issues. How people really solve these equations. Relationship between space
and time step. Though not the best method, XPP can be used. Here�s how. PDEs can
be converted to odes Show XPP simulations of ODE system.

Figure: Do it an overlay with analytical solution.

6.3 Multi-dimensional Formulation

The multi-dimensional forumulation of the transport equation generalizes quite easily
from that in one dimension. The primary difference is that, in multiple dimensions,
the ßux function is replaced by a ßux vector. This ßux vector now indicates not only
the rate, but the direction, of net transport. While much of our presentation in this
section focuses on three dimensions, the two-dimensional case is easily gleaned from the
three-dimensional case.

6.3.1 Conservation Law in Multiple Dimensions

We now consider a chemical species C whose concentration c(x, y, z, t) may vary in
both time and in some three-dimensional volume V . The conservation law given before
remains valid:

time rate of change of the total amount of C =

net rate that C ßows in + rate that C is produced. (6.24)

At any time t, the total amount of C in the volume can be computed by integrating
c(x, y, z, t) over the volume:

total amount of C =

Z
V

c(x, y, z, t) dV. (6.25)
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Now suppose that C is free to randomly move about, so that C moves in and out
of the volume by passing through the volume�s surface S. The ßux J(x, y, z, t) is now
a vector, as C can move in any direction. If we denote by n(x, y, z) the outward unit
normal vector on S, then the net ßux into V is given by

net rate of entry of C = −
Z
S

J(x, y, z, t) · n(x, y, z) dA, (6.26)

where dA is the surface integration element. Because n is the outward normal, J · n
is positive when the motion is from inside to outside, which accounts for the negative
sign in this equation.

The rate of production of C in the volume can now be written as f(x, y, z, t, c),
where as before, the rate is allowed to depend on c itself. Thus, the total rate of
production of C in V is given by

net rate of production of C =

Z
V

f(x, y, z, t, c(x, y, z, t)) dV. (6.27)

The conservation equation can now be rewritten mathematically:

d

dt

Z
V

c(x, y, z, t) dV = −
Z
S

J(x, y, z, t) · n(x, y, z) dA+
Z
V

f(x, y, z, t, c(x, y, z, t)) dV.

(6.28)

The surface integral can be replaced by a volume integral using the divergence theorem,
which yields the multi-dimensional integral form,

d

dt

Z
V

c(x, y, z, t) dV =

Z
V

∇ · J(x, y, z, t) dV +
Z
V

f(x, y, z, t, c(x, y, z, t)) dV, (6.29)

where ∇ is the divergence operator. As before, assuming the solution is smooth enough,
and noting that the choice of the volume V was arbitrary, we can rewrite Eqn. (6.29)
in differential form,

ct +∇ · J(x, y, z, t) = f(x, y, z, t, c). (6.30)

Note that there are now four independent variables (x, y, z and t), and that the equation
contains partial derivatives with respect to all four.

6.3.2 Fick�s Law in Multiple Dimensions

As discussed above, Fick�s Law states that C moves from regions of high concentration
to regions of low concentration, with a rate proportional to the concentration gradient.
Thus, in multiple dimensions, Fick�s Law takes the form,

J(x, y, z, t) = −D∇c(x, y, z, t), (6.31)

where the diffusion constant D is the proportionality constant, and the negative sign
ensures that C moves down the concentration gradient. Even in multiple dimensions,
the units of D are still length2/unit time.
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Using Fick�s law, Eqn. (6.30) can be rewritten as a reaction�diffusion equation,

ct −∇ · (D∇c) = f(x, y, z, t, c). (6.32)

Note that the diffusion term is now ∇ · (D∇c). When there are no sources or sinks
(f = 0), Eqn. (6.32) becomes the multi-dimensional diffusion equation,

ct −∇ · (D∇c) = 0. (6.33)

6.3.3 Advection

The multi-dimensional advective ßux does not change from the one-dimensional case:

J(x, y, z, t) = vc(x, y, z, t). (6.34)

Note that the ßux vector is in the direction of velocity vector, v.
If the random and biased directional motions co-exist, the total ßux is again just

the linear superposition of the diffusive and drift ßuxes:

J(x, y, z, t) = vc(x, y, z, t)−D∇c(x, y, z, t). (6.35)

Using this constitutive relation in Eqn. (6.30), the multi-dimensional reaction�
advection�diffusion equation is

ct + v∇c(x, y, z, t)−∇ · (D∇c) = f(x, y, z, t, c). (6.36)

6.3.4 Boundary and Initial Conditions

As in one dimension, we must supply both initial and boundary conditions to select the
solution to the problem of interest. The only difference is that the functions involved are
multi-dimensional, and, when the spatial domain is complex, can be quite complicated.

6.3.5 Diffusion in Multiple Dimensions

The actual form of the �nabla� operator depends on the underlying coordinate system.
In Cartesian coordinates, it takes the form

∇ =�i ∂
∂t
+�j

∂

∂y
+ �k

∂

∂z
, (6.37)

where �i, �j and �k are the unit vectors in the x, y and z directions, respectively. Therefore,
the �vectorial gradient� of c in Cartesian coordinates can be written as

∇c = �i∂c
∂t
+�j

∂c

∂y
+ �k

∂c

∂z
, (6.38)

so that, for example, the gradient in the x direction is �i ·∇ c = ∂c/∂x.
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If the diffusion constant D is actually constant�that is, it does not vary in time or
space�then the diffusive term can be written

∇ · (D∇c) = D∇ · (∇c) = D∇2c. (6.39)

In this equation, ∇2 is called the �Laplacian operator�, with the notation deriving from
an anlogy with the square of a vector. When the spatial domain is more naturally Þt
by coordinate systems other than Cartesian, the Laplacian must also be written in
terms of the new coordinates. For example, in two-dimensional polar coordinates, the
Laplacian operator becomes

∇2 c(r, θ, t) =
∂2c

∂r2
+
1

r

∂c

∂r
+
1

r2
∂2c

∂θ2
, (6.40)

and in three-dimensional spherical coordinates, it becomes

∇2 c(r, θ,φ, t) =
1

r2
∂

∂r

µ
r2
∂c

∂r

¶
+

1

r2 sin θ

∂

∂θ

µ
sin θ

∂c

∂θ

¶
+

1

r2 sin2 θ

∂2c

∂φ2
. (6.41)

6.3.6 Using symmetry to simplify higher dimensional problems

Example: Radial diffusion equation Diffusion from a point source in 3D show 1/r
solutions analytically Connect with Artie�s domain stuff.

End by refering people to Carslaw and Jaeger and Crank for more complicated
examples. Boundaries, etc.

6.4 Reaction-diffusion equations

6.4.1 The cable equation

Bring reaction back in now.
Refer to how this is used for spread of V in passive dendrite.

6.4.2 The radial cable equation

Diffusion and degradation. This is a model for Ca2+ domains.
Coupled local dynamics
traveling signals and waves

6.4.3 F-N equations

Analytical work.
Traveling wave solutions.
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Modeling Intracellular
Calcium Waves
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7.1 Propagating Intracellular Calcium Waves

7.1.1 The fertilzation calcium wave

A good example is the fertilization Ca2+ wave in Xenopus laevis eggs. X. laevis eggs
are large (1.2 mm diameter) so Ca2+ diffusion is important.

[[Description of fertilization Ca2+ wave]]
This egg requires IP3R activation for the wave. It can be waveled using equations

very similar to that presented in Chapter (). Without consideration of space, the whole
cell equations take the form,

d[Ca2+]

dt
= fi (jIP3R + jleak − jSERCA) (7.1)

dw

dt
= − (w −w∞) /τ (7.2)

Figure 7.1 Fertilization caclium wave experimental Þgure.
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Figure 7.2 (w,[Ca2+]) phase plane for fertilization Ca2+ wave wavel given by Eqn(MODE:EQN:00).

where w is related to the fraction of IP3Rs not inactivated, an

jIP3R = v1

µ
w[Ca2+]

[Ca2+] +K

¶3
. (7.3)

Note also that the buffering fraction, fi, multiplies both the reaction term and the
diffusion term, giving the �effective diffusion constant� Deff = fiD ¿ D. Thus, Ca2+

diffusion is slowed by binding to Ca2+ buffers.
The (w,[Ca2+]) phase plane for this wavel is presented in Fig. (7.2). Notice that the

whole cell wavel exhibits bistability, there are three equilibria or singular points given
by the intersection of the Ca2+ and w nullclines. Equlibiria 1 and 3 are stable, while 2
is unstable.

In a closed cell wavel, we don�t have to keep track of [Ca2+]ER, because if it isn�t in
the cytosol, it must be in the ER. This conservation means that

[Ca2+]T = fe[Ca
2+]ER + fi[Ca

2+]i (7.4)

so that [Ca2+]ER is always given by

[Ca2+]ER =
[Ca2+]T − [Ca2+]i

c0
(7.5)

where c0 = fs is the relative effective volume between the ER and cytolsol. By ef-
fective we mean that we are accounting for buffering (though in a simplistic way, see
Section ??). This value for [Ca2+]ER is implicit in the terms jIP3R and jleak in Eqn. (7.2).

If we are going to account for Ca2+ diffusion as well as release and reuptake into
stores, it is easy to add a diffusion term to Eqn. (7.2). Following Chapter (), we do this,
to give

∂[Ca2+]

∂t
= fi

µ
D
∂2[Ca2+]

∂x2
+ jIP3R + jleak − jSERCA

¶
(7.6)

∂w

∂t
= − (w − w∞) /τ (7.7)

The Þrst thing to note here is that a diffusion term has been added to the Ca2+

equation but not to the equation for w. This is because the IP3Rs, and thus there state,
represented by w, does not diffuse. Also note that in writing this equation, we have to
decide if it is still appropriate to use Eqn. (7.5) for the [Ca2+]ER that appears in the
reactin terms of Eqn. (7.7). It turns out (see Exercise ??) that this this assumption is
valid only if the effective diffusion coefficients in the ER and cytosol are equal. If not,
a third PDE must be added,

∂[Ca2+]ER
∂t

= fe

µ
Der

∂2[Ca2+]ER
∂x2

− jIP3R − jleak + jSERCA
¶

(7.8)
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Note the sign difference on the reaction terms, and the diffusion constant for the ER
given by Der. If Der = Di, then Eqn. (7.7) and Eqn. (7.8) can be summed to give

∂[Ca2+]T
∂t

= fe
∂[Ca2+]ER

∂t
+ fi

∂[Ca2+]i
∂t

= 0 (7.9)

So if [Ca2+]T is initially uniform in space, it remains so for all time, and this
concentration becomes a parameter in the wavel, rather than a variable.

7.2 Travelling fronts

In order to simplify the material covered in this section, we are going to assume that
[Ca2+]ER is a constant and that the dynamics of Ca

2+ are much slower than w. In this
case, w = w∞ and Eqn. (7.2) reduces to the following single-variable reaction-diffusion
equation,

∂c

∂t
= Deff

∂2c

∂x2
+ f(c) (7.10)

where we have written c = [Ca2+].
Note that if the laplacian of c is zero in Eqn. (7.10), that is, the concentration

proÞle of Ca2+ is homogenous, then this partial differntial equation reduces to the
whole cell ODE wavel. This relationship is important, because it turns out that the
types of phenomena observed in a spatial whole cell wavel that includes diffusion as
well as reaction (such as signals, waves, pulses) can be understood in terms of the
dynamics of the homogenous sytem. For example, the fertilization Ca2+ wave wavel
given by Eqn. (??), the function f(c) (using parameters given [[]]) has three zeros, and
the homogenous system

dc

dt
= f(c) (7.11)

exhibits �bistability�. Fig. (7.2) shows a plot of f(c) (that is, d[Ca2+]

dt
), as a function of

Ca2+. This phase portrait shown in the same Þgure shows three zeroes (1 and 3 are
stable, 2 is unstable).

There is a stable resting state at low Ca2+ concentration with [[]], and another stable
resting point at high Ca2+ concentration. An unstable equilibrium lies between these
corresponding to a threshold. Fig. (7.2) presents a (Ca2+,w) phase plane that graphically

summarizes the bistable dynamics of the uniform concentration case ( ∂
2[Ca2+]

∂x2
= 0).

[[ Show how fertilization Ca2+ wave can be simulated using XPP. ]]

Figure 7.3 The rate function f(c) from Eqn. (??) is ploted, and the corresponding phase portrait for
the reduced fertilization Ca2+ wave wavel indicated.



7.2: Travelling fronts 149

Beginning with Eqn. (7.10) we follow Chapter (??) and discretize space, resulting
in the sytem of ODEs.

dci
dt
= Deff

ci−1 − 2ci + ci+1
∆x

+ f(ci) (7.12)

And the no ßux boundary conditions imply,

dc0
dt
= Deff

c1 − c0
∆x

+ f(c0)

dcI
dt
= Deff

cI−1 − cI
∆x

+ f(cI)

(7.13)

The XPP Þle would then be,
[[Include xpp Þle.]]
Fig. (7.4) shows a simulation of a fertilization Ca2+ wave calculated using this XPP

Þle. See in the Þle how the initial conditions are chosen.

7.2.1 Analysis of travelling front solutions

[[ I don�t think nondimensionalization of time has meaning given here.]]
We can analyze the equation by 1) non-dimensionalizing x and t via the scalings

�x = x/ (Deffτ)
1/2
and �t = t/τ , where τ is the (constant) relaxation time of w; and 2)

looking for a traveling wave solution c(x, t) = C(x−vt) = C(Z), as before. Substituting
c(x, t) = C(z) into the reaction�diffusion equation gives

dC

dz
= G (7.14)

dG

dz
= −vG− g(C) (7.15)

where g(C) = τf(C).

When this xpp Þle is contructed and d[Ca2+]

dz
ploted as a function of [Ca2+], one can

Þnd a well-behaved heteroclinic orbit (for τ = 20 sec.) when v = 5.541, but not for
slightly smaller or larger values of v. This heteroclinic orbit corresponds to the traveling
front.

7.2.2 Travelling pulses or trigger waves

There are other examples of IP3-dependent Ca
2+ waves. In the immature X. laevis

oocyte, very different types of waves are observed. Phenomena include spiral waves,

Figure 7.4 Simulation of travelling front using XPP. Show a slice as well as an array plot.

Figure 7.5 XPP plot of ODE obtained after transformation into traveling wave coordinates. A
heteroclinic orbit connects the two stable equilibria (points 1 and 2).
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Figure 7.6 (w,[Ca2+]) phase plane similar to MODE:FIG:02 except that parameters have been
changed so that ER is excitable (see text).

Figure 7.7 XPP plot of ODE obtained after transformation into traveling wave coordinates. A
heteroclinic orbit connects the two stable equilibria (points 1 and 2).

travelling pulses, etc. These differences arrize because the cytosol is conÞgured differ-
ently. There is a long process of maturation leading to the bistable cytoplasm. When
still an oocyte, the cytoplasm is excitable, as opposed to bistable. A simple change
in parameters converts the ODE wavel of the homogenous sytem into an excitable as
opposed to bistable one. However, in order to consider this case we need to let w be
time dependent again.

The XPP Þle used to create the phase plane diagram in Fig. (7.2) is shown in the
Appendix. Use this to reproduce this Þgure, plot nullclines that indicate bistability.
Now change the following parameters: [[]]. Replot the nullclines and you will see that
the whole cell wavel is now excitable. For comparison, this phase portrait is shown in
Fig. (7.6).

It is left as an exercise to construct an XPP Þle that adds diffusion to the wavel
presented in Eqn. (7.7). Implement diffusion in the same way as the XPP Þle presented
above. Remember that w becomes wi (N dynamic variables for the gating of IP3Rs
at each location in space, but the wi do not diffuse. Run a simulation using the same
initial conditions as in the previous simulatino. You should be able to reproduce Fig.
(7.7), which shows a travelling pulse. This traveling pulse gives a Ca2+ transient that is
analogous to an action potential spike. Excitable dynamics produce traveling pulses like
this, sometimes called �trigger waves� since a perturbation at one end of an excitiable
medium triggers a signal that may propagate for a long while with undiminished ampli-
tude. Indeed, this allows us to more clearly deÞne what we mean by excitable, since in
the 0D case some wavels, like FH, which we have called excitable, don�t actually have
a Þxed threshold. But the spatial version of such wavels does. You can see this here
by changing the amplitude of the initial condition. A value of XXX leads to abortive
pulses that can�t propagate across the entire length of the wavel cell.

It is interesting to graph the trajectory for one spatial position ci on top of the
nullclines. You see the trajectory going from one stable steady state to the other as
the wave passes (in the bistable case) or [[]] in the excitable case. Note that this does
not correspond exactly to the heteroclinic orbits shown in Fig. (7.6), since we haven�t
transformed into wave coordinates.

However, Fig. (7.6) and Fig. (7.7) allows us to make a correspondence between the
pieces of these trajectories in the phase plane and the shape of ci(t). This correspondence
is easy to make if w is slow compared to Ca2+, because in that case the homogenous
system is a relaxation-type excitable system. This is to some extend the case here, one
can see 1→ 2 in the reaction phase plane is rapid, and w is nearly constant during this
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phase of the wave. Then 2→ 3 occurs on the [Ca2+]-nullcline, and 3→ 4 in the reaction
phase plane is also rapid, and 4→ 1 occurs on the other branchof the [Ca2+]-nullcline.

7.3 The Effect of Calcium Buffers on Calcium
Waves

The important association of Ca2+ with intracellular Ca2+ buffers has been discussed
in Chapter (). Remember that this was important because Ca2+ buffers change the
time constants for ODE wavels. Now that we know how to wavel diffusion, we are
able to wavel the effect that Ca2+ buffers have on Ca2+ waves. We are also able to
calculate the wave of elevated Ca2+-bound indicator dye that actually corresponds to
an experimental measurement. This wave corresponds to the underlying Ca2+ wave,
but to what degree. This is the sort of question that modeling can help answer.

7.3.1 Impleting Calcium Buffers in a Calcium Wave Simulation

What is the proper way to include Ca2+ buffers in a wavel of a Ca2+ wave? The as-
sociation and dissociation of Ca2+ with buffers amounts to the presence of additional
reaction terms in the wavel. Let�s consider the case where there is only one Ca2+ buffer,
either an endogenous Ca2+-binding protein or the indicator dye being used to measure
the Ca2+ signal. Following the bimolecular reaction scheme presented in Eqn. (??) , we
write,

∂[Ca2+]

∂t
= DCa

∂2[Ca2+]

∂x2
+R+ Jtot, (7.16)

∂[B]

∂t
= DB

∂2[B]

∂x2
+R, (7.17)

∂[CaB]

∂t
= DCaB

∂2[CaB]

∂x2
−R, (7.18)

with the reaction terms given by

R = −k+[B][Ca2+] + k−[CaB]. (7.19)

[[ or refer to equation in Artie�s chapter]]. where Jtot = Jpump+ J[IP3] + Jleak is the sum
of all calcium ßuxes into and out of the ER. These equations (plus the equation for w
in Eqn. (??)) make a wavel for a Ca2+ wave in the presence of a buffer. Note that we
have included the possibility that the Ca2+ buffer is mobile (that is, it can diffuse when
Ca2+ is bound or not) with the diffusion terms and coefficents DB and DCaB.

Notice that if the diffusion of buffer doesn�t depend on whethor or not Ca2+ is
bound, DB ≈ DCaB, Eqn. (7.17) and Eqn. (7.18) can be summed to give,

∂[Bm]T
∂t

= Db

∂2[Bm]T
∂x2

. (7.20)
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This means that if [B]T is initially homogenous, it will remain homogeneous, and we
can eliminate Eqn. (7.18) since at every spatial position, [B] = [B]T − [CaB]. Thus, we
have the reduced system,

∂[Ca2+]

∂t
= DCa

∂2[Ca2+]

∂x2
+R+ Jtot (7.21)

∂[CaB]

∂t
= DCaB

∂2[CaB]

∂x2
−R, (7.22)

with the reaction terms given by

R = −k+ ([B]T − [CaB]) [Ca2+] + k−[CaB]. (7.23)

If we now bring back the equation for w, we can write the following XPP Þle to simulate
a buffered Ca2+ wave,

[[ XPP FILE ]]
Fig. (??) shows a simulation using this XPP Þle. [[ Description of buffer parameter

changes and the effect on wave amp and speed.]]

7.3.2 The Rapid Buffer Approximation

If the buffer reactions are rapid with respect to the diffusion, it is possible to simplify
our wavel further using the so-called rapid buffer approximation. If the associatoin
and dissociation rate constants are large (buffers fast), then Eqn. (7.21)-Eqn. (7.22)
become singularly perturbed (see Chapter (??)). (If, in the nondimensional version of
these equations, R is large, then dividing both sides by a constant of this size results
in a small parameter in front of the time derivatives). Although singular perturbations
problems are beyond the scope of this text, there is a heuristic derivation of the RBA
that sheds light of the effect of Ca2+ buffers on Ca2+ transport in cells.

The rapid buffer approximation begins by making the assumption that if Ca2+

buffers are rapid, Ca2+ will be in equilibrium with the buffers at each point in space.
Thus, we assume,

[CaB] =
[Ca2+][B]T
[Ca2+] +K

(7.24)

Let�s deÞne total cell Ca2+ to be

[Ca2+]T = [Ca
2+] + [CaBm]. (7.25)

Now summing Eqn. (7.21) and Eqn. (7.22) results in the cancellation of the R term,
leaving,

∂[Ca2+]T
∂t

=
∂[Ca2+]

∂t
+
∂[CaBm]

∂t
= Dc

∂2[Ca2+]

∂x2
+Db

∂2[CaBm]

∂x2
(7.26)

These equations do not involve the rapid buffering time scales and, therefore, involve
no singular perturbation. Therefore, we use our assumption of local equilibrium, which
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implies Eqn. (7.24) as well as,

[Ca2+]T = [Ca
2+]

µ
1 +

[Bm]T
(K + [Ca2+])

¶
. (7.27)

and substitute these expressions for [Ca2+]T and [CaB] in terms of [Ca
2+] into Eqn.

(7.26). This gives,

∂

∂t

µ
[Ca2+] +

[Ca2+][B]T
[Ca2+] +K

¶
=
∂2

∂x2

µ
Dc[Ca

2+] +Db

[Ca2+][B]T
[Ca2+] +K

¶
+ Jtot (7.28)

It is left as an exercise for the reader to conÞrm that taking derivatives implies,

∂[Ca2+]

∂t
= β

Ã
(Dc +Dmγ)

∂2[Ca2+]

∂x2
− 2γDb

K + [Ca2+]

µ
∂[Ca2+]

∂t

¶2
+ Jtot

!
, (7.29)

where

γ =
K[Bm]T

(K + [Ca2+])2
(7.30)

and

β =
1

1 + γ
. (7.31)

This equation is refered to as the rapid buffering approximation, and although compli-
cated in form, this approximation has allowed us to elminate the equation for [CaB].
Fig. (??) uses an XPP Þle which implements Ca2+ buffers using the rapid buffer approx-
imation. Make the association constants large while keeping the dissocation constant
Þxed, and compare the XPP Þle which uses the full equations for the buffered Ca2+

wave to the Þle which uses the rapid buffer approximation. How fast do the buffers have
to be for the RBA to give a good approximation to the wave?

7.3.3 The effective diffusion coefficient

In the case of stationary buffer alone, Eq. (??) involves only a diffusion-like term. The
introduction of mobile buffers produces a second term involving the square of the [Ca2+]
gradient. Since that (non-negative) term is subtracted from the equation, it appears as
a non-diffusive term which counteracts the diffusive-like movement of unbound Ca2+

given by the Þrst term. Such terms arise often in the context of density-dependent
diffusion [?]. Although this non-diffusive term can not be eliminated, it is useful to
write the equation in the form of an equivalent conservation equation [?]. DeÞning the
calcium-dependent diffusion constant as

D(c) = β

µ
Dc +Db

K[Bm]T
(K + c)2

¶
. (7.32)

and the diffusion ßux as

j(c) = −D(c)∂c
∂t
, (7.33)
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it is possible to rearrange Eq. (??) into the standard form of a conservation equation,

∂c

∂t
= − ∂

∂t
j(c)− dβ

βdc
D(c)

µ
∂c

∂t

¶2
. (7.34)

Using Eq. (??) it is easy to show that the derivative dβ/dc is non-negative. Thus
the non-diffusive second term in Eq. (7.34) represents a sink for unbound Ca2+ ions.
This non-diffusive sink term is a result of the uptake of Ca2+ by buffers that occurs
when unbound Ca2+ ions move down their concentration gradient. Indeed, as long as
dβ/dc > 0, a larger fraction of the ions that move down the gradient into the lower
concentration region will be taken up by the buffers there than will be released from
the buffers at the high concentration end of the gradient. Only when dβ/dc ≈ 0, which
occurs as a limiting case when [Ca2+]/Ki ¿ 1, does the non-diffusive sink term vanish.
By using the explicit form for j(c) in Eq. (7.33), it is possible to decompose the Þrst
term in Eq. (7.34) to obtain:

∂c

∂t
= D(c)

∂2c

∂x2
+

µ
dD

dc
− 1

β

dβ

dc
D(c)

¶µ
∂c

∂t

¶2
. (7.35)

This form of the equation makes it clear that the non-diffusive term in Eq. (??) has
two components: one that arises from the dependence of the diffusion constant, D(c),
on [Ca2+] and the other that arises from the sink effect described in Eq. (7.34).

Exogenous buffers have been shown to alter the speed of Ca2+ waves in mature
Xenopus oocytes [?], an effect that may in part be related to the various buffering terms
in Eq. (??). [[ Suggest some exercises using XPP. Solving simple diffusion problems with
and without buffers to look at the effect of buffers on the effective diffusion coefficient.
Then link to early chapters where contant fraction assumptions were made. What is
that constant, exactly?]]

7.4 Interpretation of Confocal Microßuorometric
Measurements

In the previous discussion of global or cell-wide Ca2+ excitability, oscillations, and
waves, we have described mathematical models of these dynamic phenomena and the-
oretical studies of the effect of rapid mobile buffers on Ca2+ signals. However, it is
important to remember that experimental observations of intracellular Ca2+ dynam-
ics are made using confocal microßuorimetry, an experimental technique that involves
loading Ca2+ indicator dyes into cells and instrumentation that optically excites these
indicators and measures emmission. Ca2+ indicator dyes are themselves Ca2+ buffers
(often highly mobile) that can potentially effect intracellular Ca2+ signalling.

Although a measured ßuoresence signal is only indirectly related to the dynamics of
intracellular Ca2+, it is relatively straightforward to determine the free Ca2+ concentra-
tion during a cell-wide Ca2+ response using the time course of measured ßuorescence.
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If the Ca2+ and indicator dye concentrations are homogenous throughout the cell, the
equilibrium relation

[CaBj] =
[Ca2+][Bj]T
Kj + [Ca2+]

(7.36)

is valid as long as [Ca2+] changes slowly compared to the equilibration time of the
buffers. Because this equilibration time is on the order of milliseconds, this condition
is usually satisÞed for global Ca2+ responses, which occur with a timescale of seconds
or tens of seconds. Perhaps link to statement of equilibration time of buffers in
John�s RBA section.

If the equilibrium relation (7.36) accurately describes the relationship between
bound indicator dye and free Ca2+, then it is a simple matter to �backcalculate� the
free Ca2+ concentration as a function of time. For a single excitation wavelength mea-
surement (e.g., using a non-ratiometric dye such as ßuo-3 at low concentration), we can
idealize the indicator ßuorescence as the sum of two components,

F = ηB[Bj] + ηCaB[CaBj] (7.37)

where ηB and ηCaB are proportionality constants for free and bound dye, respectively.
When ηB < ηCaB, the maximum and minimum observable ßuorescence are given by
Fmin = lim[Ca2+]→0 F = ηB[B]T and Fmax = lim[Ca2+]→∞ F = ηCaB[B]T . Using the
equilibrium relation it can be shown (see Exercise 2) that

[Ca2+] = Kj

[CaBj ]

[Bj]
= Kj

F − Fmin
Fmax − F (7.38)

If only the Ca2+-bound indicator ßuoresces strongly, then F ≈ ηCaB[CaBj ], and a
slighly simpler expression results from substituting Fmin = 0 in (7.38).

It should be noted that the validity of (7.38) relies on the stability of instrument
sensitivity, optical path length, and dye concentration between measurements of F ,
Fmin, and Fmax. Because determining Fmin and Fmax usually involves titrating the
indicator released from lysed cells, this is difficult to acheive in practice [2].

In whole-cell Ca2+ measurements, ßuoresence intensities can be measured at two
excitation wavelengths (λ and λ0) using indicator dyes such as fura-2. Such ratiometric
measurements can be related to the underlying free Ca2+ signal by supplementing (7.37)
with

F 0 = η0B[Bj] + η
0
CaB[CaBj] (7.39)

where the primes indicates the second exitation wavelength [2]. Using the Þrst equality
of (7.38), the ßuorescence ratio, R = F/F 0, can be inverted to give (see Exercise 2),

[Ca2+] = Kj

ηB − η0BR
η0CaBR− ηCaB

= Kj

µ
R−Rmin

Rmax −R
¶µ

η0B
η0CaB

¶
(7.40)

where for the second equality we use Rmin = lim[Ca2+]→0 F/F
0 = ηB/η

0
B and Rmax =

lim[Ca2+]→∞ F/F
0 = ηCaB/η

0
CaB. If λ

0 is chosen to be a wavelength at which the cal-
ibration spectra at different Ca2+ concentrations cross one another, then η0B ≈ η0CaB
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and the last factor in (7.40) is eliminated. An advantage of the ratiometric method is
it�s insensitivity to changes in dye concentration and instrument sensitivity between
measurements.

7.5 Cellular heterogeneity and the continuum
approximation

7.5.1 Modeling discrete Ca2+ release sites

Clustering of intracellular Ca2+ channels leads to spatially localized Ca2+ release events.
This is a very relevant and interesting case. Discrete release can be incorporated into

multi-domain or continuum models. Example simulation showing some consequences
of discreteness (or heterogeneity of Ca2+ release ßux) on a simulated propagating Ca2+

wave.
Figure showing deterministic simulation where each release site is populated by

large number of channels (i.e., heterogeneous Ca2+ ßux though no discreteness in the
sense of Þnite number of Ca2+ channels).

[[XPP FILE MODIFICATIONS THAT LEAD TO THIS FIGURE]]
[[Exercise looking at relationship of wave speed and D for continous and saltatory

waves. A new mode of Ca2+ wave propagation in which wave velocity is a linear function
of D and d. ]]]

[[ FIGURE SHOWING V as function of d and D ]]]

7.5.2 The Þre-diffuse-Þre model of spark-mediated Ca2+ waves

Description of the model in which release is not instantaneous, so that model doesn�t
have to be redeÞned in the following sections.

Calculation of wave speed from the analytical model?
Figures clarifying the model.
Two nondimensional parameter, β and γ, and their signiÞcance.

7.5.3 The transition from saltatory to continuous Ca2+ wave
propagation

Presentation of the β, γ plane. Figure showing saltatory versus continuous wave using
FDF model.

The transition between saltatory and continuous waves analysis and clariÞcation
using the Þre-diffuse-Þre model

Validity of the continuum approximation.
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7.6 Spatially localized calcium elevations

Many cellular processes (including synaptic transmission, activity-dependent synaptic
plasticity, and regulation of neuronal excitability) can be initiated by changes in in-
tracellular Ca2+ concentration in the absence of a global Ca2+ response. Such localized
Ca2+ elevations are cellular signals of great interest, both because they can regulate
cellular function in a highly speciÞc manner, and because these localized Ca2+ eleva-
tions are the �building blocks� of global Ca2+ release events (for review, see [4, 5]).
Recent experimental observation of localized intracellular Ca2+ release events dubbed
Ca2+ �puffs� and �sparks� has focused attention on these elementary events that are
responsible for Ca2+ oscillations and waves [7].

The interpretation of confocal microscopic data of Ca2+ puffs and sparks is compli-
cated by the fact that diffusion of Ca2+, endogenous buffers, and indicator all contribute
to the dynamics of Ca2+ transport both during and after Ca2+ release. While in the case
of global Ca2+ responses, it was shown above that the equilibrium relation (7.36) will
likely hold between Ca2+ and indicator, this is not so easily demonstrated in the case of
localized Ca2+ elevations (though it remains true in some cases [15]). A further compli-
cating factor in interpreting confocal microscopic measurements of puffs and sparks is
the optical blurring that occurs due to the limited spatial resolution of instrumentation
[16, 1].

The reaction-diffusion equations for the buffered diffusion of intracellular Ca2+,
(7.16)�(7.19), are the starting point of a theoretical understanding the dynamics of
localized Ca2+ elevations. In the simplest scenario, a Ca2+ puff or spark is due to Ca2+

release through one channel or a tight cluster of channels. If Ca2+ is released from
intracellular Ca2+ stores deep within a large cell (so that the plasma membrane is far
away and doesn�t inßuence the time-course of the event), and the intracellular milieu is
homogenous and isotropic, then we have spherical symmetry. In this case, the evolving
proÞles of Ca2+ and buffer (though a function of time and distance from the source) will
not be a function of the polar (φ) or azimuthal (θ) angle. In the case of such spherical
or radial symmetry the Laplacian reduces to

∇2 =
1

r2
d

dr

∙
r2
d

dr

¸
=
d2

dr2
+
2

r

d

dr
(7.41)

Figure 7.8 shows a spherically symmetric calculation of a localized Ca2+ elevation
using the full equations for the buffered diffusion of Ca2+, (7.16)�(7.19), with parameters
consistent with measurements of the effective diffusion coefficient in Xenopus oocyte
cytoplasm [3]. Figure 7.8 is a numerically calculated snapshot of the concentration
proÞles for each species according to the full equations after an elapsed time of 1 ms.
Ca2+ concentration is elevated near the source (red line). Because released free Ca2+

reacts with buffer, the concentration of bound buffer (solid green and blue lines) is
elevated near the source. Conversely, the concentration of free buffer (dashed lines)
decreases near the source. In this simulation, 250 µM stationary buffer was included in
addition to 50 µM mobile buffer (both with K of 10 µM). A source amplitude of 5 pA
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Figure 7.8 Representative full model
calculation of Ca2+ proÞle near a point
source for free Ca2+. Source amplitude
(σ) and elapsed time are 5 pA and 1 ms,
respectively.

was used, corresponding to a tight cluster of IP3Rs. Interestingly, Fig. 7.8 shows that
the mobile buffer is less easily saturated than stationary buffer, in spite of the fact that
the stationary buffer is at Þve-fold higher concentration (note arrows).

Simulations such as these have played a role in understanding of the dynamics of
puffs and sparks. Figure 7.9 shows a Ca2+ sparks simulated using parameters consistent
with experimental observation in cardiac myocytes [16]. Such simulations conÞrm that
the time-course of observed ßuorescence can be explained by a 2 pA, 15 ms, Ca2+-release
event from a tight cluster of RyRs located on the sarcoplasmic reticulum membrane.

Parameter studies using this model indicate that Ca2+ spark properties (such as
brightness, full width at half maximum, and decay time constant) are very dependent
on indicator dye parameters (such as association rate constant, concentration, and dif-
fusion coefficient). These relationships are not always intuitive. For example, increasing
indicator dye concentration decreases the brightness of the simulated Ca2+ spark in
Fig. 7.9. This is partly due to the fact that spark brightness is a normalized mea-
sure (peak/basal ßuorescence), and partly due to the fact that high concentrations of
indicator perturb the underlying free Ca2+ signal.

7.6.1 Steady-state equations

Numerical simulations like those in Fig. 7.8 conÞrm that domain Ca2+ concentra-
tions acheive steady-state values very rapidly (within microseconds) near point sources.
Steady-state solutions to the full equations are thus of interest because they allow es-
timates of �domain� Ca2+ concentration near open intracellular Ca2+ channels. These
steady-state solutions lend themselves to analysis, giving insight into the limiting (long
time) �shape� of localized Ca2+ elevations. In the case of one mobile buffer, steady-state
solutions to the full equations, (7.16)�(7.19), will satisfy the following boundary-value
problem [13],

0 = Dc∇2[Ca2+]− k+[B][Ca2+] + k− ([B]T − [B]) , (7.42)

0 = Db∇2[B]− k+[B][Ca2+] + k− ([B]T − [B]) , (7.43)
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Figure 7.9 Effects of indicator dye parameters on Ca2+ spark properties. Source amplitude is 2 pA for
15 ms and simulated ßuo-3 has K of 1.13 µM. (A,B,C) Time course of normalized, blurred ßuorescence
signal estimated according to with ηB = 0. (D) Snapshot of Ca

2+ and CaB] proÞles before termination
of Ca2+ release. Dotted line shows the Ca2+ proÞle with no ßuo-3. For details of the simulated confocal
point spread function and buffer paramterssee Smith et al. 1998.

with associated boundary conditions,

lim
r→0

½
−4πr2Dc

d[Ca2+]

dr

¾
= σ, lim

r→∞
[Ca2+] = [Ca2+]∞,

lim
r→0

½
−4πr2Db

d[B]

dr

¾
= 0, lim

r→∞
[B] = [B]∞ =

K[B]T
K + [Ca2+]∞

.
(7.44)

Here we have written Dc and Db for the diffusion coefficients of free Ca
2+and free buffer,

respectively.
Note that Þxed buffers, while important for the time-dependent solutions to the full

equations, have no inßuence on steady states. This can be seen by inspecting the full
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equations, (7.16)�(7.19), where DCaBj = 0 implies Rj = −k+j [Bj][Ca2+] + k−j [CaBj ] = 0
so that these terms make no contribution to the Ca2+ equation at steady-state.

7.6.2 Non-dimensionalization

As discussed in Chapter ??, there are many advantages to non-dimensionalizing
equations before preceeding to analyze them. A convenient nondimensionalization of
(7.42)�(7.44) begins by scaling [Ca2+] and [B] by representative concentrations, the
dissociation constant of the buffer (K) and the total concentration of buffer ([B]T ),
respectively (see [17] for details). This gives two dimensionless dependent variables, c
and b, given by c = [Ca2+]/K and b = [B]/[B]T .

If we also nondimensionalize the independent variable ρ = r/L, with L = σ/4πDcK,
it can be shown (see Exercise 3) that (7.42) and (7.43) simplify to

εc∇2
ρc− (cb+ b− 1) = 0, (7.45)

εb∇2
ρb− (cb+ b− 1) = 0, (7.46)

where the subscript on the Laplacian indicates the differentiation is with respect to ρ.
Note that two dimensionless diffusion coefficients (εc and εb) appear in these equa-

tions. In terms of the original dimensional parameters of the problem, they are given
by εc = ²α and εb = ²D, where α = K/[B]T is a buffering factor (small when buffer
is at high concentration compared to dissociation constant), D = Db/Dc is a relative
diffusion coefficient between buffer and Ca2+, and the common factor is given by

² = (4π)2D3
cK/σ

2k+ (7.47)

This common factor is small for strong sources and/or fast buffers.

7.6.3 The excess buffer approximation (EBA)

The steady-state equations for the buffered diffusion of Ca2+ near a point source, (7.45)
and (7.46), are nonlinear and no general analytical solution is known for these equations.
But we can begin to understand the behavior of solutions (and the effect of Ca2+ buffers
on Ca2+ domains) by considering (7.45) and (7.46) in limiting parameter regimes. The
Þrst such limit we will consider is called the �excess buffer approximation.� If there is
a lot of buffer (buffer is in excess), then the parameter α = K/[B]T will be very small,
and this will cause εc = ²α be small as well. Therefore, we consider in detail (7.45) and
(7.46) when εc ≈ 0, which in physical terms implies that the diffusion coefficient of c is
small compared to the size of the reaction terms in (7.45).

The mathematically inclined reader will notice that for small εc, this is a singular
perturbation problem. Because this technique goes beyound the scope of this book, we
present only a heuristic analysis here. The interested reader is invited to consult [17]
for a more rigorous treatment of this problem.

With this caveat, we formally set εc = 0 in (7.45), giving

cb+ b− 1 = 0 (7.48)
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which implies that (7.46) simpliÞes to

∇2b = 0.

When combined with the boundary conditions for b (see 7.65 in Exercise 3), this
equation implies

b = b∞ (7.49)

where b∞ = 1/ (1 + c∞) (7.65). Thus, our assumption that buffer is in excess (εc = 0)
implies that the buffer is not perturbed from its equilibrium value, b∞.

Substituting (7.49) into (7.45) gives

εc∇2c− b∞ (c− c∞) = 0
This is a linear equation is satisÞed by c = A1/ρ + A2 [6, 8]. Using dimensionless
boundary conditions for c that can be derived from (7.44), the constants A1 and A2 are
found to give

c =
1

ρ
e−ρ/Λ + c∞ (7.50)

where the dimensionless space constant Λ =
p
εc/b∞. When this result is expressed in

dimensional form, we have

[Ca2+] =
σ

4πDcr
e−r/λ + [Ca2+]∞ (7.51)

where λ is the characteristic length constant for the mobile Ca2+ buffer given by λ =p
Dc/k+[B]∞. This excess buffer approximation, Þrst derived by Neher [10], is valid

when mobile buffer is in high concentration and/or when the source amplitude is small,
that is, limr→0 [B] ≈ [B]∞ [10, 15]. Note that λ decreases with increasing association
rate constant (k+) and free buffer concentration far from the source ([B]∞), representing
a restricted localized Ca2+ elevation.

7.6.4 The rapid buffer approximation (RBA)

The steady-state rapid buffer approximation near a point source for Ca2+ can be derived
by noticing that rapid buffer (large k+) leads to small values of ² (7.47). This results
in small values for both εc and εb, which in physical terms implies that the diffusion
coefficient of both c and b are small compared to the size of the reaction terms in (7.45)
and (7.46).

If we formally set εc = εb = 0 in these equations, we Þnd that, as before, (7.52)
holds. Solving for b, we Þnd at every spatial location b is given by

b =
1

1 + c
(7.52)

or in dimensional terms,

[B] =
K[B]T

K + [Ca2+]
(7.53)
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These equations are statements of local equilibrium, the fundamental assumption used
in deriving the rapid buffer approximation in the traveling wave case (??).

We proceed with this derivation of the steady-state RBA by by subtracting (7.45)
and (7.46) to give

∇2
ρ (εcc− εbb) = 0. (7.54)

In physical terms this expression is equivalent to the statement that at steady state the
ßux of total Ca2+, diffusing in both free and bound forms, across any spherical surface
centered on the source is equal to the ßux entering through the source (see Exercise 4).
Integrating twice with respect to ρ, and using the boundary conditions to determine
the integration constants gives

εcc− εbb = εc
ρ
+ εcc∞ − εbb∞ (7.55)

Substituting (7.52) into this equation gives

εcc− εb
µ

1

1 + c

¶
=
εc
ρ
+ εcc∞ − εbb∞. (7.56)

which upon solving for c and converting back into dimensional form gives the steady-
state RBA [14],

[Ca2+] =
1

2Dc

Ã
−DcK +

σ

4πr
+Dc[Ca

2+]∞ −Db[B]∞

+

r³
DcK +

σ

4πr
+Dc[Ca2+]∞ −Db[B]∞

´2
+ 4DcDb[B]TK

!
. (7.57)

The rapid buffer approximation tends to be valid when ² is small, which may occur
when buffers have a large association rate constant (k+). Interestingly, a sufficiently
large source amplitude (σ) can compensate for modest binding rates, also causing ² to
be small and the RBA to be valid [15].

7.6.5 Complementarity of the EBA and RBA

The fundamental assumptions used in deriving the excess and rapid buffer approxima-
tions are signiÞcantly different. In the case of the RBA (7.57), we assumed that buffer
and Ca2+ were in local equilibrium. Combined this assumption (7.53) with the fact that
[Ca2+]→∞ as r → 0 in (7.57), implies

lim
r→0

[B] = 0 (RBA) (7.58)

Thus, the steady-state RBA cannot be valid unless the source is strong enough to
saturate the buffer. On the other hand, in our derivation of the EBA we assumed that
the buffer is not perturbed from it�s equilibrium value (7.49). If this is true even near
the source, then

lim
r→0

[B] = [B]∞ (EBA) (7.59)
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Thus, we expect the EBA and RBA approximations to be complementary, in the sense
that the steady-state solution to the full equations for the buffered diffusion of Ca2+

near a point source (the correct answer) can not simultaneously be EBA-like (7.59) and
RBA-like (7.58). In the process of extending both the EBA and RBA to higher order,
this expectation that has been conÞrmed [17].

Exercises

1. Converting coupled PDEs to one PDE and then doing some wave analysis. [[Do we
want this as an exercise?]] For simplicity, assume that [Ca2+]ER is a constant and
that the dynamics of Ca2+ are much slower than w. In this case, w = w∞ and the
reaction equations reduce to those on pp. PAGE NUMBER (refers to notes page
106, see notes page 105), which is a one-variable ODE. The rate function is plotted
on pp. PAGE NUMBER (refers to notes page 107, see notes page 105).
This gives a single-variable reaction�diffusion equation:

∂c

∂t
= Deff

∂2c

∂x2
+ f(c) (7.60)

where c = [Ca2+]. Note that f(c) on pp. PAGE NUMBER (refers to notes page
107, see notes page 105) has three zeroes (1 and 3 are stable, 2 is unstable). So f(c)
exhibits �bistability�.
We can analyze the equation by 1) non-dimensionalizing x and t via the scalings
�x = x/ (Deffτ)

1/2 and �t = t/τ , where τ is the (constant) relaxation time of w; and
2) looking for a traveling wave solution c(x, t) = C(x − vt) = C(Z), as before.
Substituting c(x, t) = C(z) into the reaction�diffusion equation gives

dC

dz
= G (7.61)

dG

dz
= −vG− g(C) (7.62)

where g(C) = τf(C). The xppaut Þle is shown on pp. PAGE NUMBER (references
notes page 109, see notes page 108).
There is a well-behaved heteroclinic orbit (for τ = 20 sec.) when v = 5.541 (see pp.
PAGE NUMBER), but not for slightly smaller or larger values of v (see pp. PAGE
NUMBER).
The same dynamical model (closed cell IP3R dynamics) but with parameters giving
�excitable conditions� (see pp. PAGE NUMBER) gives a Ca2+ analogue of an action
potential spike. Excitable dynamics produce a �trigger wave�: FIGURE GOES
HERE.
The idea is if w is slow compared to Ca2+, we get a relaxation-type excitable system.
Thus 1→ 2 in the reaction phase plane is rapid. Thus we can consider w = w1 to
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be constant, and describe the front by

∂c

∂t
= Deff

∂2c

∂x2
+ f(w1, c) (7.63)

Then 2 → 3 occurs on the Ca2+-nullcline, and 3 → 4 also satisÞes the above
reaction�diffusion equation but with w = w2 (see the reaction phase plane on pp.
PAGE NUMBER � see notes bottom of page 112). The value of C at 3 is determined
by the condition that the wave speed of the �front� and the �tail� of the wave are
the same. Finally, 4→ 1 occurs on the Ca2+-nullcline.

2. Show that (7.36) and (7.37) imply (7.38). Also derive (7.40) from (7.37) and (7.39).

3. ConÞrm that nondimensionalizing (7.42)�(7.43) as described in text results in
(7.45)�(7.46). Show that the boundary conditions (7.44) become

lim
ρ→0

½
−ρ2 dc

dρ

¾
= 1, lim

ρ→∞
c = c∞, (7.64)

lim
ρ→0

½
−ρ2 db

dρ

¾
= 0, lim

ρ→∞
b = b∞ =

1

1 + c∞
. (7.65)

where c∞ = [Ca
2+]∞/K and and b∞ = [B]∞/[B]T . For help see [17].

4. Show that in physical terms, (7.54) is equivalent to the statement that at steady
state the ßux of total Ca2+, diffusing in both free and bound forms, across any
spherical surface centered on the source is equal to the ßux entering through the
source. First, convert (7.54) into dimensional form. Then substitute [B] = [B]T −
[CaB] and [B]∞ = [B]T − [CaB]∞ and simplify. Finally, use this expression to
calculate Jtotal = Jfree + Jbound where

Jfree = −4πr2Dc

d[Ca2+]

dr
Jbound = −4πr2Db

d[CaB]

dr

ConÞrm that Jtotal = σ (independent of r).
5. To rigorously derive the EBA and RBA, asymptotic methods are required [17].
An alternative analysis of the steady-state equations for the buffered diffusion of
Ca2+ involves linearizing (see Chapter Need link to chapter where linearization
is described) the equations around the equilibrium concentrations of Ca2+ and
buffer, c∞ and b∞ [9, 12, 19] (for review, see [11]). Begining with the dimensionless
equations, deÞne δc = c − c∞ and δb = b − b∞. Substitute these expressions into
(7.45) and (7.46) and drop the quadratic terms δc δb to Þnd

εc∇2
ρδc− [(1 + c∞) δb+ b∞δc] = 0 (7.66)

εb∇2
ρδb− [(1 + c∞) δb+ b∞δc] = 0 (7.67)

and associated boundary conditions,

lim
ρ→∞

δc = 0, lim
ρ→0

µ
−ρ2 dδc

dρ

¶
= 1, lim

ρ→∞
δb = 0, lim

ρ→0

µ
−ρ2 dδb

dρ

¶
= 0.
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When this system of linear equations is solved, and the result converted back to
dimensional form, the following steady-state proÞles for Ca2+ and buffer result:

[Ca2+] = [Ca2+]∞ +
σ

4πr (Dc + γ∞Db)

∙
1 +

γ∞Db

Dc

e−r/λ
¸
, (7.68)

[B] = [B]∞ +
σγ∞

4πr (Dc + γ∞Db)

£
e−r/λ − 1¤ (7.69)

where

1

λ2
=
1

τ

µ
1

Db

+
γ∞
Dc

¶
1

τ
= k+[Ca2+]∞ + k

− γ∞ =
K[B]T

(K + [Ca2+]∞)
2 (7.70)

Convert (7.68)�(7.69) into dimensionless form to Þnd expressions for δc and δb and
show that these satisfy (7.66)�(7.67).
Show that when γ∞ is large (lots of buffer), (7.68) reduces to (7.51), the EBA
solution for [Ca2+].

6. Substitute the spherical polar Laplacian (7.41) in (??), show that the steady-state
RBA can be found by directly integrating. For help see [14].
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CHAPT E R 8

Intercellular Communication

John Rinzel and Joel Keizer

07-28

Orchestrating the activity of cell populations for physiological functioning of the brain,
organs, and musculature depends on transmission of signals, learning and memory
devices, and feedback control systems. By what biophysical mechanisms do cells com-
municate in order to coordinate their activity as local ensembles, as multimodal circuits
and across system levels? Here, we only scratch the surface of this fascinating topic. We
will focus on electrically active cells; for this, you can have in mind for example cardiac
cells, many types of secretory cells, and neurons.

We know that ionic currents underlie cellular electrical activity. Hence, one way
that cells can interact is by directly passing ionic current between each other. Perhaps
the simplest mechanism for such intercourse is the analog of resistive coupling between
units, i.e. with the intercellular current being proportional to the voltage difference
between cells. Heart cells, and many other types of cells, communicate in this manner
with the ions ßowing directly between two coupled cells. In this case, referred to as
electrical coupling (and sometimes, in the neural context, electrotonic coupling), the
current ßows through channel proteins that span the plasma membranes of both cells
(Fig. (8.1)). The clusters of such channel proteins that are found at cell-to-cell contacts
are called gap junctions.

While gap junctions are occasionally found in neural circuits they seem to be less
uncommon during development or they may not constitute an exclusive means of in-
teraction. Neurons have a rich repertoire of other ways for exciting or inhibiting other
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Figure 8.1 schematic or drawing of gap jn w/ ch�s + electrical ckt. Probably a modiÞed version of Fig
4.13 from Koch: Biophysics of Computation

target neurons, via the indirect means of chemical synaptic transmission (Fig. (8.4)). At
a terminal of a neuron�s axon the neurotransmitter of one type or another is bundled in
vesicles that are released with increased probability when the terminal is active (depo-
larized). The transmitter, released into the extracellular space in the terminal region,
diffuses and binds to receptors on the post-synaptic cell�s nearby membrane. These
receptors may be part of a receptor-channel complex or be linked indirectly through
second messengers to a nearby channel. The activated channels then lead to the post-
synaptic current and action. The variety of transmitters and receptors enable many
different time scales and �sign� of the input that is being delivered to the target cell.
We Þnd synapses that are excitatory or inhibitory; they can be fast or slow; they can
be shunting; their synaptic parameters can change with usage - either, depressing or
facilitating ; they can be voltage-gated or not on the post-synaptic side.

Gap-junctional coupling is typically localized, certainly for cells without spatially
extended processes, to nearby neighbors. Prime examples include the heart and islets
of Langerhans in the pancreas. In contrast, neurons can interact across distances that
are many times greater than a cell body diameter - by means of their potentially
far-reaching axonal and dendritic arbors. The synaptic interactions enable them to
participate in local calculations and with distant assemblies, on selective time scales,
fast or slow and to various degrees. For long distance communication between cells
propagated action potentials typically mediate signal transfer to the synapses via axons.

Given the variety of coupling mechanisms and connectivity patterns there are many
possible behavioral modes, spontaneous and/or stimulus-driven, that such circuits may
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exhibit. Obviously we cannot elaborate on many of these behaviors; we will restrict
attention to a few examples and focus on pairwise interactions. Also we choose to
not present here some other mechanisms for intercellular interaction such as coupling
by cell-generated electrical Þelds, diffusion and exchange of ions (that effect Nernst
equilibrium potentials) and second messengers, mechanical and hormonal effects.

8.1 Electrical Coupling and Gap Junctions

The proteins that comprise the channels at gap junctions are of the connexion family.
Connexion molecules in the plasma membrane of one cell link up those in an adjacent
cell to form the channels. These channels pass most ions as well as various molecules
up to molecular weights of 10s of kD, including those, for example, involved in second
messenger systems such as IP3, CAMP, etc. The single channel conductance can be in
the range of 75-150 pS, and in most known instances they are fairly voltage-independent.
The variety of connexins provide a rich repertoire for diverse modulatory effects as
instigated (in some cases rapidly) by changes in intracellular pH, second messengers,
neurotransmitters, or voltage. [ref�ce Carlen, TINS 2000] For example, the reduction
of gap junctional coupling due to increasing levels of [Ca]i is described as a protection
mechanism.

Typically, for cell-level modeling, we represent the net conductance of a gap junction
as a constant, the product of the mean number of open channels at the junction and the
single channel conductance. Simultaneous pairwise recordings, at least for geometrically
simple, neighboring cells. could be used to quantitatively estimate this conductance.
For spatially extended cells, like neurons with branching dendrites, such measurements
would be confounded especially if the gap junctions are at electrically remote sites. Gap
junctions may also be detected by dye coupling, although this method is problematic
without good controls to test how readily the dye passes.

Consider an idealized case of two cells, each isopotential. The gap junctional current
that ßows from cell 2 into cell 1 is written as gc(V2 − V1), where gc is the net coupling
conductance of all the gap junctions formed between the two cells. This current appears
as a source term in the current balance equation for cell 1. DeÞned as such, with the
current as leaving from cell 2, it appears as a sink term for cell 2 (or, equivalently
gc(V1 − V2) is a source term into cell 2). Thus we have:

V 0
1 = (−Iion(V1, w1) + gc(V2 − V1))/Cm (8.1)

V 0
2 = (−Iion(V2, w2) + gc(V1 − V2))/Cm (8.2)

where w1, w2 correspond to the set of gating variables in each cell. Let us Þrst predict
the behavior, say in the case when the gap junction conductance is large. This means
that the cells are very tightly electrically coupled. We would then expect them to have
approximately the same voltage. Indeed if the cells are identical then V1 = V2 is always
a solution - the coupling current would be zero in this case. Of course a perturbation
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gc=2, i=-10... if gc=1 go to antiphase

Figure 8.2 Two identical Morris-Lecar
neuron models, auto-rhythmic, synchro-
nize with electrical coupling (turned on
at t = 100 ms). Parameter values for
the model are those of Chapter XX with
the following exceptions: vc = −5, vd =
10,φ = 0.5, gCa = 8, i = 10. Net gap
junction coupling conductance is gc = 2.
Initial conditions: V1 = −20 mV, w1 =
0.2, V2 = −30 mV, w2 = 0.

(eg, brief current pulse) to just one cell would make their V �s differ, transiently. By
subtracting the two equations and then dividing by gc we see that after dropping the
term which is of order 1/gc:

τc(V1 − V2)0 ≈ −(V1 − V2) (8.3)

where τc = Cm/gc. This shows that the cells will re-establish uniformity with an effective
time constant of τc, that is very short when gc is large.

This is illustrated in Fig. (8.2) for two Morris-Lecar cells that are tuned into an
oscillatory regime. In this example the cells are initially out-of-phase and uncoupled.
Synchronization occurs promptly after the coupling is introduced at t = 100 ms.

Such synchronization also occurs for spatially distributed multi-cell systems; even
though electrical coupling is localized it can, when large enough, synchronize a popula-
tion that might be spread over a sizable spatial region. In order to formalize this, one
can introduce the concept of an electrical length scale that involves coupling conduc-
tance as well as leakage conductance. This emphasizes the relativeness of intercellular
current to the current ßowing across a cell�s plasma membrane. By using this notion
we can refer to the �electrical size� of a cellular array - it could be quite compact even
though the spatial extent might not be.

In order to formalize this notion we consider the simple case of a chain of gap-
junction-coupled cells which have passive membrane properties, i.e. Iion = gmV . Thus
we have the equations for a typical cell, cell j:

dVj/dt = [gc(Vj+1 − Vj) + gc(Vj−1 − Vj)− gmVj ]/Cm. (8.4)

Suppose that we have a very long chain of cells (and, for now, ignore end effects)
and suppose we voltage clamp the cell in the middle for which j = 0 (j > 0 refers to
cells to the right and j < 0 is for cells to the left). In this passive system the voltage
distribution will go to a steady state after some transient, and the voltage will decrease
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from V0 as |j| increases. This attenuation occurs as current spreads from one cell to the
next away from j = 0 and because of current loss through the �leaky� membrane of
each cell.

The steady voltage decays in an exponential fashion with distance. The decay �rate�
γ can be found by considering the steady state case of eqn () (ie, setting dVj/dt = 0)
and seeking a solution of the form Vj = V0γ

j. This leads to a quadratic eqn for γ:

γ2 − (2 + gm/gc)γ + 1 = 0 (8.5)

Hence, there are two values of γ:

γ± = 1 + gm/(2gc)±
q
[1 + gm/(2gc)]2 − 1 (8.6)

Note, both roots are positive with γ+ > 1 and γ− < 1.
For a voltage proÞle that decays with distance to the right of j = 0 we must disallow

γ− (such a term would grow with j). Thus, ignoring end effects due to termination of
the chain the steady state proÞle for j ≥ 0 has the form

Vj = V0γ
j
−. (8.7)

The solution for j ≤ 0 is Vj = V0γj+ = V0 − γj−, since γ+ = γ−1− .
We can test our intuition by considering some limiting cases. When gm/gc is large

the leakage conductance is dominant and the voltage should attenuate rapidly with
distance from j = 0. Indeed, γ− ≈ gc/gm so that Vj decays steeply. On the other hand,
when gm/gc is small, then γ− ≈ 1−

p
gm/gc and the spatial decay is gradual.

Pursuing this latter case a bit more, if cell-to-cell attenuation is small and the
spatial proÞle changes smoothly we might treat the one-dimensional cellular array ap-
proximately as a continuum with position x ≈ j∆x, where ∆x is a cell size parameter,
considered small. The leakage conductance gm is proportional to a cell�s surface area,
which is perimeter of a cross section times ∆x. We will take some care with the repre-
sentation of gc. Let�s think about the reciprocal, rc = 1/gc, the resistance to longitudinal
current ßow between cells, say from one cell center to the next. Then, rc involves re-
sistance due to the gap junctions as well as cytoplasmic resistance along the cells axial
direction. If there are many gap junctions between adjacent cells then the major con-
tribution to rc will be the cytoplasmic term which is proportional to area of a cross
section time ∆x. Consequently, the ratio gm/gc (= gmrc) is proportional to ∆x

2 and
may be written as (∆x/λ)2. Finally, combining this with our expression for γ− (from
Eqn. (8.6) for small gm/gc) and noting that log(γ−) ≈ −

p
gm/gc the solution form for

the continuum approximation is:

V (x) = Vj = V0exp(j log γ−) ≈ Voexp(−j∆x/λ) = V0exp(−x/λ) (8.8)

Thus, λ is the electrical length constant for the continuum approximation.
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This treatment relates nicely, in a converse fashion, to continuum models for current
spread in individual cells that have extended processes, like neurons with their dendrites
or axons. These processes behave like electrical cables, current ßows along the axis and
leaks through the membrane. In this case of a neuronal process, we could think of it
for simulation purposes as a chain of short compartments (length ∆x) each with a
membrane surface area and connected by axial resistances - there are no gap junctions
between the Þctitious adjacent compartments. If d is the diameter of the cross section
then we would have gm = ∆xπdGm, where Gm is the leak conductance density (S/cm

2)
and rc = ∆x4Ri/(πd

2) where Ri the cytoplasmic speciÞc resistivity (ohm cm). Putting
this together we obtain for the electrical length constant of a passive neuronal dendrite
or axon λ =

p
d/(4GmRi). As an illustration, for a cortical pyramidal cell we�ve seen

estimates Gm =, Ri = so that with d = � yields λ = −. This means for a dendritic
branch of physical length, the corresponding electrotonic length is about XX, so we do
not expect excessive attenuation for steady or slow voltage changes. Transients decay
more abruptly. Also, the attenuations are more severe from dendritic locations to the
cell body to dendrites than vice versa.

We note that this discretization of neuronal cable-like processes is called the
compartmental method and was Þrst developed by Rall for treating the effect of spatio-
temporally distributed synaptic inputs over a neuron�s somatic-dendritic area. (cite rall
chapt and K-S book)

In electrically-coupled excitable systems with weaker gap junctions synchrony is
not quickly established and localized perturbations may lead to waves or other spatio-
temporal patterning.

Returning back to our setup of discrete electrically active cells, we can also see
the uniformizing property of gap junctional coupling even if the cells are different. The
simplest case is if the ionic currents are passive. Do the averaging in the eqn to show
that V1 − V2 gets small, rapidly. Show also that V1 = V2 = V - which satisÞes the
�mean� eqn. applications are to inf olive and to beta-cell islet - gives 1-2 parag�s. An
application is to pancreatic beta cells in an islet (this example should go below, after
we discuss anti-phase). gap jns enable param averaging: [show a Þgure from Smolen et
al; or from Manor et al??]

While electrical coupling is typically considered as a mechanism for uniformizing
cells one should be aware that the outcome depends alot on coupling strength and
dynamic features of the individual cells. For example, the same cells used above when
coupled weakly with gap junctions do not synchronize. Instead, they establish a rhythm
with the two cells in a stable anti-phase locked pattern - just the opposite of togetherness
(Fig. (8.3)). Also, for this situation the period of the network oscillation depends on
the value of gc [see Skinner or Manor et al, for the olive]. This not true for the in-
phase pattern. When the coupling strength is large enough, the period (for a pair of
identical cells) is that of the isolated cell and is therefore independent of gc. (ref�ce to
Sherman/Rinzel; Chow/Kopell)

Discuss the application to beta-cell islets and period extension. Mention the impli-
cations for multiple cells with weak gc � clustering or splay-phase. (see Chow/Kopell
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Figure 8.3 Time courses of V1, V2
showing antiphase behavior... start with
cells in phase, uncoupled, then switch on
the coupling at t-on and see them go into
antiphase

for addtl refces) Mention possible roles in patho states, like epilepsy - Carlen review.
Mention that for slower membrane dynamics, like pacemaker currents and waveforms,
the gap junctions do not lead to anti-phase behaviors.

8.2 Synaptic Transmission Between Neurons

In the preceding section we saw that strong gap junctions can be used for coordinat-
ing cellular electrical activity, subserving functions in which cells might work together
in near or approximate synchrony. The bi-directionality and instantaneous nature of
gap junction coupling are well-suited for achieving these goals. In the nervous system
there are demands for more complex patterning. Individual cells generally are likely
involved in numerous different computations, with possibly different time scales, some-
times being called into action with a brief wake-up-call but in other cases only after a
long barrage of inputs. In some cases the precise timing of action potentials might be
important and we would expect fast coupling mechanisms. But when Þring rate, rather
than spike timing, is more important one might expect slower coupling mechanisms
might be invoked. Of course some ßexibility is attainable for multiplexing with a vari-
ety of intrinsic mechanisms - i.e., the many different ionic channels, however by using
synapse speciÞc mechanisms one enhances the computational potential - the number of
ensembles that can be dynamically constructed and/or released as needed.

It is hard to imagine how instantaneous bidirectional coupling could allow in an
efficient way such a rich set of alternatives. However, the one-way signaling via chemical
synapses enables the system to employ a few transmitters but yet enrich the possibilities
for postsynaptic response by having many choices for the post-synaptic receptors and
channels. Sites for modulatory action can be implemented on either the post-synaptic
or pre-synaptic side. Thus while packaged transmitter is released in punctate fashion,
like the AP, the time scale and even the �sign� of the response is determined alot by
the machinery on the post-synaptic cell.
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Figure 8.4 a multi-panel schematic showing pre-syn and post-syn elements. P1: AP arriving, Ca entry
and vesicles in pre-syn; P2: vesicle fused, T diffusing, T binding to receptor/channels; P3: opening of
post-syn channels; P4: time course of post syn condtce and PSC for AMPA and GABAA; probably the
schematic Fig 4.2 from Koch: Biophysics of Computation

We will formulate an idealized model for the current generated in a post-synaptic
cell due to transmitter release by a pre-synaptic cell in which an action potential has
occured. The sender�s action potential opens voltage-gated calcium channels at the
axon terminal where vesicles are poised ready to fuse with the membrane and release
transmitter.

Whether or not release occurs is a probabilistic event. The failure rate can be
high at some, e.g. cortical, synapses. There is also a small probability of spontaneous
release. Experiments at NMJ and central synapses use the quantal release hypothesis
to analyze the statistics of post-synaptic responses for spontaneous and evoked release
to estimate the number of active sites, quantal content, and release probability. We will
not consider these issues here, nor the details of transmitter diffusion in and removal
from the synaptic cleft, the small extracellular space between the pre- and post-synaptic
sites.

We suppose that transmitter is available brießy, and that during this time it can
bind to receptors, actually receptor-channel complexes, on the postsynaptic membrane.
For this simple model we imagine a two-state channel. Binding of transmitter to receptor
favors opening of the channel and unbinding leads (statistically) to closing. A kinetic
scheme for this is the following:

C + T

α0

*)

β0
O
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If s is the fraction of complexes in the open state, O, then 1− s is the fraction closed
and we have, given a transmitter concentration [T ]

ds/dt = α0[T ](1− s)− β0s (8.9)

This representation assumes unlimited transmitter and receptor availability. Also, it
requires us to specify a time course for [T ]; for example, we might assume a square pulse
over some time duration (perhaps with a modest delay, on the order of a ms or less)
when the presynaptic cell Þres. We will adopt a simpler, and easy to implement, scheme
- supposing that maximal transmitter is available when the pre-synaptic membrane
potential Vpre is above some level, say θsyn. This would mean [T ] = Tmaxs∞(Vpre) with
s∞(Vpre) = H(Vpre − θsyn), where H(x) is the Heaviside step function. We will smooth
this out using a sigmoidal function for s∞. RedeÞning the rate constants, which we
view as adjustable depending on the desired time course of postsynaptic conductance,
we get

ds/dt = αs∞(Vpre)(1− s)− βs (8.10)

The current through the post-synaptic membrane is

Isyn = gsyns(V − Vsyn) (8.11)

where the reversal potential Vsyn depends on the concentration differences for the ion
species that ßow through the open receptor-channels in the post-synaptic membrane;
gsyn is the maximal conductance at the synapse if all the available channels are open.

This type of model has been used to describe some common types of synapses, both
excitatory and inhibitory, that have relatively simple kinetics. The different transmitters
and different receptors and different ions that pass through the synaptic channels lead
to different types of synapses. The most commonly known transmitter that is used for
excitatory synapses is glutamate. It can activate AMPA receptor-channels that typically
pass inward current (carried mostly by sodium ions, but also some potassium and other
ions). The postsynaptic conductance is relatively fast with a rise time ( ≈ α−1) of order
1 ms and decay times ( ≈ β−1) of a few to 10s of ms. The Eqn. (8.10) has been used
for these synapses. The value of Vsyn in this case is typically about 100 mV above rest.
Glutamate can also evoke slower post-synaptic responses by activating NMDA receptors
(fast rise, of order ms, and slow decay, of order many 10s to 100s ms) or a number of
different types of metabotropic glutamate receptors with very slow rise and slow decay
(order secs). The conductance associated with NMDA receptors is, curiously, also gated
by the post-synaptic voltage, Vpost. If Vpost is too small the NMDA-associated channels
are blocked by magnesium ions from the outside; sufficient depolarization relieves this
block and the channels can open. The dependence of synaptic current on pre- and post-
synaptic activity implicate the NMDA conductance in various models for associative
learning and synaptic plasticity generally. (say Hebb? anything about LTP?) The very
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slow metabotropic glutamate mediated effects are believed to be primarily modulatory,
acting for example to effectively change the Þring threshold of a cell. In the examples
below of excitatory synaptic coupling we will be thinking primarily of AMPA-mediated
excitatory synapses, for which Eqn. (8.10) is a good Þrst approximation. (more complete
descriptions, even for this simple receptor-channel complex might involve kinetic models
with additional states.) (Ref�ce: Destexhe and Sejnowski)

Fast inhibitory synapses are activated by the transmitter GABA when they bind to
GABAAreceptor-channels. The post-synaptic conductance has a fast rise time, a ms or
few, and somewhat slower decay than the AMPA-excitatory conductance, on the order
of 10s of ms. The current is carried largely by cloride ions. Interestingly, the value for
Vsyn can be quite variable, typically -60 mV to -80 mV but in some cases as depolarized
as -35 mV; this variability likely reßects different types or activities of cloride pumps
that regulate intracellular Cl− concentration. If a cell is sitting near its resting potential
of say -65 mV the synaptic current that is generated by activating these channels would
be outward (hyperpolarizing) if Vsyn is below -65 mV or inward (depolarizing) if Vsyn is
above -65 mV. It is not uncommon for GABAA- mediated currents to be depolarizing
in developing neural tissue. Thus it is not strictly correct, although frequently done,
to refer to GABA as an inhibitory transmitter. One should take care in describing a
GABAA- mediated synapse as inhibitory; the current�s sign depends on where Vsyn is
relative to V . Note, if V is close to Vsyn little synaptic current will be generated, even
if a large conductance gsyns is activated. On the other hand the membrane potential
would be effectively clamped to Vsyn until the conductance de-activates. In this case the
GABAAsynapse acts as a strong shunt in the membrane; other modest-sized synaptic
inputs would be ignored during this time. (XX see exercise XX).

The transmitter GABA acting through GABAB receptors can lead to a very slow
inhibition with a conductance that rises and decays on the order of 100 or more ms.
The current is carried primarily by K+ ions and so the reversal potential may be -70
to -90 mV. The simple model in Eqn. (8.10) cannot account for this slow current. One
shortcoming is that the model predicts a peak shortly after the depolarization of Vpre
while GABAB mediated inhibition peaks only much later. A minimal model for this
current would involve at least two dynamic variables.

Typical sizes of Isyn at a single synapse are a few picoamperes and may evoke
responses (e.g. in cortical neurons) of 0.1 to 1 mV. Many inputs must be summed in
order to bring the neuron to Þring threshold. Generally the post-synaptic response to
multiple inputs, even in the subthreshold regime, however is not a linear summation of
individual inputs. This is because the synaptic current depends on Vpost, in particular
through the driving force Vpost − Vsyn. If Vpost is far from Vsyn then the dependence on
Vpost is very weak, as say for AMPA-mediated excitation if Vpost is near rest. But in
other cases, say for a GABAA-mediated synapse we would not get linear summation:
doubling say the number of inputs does not double the synaptic current. This is easy
to see for a passive membrane system, as we considered above, with steady synaptic
conductance input, gs = constant = gsyns. The steady response V would be
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V = Vsyngs/(gm + gs) (8.12)

saturating for large gs at Vsyn, as we expect. While increasing gs drives Vpost closer to
Vsyn the increment in synaptic current diminishes for large gs: dIsyn/dgs behaves like
g−2s for large gs; this is the sublinear summation effect.

In exercises we do transient input to passive cell, then to active cell. This conveys
a general msg - but is it really impt for understanding syn fn? Demonstrate shunting
effect: brief epsc on top of slow shunt - if shunt is large, then do not see the epsc. Do the
following in the text: Also, timing of inhib�n and excitation: before or after as in dir�n
selectivity (contrast with APs arriving from 2 cells w/ gap jn coupled � no difference
which one is Þrst). For a neuron in which inputs are distributed over the dendritic tree,
the spatial, as well the, temporal distribution of incoming signals determines the net
response. For example, suppose there is simultaneously timed excitation and inhibition
delivered at different locations along one dendritic branch. An inhibitory synapse lo-
cated closer to the soma will be more effective at reducing the response to the excitatory
input than if it is located more distally on the branch.

8.3 When Active Cells Might or Not Synchronize

In order to illustrate some effects of mutual synaptic coupling between cells we will
consider the simple case of two identical cells, each of which is autorhythmic, and
examine conditions for which the cells tend to Þre together or apart. We are asking
about the synchronization patterns in this simple two-cell network. Classical notions
are that mutual excitation tends to make cells synchronous (in-phase) while mutual
inhibition pushes them apart leading to anti-phase behavior. That is, if two excitatory
cells are somewhat out-of-phase the Þring of the leading cell encourages the follower to
Þre sooner and thus bringing the cells more nearly in-phase. While for inhibitory cells
that are somewhat out-of-phase the leading cell�s Þring will delay the follower, increasing
their phase difference. Successive cycles would increase their phase difference to 180o

but not beyond, since then the follower would act as the leader pushing the phase
difference back toward 180o. These expectations and some surprises will be illustrated
below when we consider the effects of synaptic time scales.

Here we will use the Morris-Lecar model in Type I mode, so that near the threshold
for repetitive Þring the steady Þring frequency can be made arbitrarily low. We dictate
here that the gating variable�s kinetics are relatively slow and that the stimulating
current is adjusted so that the cell model is Þring slowly, about 15 Hz.

First we consider the case of mutual excitation. In Fig. (8.5) (left panels) we conÞrm
the expectation that the cells will Þre together. The cells are substantially out-of-phase
before we actually implement the coupling, but then afterwards they converge to a
pattern of near sychrony with one cell preceding the other by just a slight bit. When
the coupling is Þrst turned on the follower cell immediately advances and throughout
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the transient phase of synchronization the cells are causing each other to Þre faster.
Interestingly, as synchrony is established the cells slow down to nearly their intrinsic
frequencies - as if the coupling is only to synchronize them. When comparing the time
courses we see that during the transient phase the leader cell�s voltage is more affected
than the follower�s. The synaptic current from the follower at Þrst reduces the leader�s
post-spike hyperpolarization. Then, as the follower catches up, this synaptic current is
delivered when the leader is still strongly depolarized and it�s intrinsic conductances
swamp the perturbing effect of the synaptic input.

For this preceding example the synaptic conductance time course has fast rise and
fast decay phases; the conductance is essentially activated only during the presynaptic
depolarization. If we allow for the synaptic decay to be much slower, with all other
parameters and initial conditions unchanged, we Þnd that these two cells now Þre in
anti-phase (Fig. (8.5), right panels). The frequency of each cell is nearly twice that
of an isolated cell. This is understandable. Since the synaptic current decays more
slowly it provides a longer-lived depolarizing inßuence, and it is strongest during a
cell�s trajectory as it rises toward threshold, when it most responsive to depolarizing
inßuences. Note, if the output of this two-cell network converges onto a common target
the effective delivery rate, because of the antiphase pattern, is twice that of each - four
times that of an individual cell.

For the examples in this Section, we have chosen the parameter values in order
to emphasize the importance of synaptic time scales in determining Þring patterns in
networks. This is an active area of research. Deeper understanding will be achieved and,
for now, we caution that it should not to be taken as universal that fast (slow) excitatory
synaptic coupling leads to in-phase (anti-phase) Þring. In fact, for the example in Fig.
(8.5) (left) different initial conditions to such coupled cells can lead to anti-phase locking
even for these fast synapses.

Next we consider the case of two cells (the same cells as above) coupled with in-
hibitory synapses. We start the cells with different initial voltages and watch them settle
slowly into an antiphase rhythm (Fig. (8.6)) during the Þrst 800 ms of the simulation.
During this portion the inhibitory synapses have fast kinetics and we are conÞrming
the classical expectation that inhibition leads to antiphase Þring between a cell pair. In
these voltage time courses one can clearly see the hyperpolarizing effect of the synaptic
inputs. As a cell�s voltage rises from its minimum the partner Þres and sends a brief
pulse of outward current which halts transiently the rising voltage. At t = 800 ms the
decay rate of inhibition is slowed from β = 1 to β = 0.1. Within a few cycles the cells
lock into perfect synchrony. Slowly decaying mutual inhibition can lead to in-phase
locking amongst neural oscillators. This behavior has been proposed as the mechanism
for gamma rhythms that are seen in various brain regions, and are believed to have a
functional role in some cognitive processes [ ref�ces].

As a secondary note, although we do not show it here this particular network with
the fast inhibitory synapses is bistable. In addition to the anti-phase behavior (for
t < 800 ms) it also has a stable in-phase behavior for some set of initial states.
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Figure 8.5 Left Panels: time courses of V1, V2 and ISIs (below)- synchrony with fast excitation. Right
Panels: V1 and V2 and ISI- antiphase synchrony with slow excitation. Maybe an inset to show schematic.
Cells are uncoupled until t=200 ms. Params as in Figs 2-3 except here φ = 0.1 and Iapp = 15; for A:
α = 3, β = 1; for B: α = 3,β = 0.1

The examples above are very idealized, and primarily directed toward rhythmicity.
The parameters have been chosen in order for us to illustrate several features about
temporal patterning in mutually coupled pairs with just minimal adjustments from
one case to the next. Important questions arise about how these features might carry
over to larger networks. In a case of mixed fast and slow synaptic coupling are the
synchronizing or de-synchronizing effects more important? Are the patterns robust to
effects of noise and heterogeniety? What if there is a mixture of gap junctional and
synaptic coupling, in regimes where their effects counteract?

Beyond these examples one seeks to understand how circuits that underlie cognitive
function are wired up. How does a neural system use to advantage these various bio-
physical knobs in addition to connectivity schemes to implement various computational
strategies? Give an example of a simple network that does (�computes�) something.
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CHAPT E R 9

Biochemical Oscillations

John J. Tyson
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Biochemical and biophysical rhythms are ubiquitous characteristics of living organisms,
from rapid membrane oscillations in nerve cells to slow cycles of ovulation in mammals
Table (??). In this chapter we will consider how certain fundamental molecular in-
teractions (autocatalysis and negative feedback) combine to generate some of these
rhythms. Along the way, we apply these ideas to simple models of glycolysis, cAMP
signaling, periodic cell division, circadian rhythms, and calcium oscillations. Some of
these phenomena are described in more detail in other chapters of this book.

One of the Þrst biochemical oscillations to be discovered was the periodic con-
version of sugar to alcohol in anaerobic yeast cultures (Chance et al., 1973). The
oscillation was easily observed as periodic changes in ßuorescence Fig. (9.1) from the
essential intermediate, NADH, which shuttles electrons from the sugars (1/2 Hexose→
3-phosphoglyceric acid + 2 e−) to pyruvate (pyruvic acid + 2 e− → CO2 + ethanol). In
the laboratories of Britton Chance and Benno Hess it was demonstrated that these oscil-
lations arise from a curious property of the enzyme, phosphofructokinase (PFK), which
catalyzes the phosphorylation of fructose-6-phosphate to fructose-1, 6-bisphosphate,
using ATP as the phosphate donor Fig. (9.2A). To properly regulate the production of
ATP by the glycolytic pathway, PFK is inhibited by the endproduct of the pathway
(ATP) and activated by ADP. Hence, the substrate of the regulatory enzyme is also an
allosteric inhibitor, and the product an allosteric activator (these terms will be deÞned
and illustrated shortly). As we shall see, �substrate inhibition� and �product activa-
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Figure 9.1 Glycolytic oscillations. Sustained oscillations in NADH ßuorescence in yeast cells
Saccharomyces from Pye 1971. GOLDBETER FIG 2.2

Hexoses F6P FBP Pyruvate. . .

ATP ADP

PFK

ATPADPA

B source Y X sink
1 2 3

Figure 9.2 Mechanism of glycolytic oscillations. (A) The control properties of the enzyme phosphofruc-
tokinase (PFK) are thought to be responsible for the generation of oscillations in the glycolytic pathway.
PFK catalyzes the conversion of fructose-6-phosphate (F6P) into fructose-1,6-bisphosphate (FBP), using
ATP as phosphate-group donor. PFK activity is allosterically modulated by ATP (inhibitor) and ADP (ac-
tivator). F6P is steadily supplied to PFK by a sugar source (�Hexoses�) and FBP is steadily utilized in the
production of metabolites (�Pyruvate�). ADP and ATP are also recycled by other metabolic processes.
(B) SimpliÞed mechanism. Reaction 1 is a steady supply of substrate Y for reaction 2, whose product
X is removed by reaction 3. X activates the enzyme (PFK) catalyzing reaction 2. Roughly speaking,
Y = F6P +ATP,X = FBP +ADP , �source� = hexoses, and �sink� = pyruvate.

tion� are regulatory signals that destabilize the steady state of a dynamical system and
generate the possibility of oscillations.

Another classic example of rhythmic behavior in biology is periodic growth and di-
vision of well-nourished cells. This phenomenon will be studied thoroughly in the next
chapter, but for now, to illustrate some basic ideas, we focus on the periodic accumu-
lation and degradation of cyclins during the division cycle of yeast cells Fig. (9.3). Kim
Nasmyth (1996) and others have shown that these oscillations are intimately connected
to dynamical interactions between CLN-type cyclins and CLB-type cyclins Fig. (9.4).
CLNs (in combination with a kinase subunit called CDC28) activate their own syn-
thesis (product activation or �autocatalysis�) and inhibit the degradation of CLBs. As
CLBs accumulate, they inhibit the synthesis of CLNs, causing CLN-dependent kinase
activity to drop and CLB degradation to increase. The mutual interplay of CLN and
CLB generate periodic appearance of their associated kinase activities, which drive the
crucial events of the budding yeast cell cycle (bud emergence, DNA synthesis, mitosis,
and cell division).
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Figure 9.3 Cyclin ßuctuations during the cell cycle in budding yeast

CLN/CDC28

CLB/CDC28

Figure 9.4 Mechanism of cyclin oscillations. Budding yeast cells
contain two classes of cyclins: CLN and CLB. These cyclins com-
bine with a kinase partner (CDC28) to make active dimers. CDC28
subunits are always in excess, so dimer activity is limited by cyclin
availability (i.e., cyclin synthesis and degradation, arrows 1-4 in
the diagram). CLN/CDC28 activates the transcription factor that
promotes CLN synthesis and inhibits the proteolytic enzymes that
degrade CLB. In return, CLB/CDC28 inhibits the transcription
factor that promotes CLN synthesis.

The third example that we shall use in this chapter concerns periodic changes in
physiological properties (physical activity, body temperature, reproduction, etc.) en-
trained to the 24 h cycle of light and darkness so prevalent to life on earth. These
rhythms are not driven solely by the external timekeeper, because they persist under
constant conditions of illumination and temperature Fig. (9.5). Under constant condi-
tions, the organism exhibits its own �endogenous� rhythm, which is close to, but not
exactly, 24 h (hence, �circadian� or �nearly daily�). The basic molecular mechanism
of circadian rhythms has been uncovered only recently, by research in the laboratories
of Michael Rosbash, Michael Young, Jay Dunlap, and others (Dunlap, 1999). Central
to the mechanism is a protein called PER, which, after being synthesized in the cy-
toplasm, moves back into the nucleus to inhibit the transcription of its own mRNA
Fig. (9.6A). The time-delayed negative-feedback loop in Fig. (9.6B), as we shall see, is
another common theme in biochemical oscillators.

In this chapter, we explore in detail the connections among autocatalysis, positive
feedback, and negative feedback in generating oscillatory behavior in biochemical re-
action systems. The chapter is based in part on a paper written under my direction
by Emery Conrad, in partial fulÞllment of an M.S. degree in Mathematics at Virginia
Tech.

9.1 Biochemical Kinetics and Feedback

In general, a biochemical reaction network is a schematic diagram of �boxes and
arrows�. Each box is a chemical species. Solid arrows coming into the box represent
chemical reactions producing that species; solid arrows leaving the box represent re-
actions consuming that species. Dashed arrows from a box to a solid arrow represent
control by one species of a chemical reaction involving other species. For instance, one
of the reactive species may be a protein that catalyzes reactions elsewhere in the net-
work, or it may be a metabolite that modiÞes the activity of enzymes catalyzing distant
reactions in the network. Dashed arrows can have either barbed (>) or blunt (||) ends,
representing activatory or inhibitory inßuences, respectively.
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Figure 9.5 . Endogenous circadian rhythm of activity. The black bars represent the sleep episodes of a
human being isolated from all external temporal cues (variable light, temperature, etc.). The sleep episodes
are plotted twice on each line to emphasize that the endogenous period of sleepiness is longer than 24 h.
From ???????????
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Figure 9.6 . A mechanism for circadian rhythms in animals. (A) A protein called PER is known to play a
crucial role in circadian rhythms in fruit ßies and mice. The per gene is transcribed in the nucleus, with the
help of two transcription factors, CLK and CYC. per mRNA is then transported to the cytoplasm where
it codes for PER protein. PER protein is processed in the cytoplasm by phosphorylation and by binding to
other proteins, such as TIM and CRY. Properly processed PER then moves back into the nucleus, where it
disrupts the binding of CLK and CYC, turning off the transcription of per. (B) A schematic representation
of the negative feedback loop in panel A. This is Goodwin�s (1966) classical mechanism for periodic protein
expression, driven by feedback repression of transcription.

To each reaction in a biochemical network is associated a rate law (with accom-
panying kinetic parameters). Hence, the network implies a set of rate equations of the
form

dx

dt
= vin1 + vin2 + . . .− vout1 − vout2 − . . . = f(x; p) (9.1)



9.1: Biochemical Kinetics and Feedback 187

where t = time, x = concentration of species X, and vin1, vout1, . . . are the rates of the
various reactions that produce and consume X. We lump together all these rate laws
into a nonlinear function f(x; p), where p is a vector of kinetic parameters. In general,
we can think of x as a vector of concentrations of all the time-varying components in
the reaction network, xi = [Xi], and f as a vector-valued function. In component form,

dxi
dt

= fi(x1, x2, . . . , xn; p1, p2, . . . , pr), i = 1, . . . , n. (9.2)

In the theory of biochemical oscillations, based on rate equations of this sort, a crucial
role is played by elements of the Jacobian matrix, J = [aij ], where aij = ∂fi/∂xj. J
is a square matrix (n × n). We remark, Þrst of all, that the diagonal elements of the
Jacobian matrix of a chemical reaction system are usually negative, aii < 0. This is so
because vout terms in Eqn. (9.1) are always proportional to the concentration of the
substance being destroyed, so ∂fi/∂xi always has one or more negative terms. Positive
contributions to aii are rare because autocatalysis (reactions that produce Xi at a rate
that increases with [Xi]) are rare.

Common to biochemical networks are complex feedback loops, whereby the prod-
ucts of one reaction affect the rates of other reactions. A feedback loop can be
deÞned as a set of non-zero elements of the Jacobian matrix that connect in a loop:
aijajkakl . . . ami 6= 0

Representative feedback loops are illustrated in Fig. 9.7.
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Figure 9.7 . Representative feedback loops.
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(A) Autocatalysis (aii > 0), though rare, plays a major role in biochemical oscilla-
tions, as will become clear. We have already seen examples of autocatalysis in the
mechanisms of glycolysis and yeast division Fig. (9.2) and Fig. (9.4).

(B) Autocatalysis also occurs when a chemical decelerates the rate of its own
destruction.

(C) Indirect autocatalysis occurs through a positive feedback loop (aij and aji > 0),
whereby Xi activates the production of Xj and Xj returns the favor.

(D) A two-component, positive feedback loop is also created by a pair of antagonistic
species (aij < 0 and aji < 0).

(E) A two-component, negative feedback loop (aij, aji < 0) is created whenXi activates
the production of Xj and Xj inhibits the production of Xi.

(F) Longer negative feedback loops are common.
(G) Long feedback loops are either positive or negative, depending on the sign of the

product a1nan,n−1 . . . a43a32a21.

Before we can speak deÞnitively about the effects of feedback in biochemical reaction
networks, we need to know how to characterize the rates of enzyme-catalyzed reactions
that are subject to regulation by �distant� effectors, i.e., chemical species other than
the reactants and products of the enzyme.

9.2 Regulatory Enzymes

Regulatory enzymes are usually multisubunit proteins with binding sites both for re-
actants (on the catalytic subunits) and for activators and inhibitors (on the regulatory
subunits). They are often called �allosteric� enzymes (allo = other, steric = shape)
because they bind small molecules whose shapes are unrelated to the structure of
the enzyme�s substrates. Although there are more sophisticated and accurate ways to
characterize allosteric regulatory enzymes, we shall limit ourselves to straightforward
generalization of the Michaelis-Menten equation Section (??) (4.4?). First, we consider
the effects of cooperative binding of substrate to a multisubunit enzyme.

For simplicity, consider a two-subunit enzyme (EE) that converts substrate (S) into
product (P). The binding constant and turnover number of each subunit depends on
whether the other (identical) subunit is bound to S or not. The mechanism can be
written:

EE + S ↔ EES dissociation constant = k−1/k1
EES → EE + P rate constant = k3
EES + S ↔ SEES dissociation constant = k−2/k2
SEES → EES + P rate constant = k4

As in Section (??) (4.4?), we can make pseudo-steady state approximations on the
enzyme-substrate complexes,

[EES]

[EET ]
=

[S]/Km1

1 + ([S]/Km1) + ([S]2/Km1Km2)
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Figure 9.8 Rate laws for activation and inhibition of multisubunit enzymes by cooperative binding. See
Eqn. (??)

[SEES]

[EET ]
=

[S]2/Km1Km2

1 + ([S]/Km1) + ([S]2/Km1Km2)

where [EET ] = [EE]+[EES]+[SEES],Km1 = (k−1+k3)/k1, andKm2 = (k−2+k4)/k2.
Now it is easy to write an equation for the rate of the reaction:

v =
d[P ]

dt
= −d[S]

dt
=
[EET ]

³
[S]

Km1

´ ³
k3 + k4

³
[S]

Km2

´´
1 +

³
[S]

Km1

´
+
³

[S]2

Km1Km2

´ (9.3)

We can distinguish two interesting, limiting cases of Eqn. (9.1).

Hill equation: Km1 →∞,Km2 → 0, such that Km1Km2 = K
2
m = constant

v =
Vmax([S]/Km)

2

1 + ([S]/Km)2
, Vmax = k4[EET ] (9.4)

Substrate inhibition: k3 → ∞,Km1 → ∞,Km2 → 0, such that Km1Km2 = K2
m =

constant, k3Km2 →∞, and k3[EET ]Km/Km1 = Vmax = constant

v =
Vmax[S]/Km

1 + ([S]/Km)2
(9.5)

Eqn. (9.4) and Eqn. (9.5) are plotted in Fig. (??).
It is easy to generalize these equations to the case of 3 or more subunits.
Rate laws like Eqn. (9.3) are said to express �cooperative� kinetics. The �empty�

enzyme (EE) has low affinity for substrate (Km1 large), but as the enzyme picks up its
Þrst substrate molecule, the two subunits change their conformation to a high affinity
form (Km2 small, such that Km = (Km1Km2)

1/2 is physiologically signiÞcant). In the
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case of Hill�s equation (9.1a), we say that the enzyme shows positive cooperativity; in
the other case (9.1b), negative cooperativity.

Cooperative binding of ligands to a multisubunit enzyme is not limited to sub-
strates. Other small molecules may bind to the enzyme and alter its catalytic properties
(either its affinity for substrates or its rate of converting bound substrates into
products). Such enzymes are called �allosteric� because, in addition to substrate-
binding sites, they have �other sites� for binding regulatory molecules that either
activate or inhibit the enzyme. Allosteric proteins play crucial roles in the regulation
of metabolic pathways, membrane transport, gene expression, etc. Relatively simple
algebraic expressions for allosteric effects can be derived by the reasoning above.

For instance, consider a tetrameric enzyme, with two catalytic subunits (EE) and
two regulatory subunits (RR), which bind substrate (S) and ligand (L), respectively.
In this case, the holoenzyme may exist in 9 different forms. If these forms are in rapid
equilibrium with each other, at any given concentrations of substrate and ligand, then

[ET ] = [E00]

µ
1 +

[S]

Km1

+
[S]2

Km1Km2

¶µ
1 +

[L]

K11

+
[L]2

K11K12

¶
where [ET ] = total concentration of enzyme in all 9 forms, [E00] = concentration of
holoenzyme unbound to substrate or ligand, [S] = substrate concentration, [L] = ligand
concentration,Km�s = Michaelis constants for substrate binding (as deÞned above), and
Kl�s = Michaelis constants for ligand binding (deÞned similarly). If, for example, the

only form of the enzyme with signiÞcant catalytic activity is

"
SEES

LRRL

#
, then the rate

of the reaction is

v = Vmax
[S]2/Km1Km2

1 + [S]

Km1
+ [S]2

Km1Km2

· [L]2/K11K12

1 + [L]

K11
+ [L]2

K11K12

(9.6)

In this case, the ligand is an allosteric activator of the enzyme. For an allosteric inhibitor,

v = Vmax
[S]2/Km1Km2

1 + [S]

Km1
+ [S]2

Km1Km2

· 1

1 + [L]

K11
+ [L]2

K11K12

(9.7)

A comprehensive and accurate kinetic theory of allosteric enzymes is much more
complicated than what has been presented (see, e.g., Rubinow, 1980; Goldbetter, 1996),
but Eqn. (9.6) and Eqn. (9.7) will serve our purposes in this chapter.

Finally, suppose EE and S above are not �multisubunit enzyme� and �substrate�
but �dimeric transcription factor� and �ligand�. The active form of the transcription
factor promotes the expression of some gene, and the presence of ligand alters the distri-
bution of transcription factor among its various forms: EE, EES and SEES. Depending
on which form of transcription factor is most active, the rate of gene expression can be
activated and/or inhibited by ligand:
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ligand effect active form relative rate of gene expression
inhibition EE 1

1+([S]/Km1)+([S]2/Km1Km2)

activation SEES [S]2/Km1Km2

1+([S]/Km1)+([S]2/Km1Km2)

mixed EES [S]/Km1

1+([S]/Km1)+([S]2/Km1Km2)

9.3 Two-component Oscillators Based on
Autocatalysis

First, we consider some minimal requirements for oscillations in chemical reaction sys-
tems. If the �network� is absurdly simple, with only one time-varying component, then
oscillations are, generally speaking, impossible because, for x(t) to be periodic, dx/dt
must take on both positive and negative values at some values of x, which is impossible
if f(x; p) is a continuous, single-valued function of x. Thus, to understand biochemical
oscillations, we must start with two-component networks, described by a pair of ODEs

dx

dt
= f(x, y) (9.8)

dy

dt
= g(x, y) (9.9)

where x and y are (non-negative) concentrations of the two components, and we have
suppressed the dependence of f and g on parameters, for the time being.

Bendixson�s negative criterion states that if ∂f

∂x
+ ∂g

∂y
is of constant sign in some

region R of the x, y plane, then there can be no periodic solution of system Eqn. (9.9)
in R. Hence, autocatalysis is a necessary requirement for sustained oscillations in a
two-component chemical reaction system.

In general, we can expect system Eqn. (9.9) to have one or more steady-state
solutions (x∗, y∗), satisfying f(x∗, y∗) = 0 and g(x∗, y∗) = 0. The stability of such steady
states is determined by the eigenvalues of the Jacobian matrix (see Section (??))

J =

"
fx(x

∗, y∗) fy(x
∗, y∗)

gx(x
∗, y∗) gy(x

∗, y∗)

#
=

"
a11 a12

a21 a22

#
The eigenvalues of J are the roots of the characteristic equation λ2 − (a11 + a22) +

(a11a22 − a12a21) = 0, namely

λ =
1

2

∙
a11 + a22 ±

q
(a11 + a22)2 − 4(a11a22 − a12a21)

¸
For the steady state to be stable, Re(λ) must be < 0 for both eigenvalues. If a11a22 −
a12a21 = det(J) < 0, then J has one positive and one negative eigenvalue, and the
steady state is a saddle point. If det(J) > 0 and a11 + a22 = tr(J) < 0, then the steady
state is stable, whereas, if det(J) > 0 and tr(J) > 0, then the steady state is an unstable
node or focus.
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In general, the trace and determinant of J depend continuously on the kinetic
parameters in f and g. If, by varying one of these parameters (call it p1), we can carry
tr(J) from negative to positive values, with det(J) > 0, then the steady state loses
stability at tr(J) = 0 (when p1 = pcrit, say), and small amplitude limit cycle solutions
surround the steady state for values of p1 close to pcrit. We say that periodic solutions
arise by a Hopf bifurcation at p1 = pcrit (see Section (??)).

Biochemical oscillations usually arise by this mechanism, so we will consider Þrst
the requirements for Hopf bifurcation in a two-component network. In chemical reaction
systems, the diagonal elements of the Jacobian matrix are usually negative numbers,
reßecting the various steps by which species X is transformed into something else. If
both a11 and a22 are always < 0, then a Hopf bifurcation cannot occur. At least one of
them must be > 0 for some values of the kinetic parameters. For a diagonal element
to be positive, species X must be �autocatalytic,� i.e., with increasing [X], the rates
of production of X increase faster than the rates of destruction. If a11 and a22 are of
opposite sign, then a12 and a21 must also be of opposite sign in order for det(J) to
be positive. Thus we have two characteristic sign patterns for Jacobian matrices that
typically produce Hopf bifurcations in chemical reaction systems:

J =

"
+ +

− −

#
and

"
+ −
+ −

#
(9.10)

Next, we describe the sorts of biochemical networks that produce these sign patterns
and generate periodic solutions via Hopf bifurcations.

9.3.1 Substrate-Depletion Oscillator

The simplest oscillatory mechanism is probably the linear pathway in Fig. (??). Species
Y is converted into X by an enzyme that is activated by its product. Hence, the produc-
tion of X is autocatalytic; the reaction speeds up as [X] increases, until the substrate,
Y, is depleted so much that the reaction ceases.

Using a rate law for the allosteric enzyme like those derived in the previous section,
we can write a pair of ODEsdescribing this mechanism:

d[X]

dt
= v2[Y ]

²2 + ([X]/Kl)
2

1 + ([X]/Kl))2
− k3[X] (9.11)

d[Y ]

dt
= k1 − v2[Y ] ²

2 + ([X]/Kl)
2

1 + ([X]/Kl))2
(9.12)

Clearly, the Jacobian of system Eqn. (9.12) at its steady state could potentially have
the Þrst sign pattern in Eqn. (9.10).

It is convenient to deÞne �dimensionless� variables, x = [X]/Kl, y = [Y ]/Kl and
t0 = k3t, and a new variable, z = x+ y, and write system (9.7) as

dx

dt0
= ν(z − x)²

2 + x2

1 + x2
− x (9.13)
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x

y

Figure 9.9 Phase plane portrait of a typical substrate-depletion oscillator, Eq. (9.8). Parameter values:
v = 1, k = 0.2, e = 0.05. The solid lines are the x-nullcline (marked by short vertical arrows) and the
y-nullcline (horizontal arrows). The nullclines intersect at an unstable steady state (o). The dashed line is
the stable limit cycle solution (periodic orbit) of the dynamical system.

dz

dt0
= κ− x (9.14)

where ν = v2/k3 and where κ =
k1
k3Kl

. The steady state for this model satisÞes x = κ

and ν(z − x) = κ 1+κ2

²2+κ2
. For the Jacobian matrix of system Eqn. (9.14) at the steady

state, it is easy to show that det(J) > 0 and

tr(J) = −1− ν ²
2 + κ2

1 + κ2
+

2κ2(1− ²2)
(²2 + κ2)(1 + κ2)

(9.15)

= −(1 + ν)κ
4 − (1− 3²2 − 2ν²2)κ2 + ²2(1 + ν²2)

(²2 + κ2)(1 + κ2)
(9.16)

It should be obvious from Eqn. (9.16) that tr(J) < 0, if x∗ is either close to 0 or
very large. On the other hand, tr(J) > 0 and the steady state is unstable if x∗ takes on
intermediary values. For ² small, the steady state is unstable when

² < κ < (1− ν)( − 1/2) (9.17)

which may, alternatively, be expressed as conditions on the input rate of Y

²k3 <
k1
k3Kl

<

s
k3

k3 + v2
(9.18)

Between these limits the system executes stable limit cycle oscillations.
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x

y

x

y

Figure 9.10 Phase plane portrait of a typical activator-inhibitor system, Eq. (9.11). The solid lines are
nullclines, intersecting at stable () or unstable (o) steady states. The dashed lines are representative orbits
of the dynamical system. (A) Oscillation, for a = 0.1, b = 0.1, c = 100, e = 0.1, t = 5. (B) Bistability,
for a = 0.1, b = 1.5, c = 1, e = 0.1, t = 5.

As we have often seen in this book, for two-component dynamical systems, it is
informative to plot nullclines in the phase plane. For System (??)),

z = x+
x(1 + x2)

ν(²2 + x2)
x = κ

�x nullcline00

�z nullcline00
These null-

clines are plotted in Fig. (??). The x0 nullcline has extrema at the roots of

(1 + ν)x4 − (1− 3²2 − 2ν²2)x2 + ²2(1 + ν²2) = 0
Notice that the steady state loses stability exactly when x∗ passes through the extrema
of the x nullcline.

9.3.2 Activator-Inhibitor Oscillator

Looking back to Eqn. (??), we see that there are two sign patterns consistent with Hopf
bifurcation in a two-component biochemical reaction system. The Þrst is illustrated by
the substrate-depletion oscillator in Fig. (??), and the second by the activator-inhibitor
model in Fig. (??). The ODEs describing Fig. (??) are

d[X]

dt
= v1

²2 + ([X]/Km)
2

1 + ([X]/Km)2
· 1

1 + ([Y ]/Kl)2
− k2[X]

d[Y ]

dt
= k3 − k4[Y ]

1 + ([X]/Kj)
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In terms of dimensionless variables (x = [X ]/Km, y = [Y ]/Kl, t
0 = v1t/Km), these

equations become

dx

dt0
=
²2 + x2

1 + x2
· 1

1 + y2
− ax (9.19)

τ
dy

dt0
= b− y

1 + cx
(9.20)

where a = k2Km/v1, b = k3/k4Kl, c = Km/Kj, τ = v1/k4Km.
Rather than analyze the stability of the steady state algebraically, which is difficult,

we go directly to phase plane portraits Fig. (??). It is easy to Þnd parameter values
that give limit cycle solutions to Eqn. (9.20).

Intuitively, the origin of the oscillations is clear. When Y is rare, X increases auto-
catalytically. Abundant X stimulates accumulation of Y (by inhibiting Y�s degradation),
which feeds back to inhibit the production of X. After X disappears, Y is also destroyed,
and then X can make a comeback. Mechanisms like this one, whose Jacobian matrix

has sign pattern

"
+ −
+ −

#
, are called �activator-inhibitor� models.

Two-component mechanisms without autocatalysis easily generate oscillations and
bistabilty, as we have just seen. They also exhibit a rich structure of bifurcations to more
complicated behavior: see Boissonade & deKepper (1980) and Guckenheimer (1986).

9.4 Three-component Networks without
Autocatalysis

In the previous section we have seen that two-component reaction systems can oscillate
if they have autocatalysis (a11 or a22 positive) and negative feedback (a12 and a21
opposite sign). In this section we examine networks of three components (x, y, z) with
Jacobian matrices of the form

J± =

 −α 0 ±φ
c1 −β 0

0 c2 −γ


where α,β, γ, c1, c2,φ are all positive constants. Since the diagonal elements of the
Jacobian are all negative, the system lacks autocatalysis. J+ describes a system with a
positive feedback loop, and J− one with a negative feedback loop.

9.4.1 Positive Feedback Loop and Routh-Hurwitz Theorem

First, let us see if Hopf bifurcations are possible in a system with a pure positive
feedback loop, i.e., a Jacobian of the form J+ at the steady state. The eigenvalues of
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this Jacobian matrix are roots of the characteristic equation

g(λ) = λ3 + (α+ β + γ)λ2 + (αβ + βγ + γα)λ+ αβγ − c1c2φ
= λ3 + Aλ+Bλ+C = 0

The roots of this equation can be characterized by the

Routh-Hurwitz Theorem: Let g(λi) = 0 for i = 1, 2, 3. Then Re(λi) < 0 for i =
1, 2, 3, if and only if (i) A > 0, (ii) C > 0, and (iii) AB > C.

Hence, in order for the steady state of the positive feedback loop to be unstable, we
must insist that C = αβγ − c1c2φ < 0. In this case, J+ has at least one real positive
root, call it λ1 > 0. Then, g(λ) = (λ − l1)h(λ), where h(λ) = λ2 + Dλ + E and
D = A+ λ1 > 0, E = −C/λ1 > 0. From the quadratic formula, it follows that the two
roots of h(λ) = 0 must have Re(λi) < 0. Hence, it is impossible for a steady state with
Jacobian matrix J+ to undergo a Hopf bifurcation.

It is possible for a positive feedback loop to have multiple steady state solutions,
with two stable nodes separated by a saddle point. At the saddle point, λ1 > 0 and
Re(λi) < 0 for i = 2, 3. See Exercise (??) and Exercise (??).

9.4.2 Negative Feedback Oscillations

J− determines the stability of the steady state in a three-variable system with a pure
negative feedback loop. In this case,

g(λ) = λ3 + (α+ β + γ)λ2 + (αβ + βγ + γα)λ+ αβγ + c1c2φ = 0

and the Routh-Hurwitz Theorem implies that the steady state is unstable if and only
if

(α+ β + γ)(αβ + βγ + γα) < αβγ + c1c2φ

Furthermore, if equality holds, then g(λ) has conjugate roots on the imaginary axis at
±i√αβ + βγ + γα.

9.4.3 The Goodwin Oscillator

The quintessential example of a biochemical oscillator based on negative feedback
alone was invented by Brian Goodwin (1963), see Fig. (??). The kinetic equations
describing this mechanism are

d[X1]

dt
=

v0
1 + ([X3]/Km)p

− k1[X1]

d[X2]

dt
= v1[X1]− k2[X2]

d[X3]

dt
= v2[X2]− k3[X3]
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Figure 9.11 Locus of Hopf bifurcations in
the Bliss-Painter-Marr equations (9.13), for
b1 = b2 = 0.2 h-1. We also plot loci of con-
stant period (18 - 27 h) within the region of
limit cycle oscillations.

Here, [X1], [X2] and [X3] are concentrations of mRNA, protein and endproduct, respec-
tively; v0, v1 and v2 determine the rates of transcription, translation and catalysis; k1,
k2 and k3 are rate constants degradation of each component; 1/Km is the binding con-
stant of endproduct to transcription factor; and p is a measure of the cooperativity of
endproduct repression.

Next we introduce dimensionless variables:

x1 =
v1v2[X1]

k2k3Km

, x2 =
v2[X2]

k3Km

, x3 = [X3]/Km

t0 = αt, where α =
v0v1v2
Kmk2k3

In terms of these new variables, the dynamical system becomes

dx1
dt

=
1

1 + xp3
− b1x1, dx2

dt
= b2(x1 − x2), dx3

dt
= b3(x2 − x3) (9.21)

where b1 = ki/α
Furthermore, to make the example easier, we shall assume that b1 = b2 = b3. In

this case, the dynamical system has a steady state at x1 = x2 = x3 = ξ, where ξ is the
unique real positive root of 1

1+ξp
= bξ. The Jacobian matrix at this steady state is J−,

with α = β = γ = b, c1 = c2 = b, and φ =
pξp−1
(1+ξp)2

= bp(1− bξ). Hence, the characteristic
equation is (b+ λ)3 + b2φ = 0, whose roots are

λ1 = −b− b 3

q
p(1− bξ)

λ2,3 = −b+ b 3

q
p(1− bξ){cos(π/3)± i sin(π/3)}

Clearly, the steady state of Goodwin�s model is unstable when p(1 − bξ) > 8, or,
equivalently, bξ < p−8

p
. Hence, if p (the cooperativity of the negative feedback loop)

is greater than 8, then we can choose k small enough to destabilize the steady state
solution of Goodwin�s equations. At the critical value of k, the steady state undergoes
a Hopf bifurcation, spinning off small-amplitude periodic solutions with period close to
2π/Im(λ2,3) = 2π/b

√
3.
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s

Gc
n(s)

n/c Figure 9.12 The kernel Gcn(s) for
distributed time lag in Eqn. (??).

In Exercise (??), you are asked to generalize this derivation to negative feedback
loops with an arbitrary number n of components. You will Þnd that the steady state is
unstable when bξ < p−pmin

p
, where pmin = sec

n(π/n). Notice that pmin → 1+ as n→∞.
The analysis of Hopf bifurcations in Goodwin�s model uncovers a number of

problems with his negative feedback mechanism for biochemical oscillations (Griffith,
1968b). In a three-variable system (mRNA, Protein, Endproduct), the cooperativity of
feedback must be very high, p > 8. Also, it is necessary, in this case, for the degrada-
tion rate constants of the three components to be nearly equal. If not, pmin increases
dramatically; e.g., if one of the ki�s is ten-fold larger than the other two, then pmin = 24.
The value of pmin can be reduced by lengthening the loop (pmin → 1+ as n→∞), but
one must still ensure that the ki�s are nearly equal.

Bliss, Painter & Marr (1982) Þxed these problems by a slight modiÞcation of
Goodwin�s equations:

dx1
dt

=
a

1 + x3
− b1x1, dx2

dt
= b1x1 − b2x2, dx3

dt
= b2x2 − cx3

K + x3
(9.22)

Notice that the feedback step is no longer cooperative (p = 1) and the uptake of
endproduct is now a Michaelis-Menten function. The steady state of this system is
(x∗1, x

∗
2, x

∗
3) = (a/b1(1 + ξ), a/b2(1 + ξ), ξ), where ξ is the unique real positive root

of a

1+ξ
= cξ

K+ξ
. The stability of this steady state is determined by the roots of the

characteristic equation (b1 + λ)(b2 + λ)(β + λ) + b1b2φ = 0 where β = cK

(K+ξ)2
and

φ = a

(1+ξ)2
.

The characteristic equation is hard to solve in this completely general case. In order
to get a start on it, we make some simplifying assumptions. First, suppose that K = 1,

so ξ = a/c. Next, suppose b1 = b2 < c, and choose a = c
³p

c/b1 − 1
´
so that β = b1

as well. Furthermore, φ = b1a/c = b1
³p

c/b1 − 1
´
. In this case, the eigenvalues of the

Jacobian matrix are λ1 = −b1
³
1 + 3

p
a/c

´
,λ2,3 = −b1+ b1 3

p
a/c{cos(π/3)± i sin(π/3).

The dynamical system has a Hopf bifurcation at c = 81b1, provided a = 8c = 648b1.
If we set b1 = 0.1, then the Hopf bifurcation occurs at c = 8.1, a = 64.8. Starting at
this point, we can use XppAut to trace out the locus of Hopf bifurcations as a, c and b1
change; e.g. Fig. (??).
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9.5 Time-Delayed Negative Feedback

In Goodwin�s equations and Bliss-Painter-Marr�s modiÞed version, we assumed im-
plicitly that there are no time delays in the processes of transcription, translation,
or endproduct repression. However, there are surely some delays in transcription and
translation associated with mRNA and protein processing in the nucleus and cytoplasm,
respectively. And there are also bound to be delays in the feedback term, because the
endproduct must move into the nucleus, bind with transcription factors, and interact
with the �upstream� regulatory sites of the gene to affect its rate of transcription. If we
lump all these delays together, we can write a delayed-differential equation for negative
feedback:

d[X]

dt
=

a

1 + (Z/Km)p
− b[X] (9.23)

where z(t) is a functional of the past history of x(t). For a discrete time lag,

Z(t) = [X](t− τ), with τ = constant. (9.24)

For a distributed time lag,

Z(t) =

tZ
−∞

[X](s)Gn
c (t− s)ds, with Gn

c (s) =
cn+1

n!
sne−cs. (9.25)

The kernel, Gn
c (s), is plotted in Fig. 9.x. It is easy to show that G has a maximum at

s = n/c. As n and c increase, with n/c Þxed, the kernel approaches a delta function,
and the distributed time lag approaches the discrete time lag with τ = n/c.

9.5.1 Distributed time lag and the linear chain trick

If we deÞne

Zj(t) =

tZ
−∞

[X](s)Gj
c(t− s)ds, j = 0, 1, . . . , n

then the system Eqn. (9.23) and Eqn. (9.25) can be written as the set of ODEs:

d[X]

dt
=

a

1 + (Z/Km)p
− b[X]

dZ0
dt

= c([X]− Z0)
dZj
dt

= c(Zj−1 − Zj), j = 1, 2, . . . , n

That is, the distributed time-delay model, with kernel Gn
c (s), is identical to a classical

Goodwin negative feedback loop of length n + 2. If c = b, then the loop has a Hopf
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bifurcation at ξ = a

bKm
· p−pmin

p
, where pmin =

h
sec

³
π

n+2

´in+2
and the dimensionless

number ξ is the unique real positive root of ξp+1 + ξ − a

bKm
= 0.

As an example, suppose n = 6 and p = 4. In this case, pmin = 1.88 and the
Hopf bifurcation occurs at 0.78 = bkm

a
ξ = 1

1+ξ4
, or ξ = 0.73. Hence, the critical value

of b is bcrit = 1.07a/Km, and oscillations occur for b < bcrit. Small values of b mean
long time delays, τ = n/c = 6/b. The minimal time delay for oscillations is, hence,
τmin = 5.6Km/a.

9.5.2 Discrete Time lag

For the case of a discrete time lag, we must solve the delay-differential equation

dx

dt
=

1

1 + x(t− τ)p − bx (9.26)

where x and t have been scaled to eliminate the parameters a and Km from Eqn. (9.23).
Eqn. (9.26) has a steady state solution, x∗, satisfying xp+1+x− b−1 = 0. To investigate
the stability of the steady state, we rewrite Eqn. (9.26) in terms of y(t) = x(t)− x∗,

dy

dt
= −φy(t− τ)− by(t) + higher order terms, and

φ =
p(x∗)p−1

(1 + (x∗)p)
2 = pb(1− bx∗) =

pb

1 + (x∗)−p
.

Looking for solutions of the form y(t) = y0e
λt, we Þnd that λ must satisfy the char-

acteristic equation λ + b = −φe−λτ . At a Hopf bifurcation, the eigenvalue λ must be
purely imaginary; λ = πω. Thus, for Eqn. (9.26) to exhibit periodic solutions (with
period = 2π/ω) at a Hopf bifurcation, we must insist that

b = −φ cos(ωτ), ω = φ sin(ωτ) (9.27)

From these equations, we can determine the oscillatory frequency (ω) and critical
time delay (τ) at the onset of limit cycle oscillations:

ω =
p
φ2 − b2 = b

q
{p/[1 + (x∗)−p]}2 − 1

τ =
cos−1 (−[1 + (x∗)−p]/p)
b
p{p/[1 + (x∗)−p]}2 − 1

Hence, a necessary condition for Hopf bifurcation is 1 + (x∗)−p < p. For example,
if p = 4, then x∗ must be > (1/3)1/4 ≈ 0.760, which implies that b must be < 35/4/4 ≈
0.987. If b = 1/2, then x∗ = 1 and ω =

√
3/2, τ = 2π

√
3/9 . Hence, for b = 1/2 and

p = 4, small amplitude oscillations, with period≈ 7.255, bifurcate from the steady state
as the time delay increases beyond 1.209.
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9.6 Circadian Rhythms

Everyone is familiar with his or her own 24-hour sleep-wake cycle. Many other aspects
of human physiology also exhibit daily rhythms, including body temperature, urine
production, hormone secretion, and skin cell division. Such rhythms are observed in all
kinds of plants, animals and fungi, as well as unicellular organisms, and even bacteria.
Because these rhythms persist in the absence of external cues (light intensity, tempera-
ture, etc.), they reßect an endogenous oscillator within cells that runs at a period close
to 24 h (�circa-dian� means �nearly daily�).

Biologists have long been puzzled by the molecular basis of circadian rhythms. Al-
though a fundamental breakthrough was made by Konopka and Benzer in 1971, with
their discovery of the per gene in Drosophila (mutations of which alter the endogenous
circadian rhythm of affected ßies), it was 25 years before the molecular details of the
circadian oscillator began to come clear. We know now that PER protein inhibits tran-
scription of the per gene, through a complicated process involving phosphorylation by
DBT kinase, binding to TIM subunits, transport into the nucleus, and interaction with
the transcription factors (CLK and CYC).

It is clear to all that the control system is dominated by a time-delayed, negative
feedback loop, quite close in principle to Goodwin�s original negative feedback oscillator.
Numerous theoreticians have exploited the interesting nonlinear dynamics of delayed
negative feedback in order to model certain characteristics of circadian rhythms. Ruoff
and Bensing (1996) have explored the capabilities of Goodwin�s equations Eqn. (9.21),
with p = 9, to account for temperature compensation, entrainment, and phase resetting.
Goldbeter (1995) proposed a more complicated model, based loosely on Goodwin�s idea
(with n = 5 and p = 4), supplemented with reversible phosphorylation steps and nuclear
transport (see Exercise 9.7.15). Like Bliss, Painter and Marr, Goldbeter used Michaelis-
Menten kinetics for many steps in his mechanism and found that oscillations were
very robust (persisting even for p = 1). In subsequent papers, Leloup and Goldbeter
(1997, 1998) have studied temperature compensation and phase resetting in this model.
Perhaps the simplest model of circadian rhythms is negative feedback with discrete time
delay, Eqn. (9.23) and Eqn. (9.24). In a recent paper, Lema, Golombek and Echave
(2000) have explored the capabilities of these equations to account for phase-response
curves and entrainment.

Tyson et al. (1999) have taken a different approach, noting that phosphorylation
of PER by DBT induces rapid degradation of PER, but multimers of PER and TIM
are not readily phosphorylated by DBT. They show that a mechanism of this sort
can be described by a two-component model with autocatalysis (PER inhibits its own
degradation). Their �substrate-depletion� model is pursued in Exercise (??).
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9.7 Combination Oscillators

We have been discussing simple models of biochemical oscillators that can be described
either by two-component mechanisms with autocatalysis (positive feedback) or by time-
delayed negative feedback. Realistic models of some biochemical control systems call
for both positive and negative feedback loops. The behavior of such models combines
the properties of the oscillators we have been discussing. Two important examples are
cell cycle controls in frog eggs (Novak and Tyson, 1973; Borisuk and Tyson, 1998) and
bursting oscillations in pancreatic b cells (Bertram, 1995; Sherman, 1997).

Exercises

1. Activator-inhibitor system. Consider the mechanism which can be described by the
(scaled) differential equations

dx

dt
=

a+ bx2

1 + x2 + ry
− x, dy

dt
= ²(cx+ y0 − y)

Basal parameter values: a = 1, b = 5, c = 4, r = 1, y0 = 0, ² = 0.1

(a) Why is this called an �activator-inhibitor� system?
(b) Draw phase plane portrait (nullclines and typical trajectories) for the basal

parameter values.
(c) Vary c and Þnd the Hopf bifurcation points.
(d) As you vary both c and y0, how many qualitatively different phase plane

portraits can you Þnd? Sketch them.

2. Substrate-depletion system. Consider the mechanism which can be described by
the (scaled) differential equations

dx

dt
= a− xy2, dy

dt
= ²+ xy2 − by

Basal parameter values: a = 0.5, b = 1, ² = 0.05

(a) Why is this called a �substrate-depletion� system?

X Y
E

in

in

out

Figure 9.13 Exercise (1)
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Figure 9.14 Exercise (2)
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Cell membrane Figure 9.15 Exercise (3)

(b) Rewrite the ODEs in terms of y and z = x+ y.
(c) Draw phase plane portrait (nullclines and typical trajectories) for the basal

parameter values.
(d) Classify the stability of the steady state as a varies.

3. Substrate-inhibition oscillator. Perhaps the simplest example of a biochemical
oscillator was proposed by Murray (J. Theor. Biol. 88, 161-199, 1981):
The rate equations for this mechanism are

dX

dt
= a(X0 −X)− vXY

Km1 +X + (X2/Km2)

dY

dt
= a(Y0 − Y )− vXY

Km1 +X + (X2/Km2)

where a, b are membrane permeabilities, v is a rate constant, and the Km�s are
dissociation constants of the enzyme-substrate complexes. Basal parameter values:
a = 1, b = 0.15, X0 = 1, Y0 = 6, v = 30,Km1 = 1,Km2 = .005.

(a) Plot nullclines and some characteristic trajectories.
(b) Find points of Hopf bifurcation as Y0 varies.
(c) For b = 1, X0 = 1.5, Y0 = 4, plot nullclines and trajectories
(d) Find the region of bistability in the (X0, Y0) plane.
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4. Bifurcation theory. To learn the basic types of bifurcations possible in biochemical
reaction systems, a simple model to practice on is

dx

dt
= x(1− x)(1 + x)− y, dy

dt
= (x− a)(b− y)− c

Notice, Þrst of all, that these ODEs do not describe a chemical reaction system
(where x and y are chemical concentrations). Why? Because we are not dealing
with chemistry per se here, we can let the parameters take on both + and - values.
Although this model is not chemically realistic, all the bifurcations observed herein
are also seen in bona Þde biochemical kinetics.

(a) Start with the parameter set: a = −0.5, b = 0.5, c = 0.1. Plot nullclines. Find
steady states and their stability. Is there an oscillatory solution?

(b) Set b = 0 and a = −0.8. Plot nullclines. Find steady states and their
stability. Draw the �invariant sets� of the saddle point. Repeat for a =
−0.78,−0.77,−0.76,−0.7,−0.65. For a = −0.765, show that there exists an
unstable limit cycle around the steady state at x = −0.498, y = −0.374.

(c) Use AUTO or LocBif to characterize the codimension-one bifurcations in this
model. Plot x as a function of a, and look for Hopf points and saddle-node
points. Then �grab� these bifurcation points and follow them in two parameters
(a and b). The saddle-node points will trace out loci in the (a, b) plane that come
together at a cusp point (a codimension-two bifurcation point). The Hopf points
will trace out a locus that merges with a curve of saddle-nodes at a codim-2
bifurcation point called a Takens-Bogdanov bifurcation. For more information
on these typical bifurcation sets, see the papers by Guckenheimer and Borisuk-
Tyson in the reference list.

(d) Set a = −0.7, c = 0.53. Vary b between 0.80 and 0.84. What happens to the
limit cycle, the saddle point and the node? This bifurcation is called a SNIC
(saddle-node on an invariant circle), or SNIPER (saddle-node inÞnite-period),
or SNL1 (saddle-node-loop, codimension-one).

5. Gene expression (from Jeff Hasty, Boston Univ.). Consider a bacterial operon
expressing two genes, genX and genY.

X:X

Y:Y

genX

genY

X

Y Figure 9.16 Exercise (5)



9.7: Combination Oscillators 205

The proteins, X and Y, form homodimers, X2 and Y2, which then bind to the
upstream regulatory sequence and affect the expression of genX and genY. X2-
binding stimulates gene expression, but Y2-binding inhibits it. Assume that the
homodimers are very stable and that they bind to the regulatory sequence with
equal affinity.

(a) Show that the mechanism can be described by a pair of (scaled) ODEs

dx

dt
= 1 +

αx2

1 + x2 + y2
− βx, dy

dt
= ²

µ
1 +

αx2

1 + x2 + y2

¶
− γx

where ² is the rate of expression of Y relative to that of X.
(b) Construct a phase plane portrait for this system, when α = 50,β = 10, γ =

1, ² = 0.2.
(c) Would you describe this oscillator as �activator-inhibitor� or �substrate-

depletion.�
(d) Find the locus of Hopf bifurcations in the (β, γ) parameter plane.

6. Glycolysis. In Sec 9.2.1 we studied a simple model of the glycolytic oscillator, Eqn.
(9.12), and found that oscillations exist within a limited range of substrate injection
rates, k

1,lower < k1 < k1,upper, where k1,lower = ²k3Kl, and k1,upper =
k3Kl√
1+ν
,

where v = v2/k3 (see Eq. 9.10b).

(a) Show that the period of oscillation close to the two Hopf bifurcation points is
given by

Tlower =
2π

k3²
√
2v
, Tupper =

2π

k3

r
2 + v

v

(b) Hess & Boiteux (in Chance et al., 1973, p. 237) reported that k
1,lower = 0.33

mM/min, Tlower = 8.6 min, and k1,upper = 2.5 mM/min, Tupper = 3.5
min. Supposing that v ¿ 1, show that ² ∼= k

1,lower/k1,upper = 0.13 and
Tupper/Tlower

∼= 2² ∼= 0.25, which is not too far from the observed ratio, 0.4.
(c) For the parameter values, ²2 = 0.017,Kl = 0.25mM, v2 = 1 min

−1 and k3 = 10
min−1, use PhasePlane to compute k

1,lower, Tlower, k1,upper, and Tupper, and
compare your results to the observations of Hess & Boiteux.

7. For the model of cell cycle control in budding yeast, Eq. (9.11), with the parameter
values given in Fig. 9.10, Þnd the region of limit cycle oscillations in the (c, τ) plane.
For extra credit, explore the bifurcations of this model in the (c, ²) plane.

8. Cyclic AMP dynamics. Martiel & Goldbeter (Biophys. J. 52, 807-828, 1987) have
presented a model of cyclic AMP oscillations in Dictyostelium discoideum that can
be reduced to a set of three ODEs:

dβ

dt
= qφ(ρ, γ)− kitβ

dγ

dt
= khtβ − keγ
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dρ

dt
= f2(γ)(1− ρ)− f1(γ)ρ

where β = (scaled) concentration of intracellular cAMP, γ = (scaled) concentration
of extracellular cAMP, ρ = fraction of cAMP membrane receptor in active form,

φ(ρ, γ) =
²+ αY 2

1 + (1 + α)Y 2
, Y =

ργ

1 + γ
,

f1(γ) =
k1 + k2γ

1 + γ
, f2(γ) =

k01 + k
0
2cγ

1 + cγ

Martiel & Goldbeter estimate the parameter values to be
Rate constants (units = min−1): q = 2400, kit = 2.6, kht = .18, ke = 5.4, k1 =
0.36, k2 = 0.0033, k

0
1 = 0.036, k

0
2 = 0.67

Dimensionless parameters: ² = 0.0003,α = 3, c = 10.

(a) Martiel & Goldbeter say that, to a good approximation, β = q

kit
φ(ρ, γ). Why is

this true? (Hint: singular perturbation argument.) Use this approximation to
reduce the Martiel-Goldbeter model to two ODEs and study these equations
with Phase Plane. Plot nullclines and time-courses. Study the bifurcations in
these equations as the rate constants are varied.

(b) To model the response of cells to Þxed levels of extracellular cAMP, let γ =
constant, and solve

dβ

dt
= qφ(ρ, γ)− kitβ, dρ

dt
= f2(γ)(1− ρ)− f1(γ)ρ

Plot β(t) and ρ(t) for stepwise increases of γ from 0 to 0.1, 1, or 10. The
behavior you will observe is called �adaptation.�

9. Positive feedback on gene transcription (Griffith, J. Theor. Biol. 20, 209-216, 1968).
Consider the simple case of a protein that activates transcription of its own gene:
This mechanism is described by a pair of ODEs:

d[M ]

dt
= v1

²2 + ([P ]/Kl)
2

1 + ([P ]/Kl)
2 − k2[M ],

d[P ]

dt
= k3[M ]− k4[P ]

mRNAgene

protein amino 
acids

oo
 oo

oo
 oo

Figure 9.17 Exercise (9)
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(a) How must the variables be scaled to write the ODEsin dimensionless form:

dm

dt
=
²2 + p2

1 + p2
−m, dp

dt
= κ(σm− p)?

(b) Assume that ² = 0.2,κ = 1, and draw phase plane portraits for several values
of σ.

(c) Find the bifurcation values of σ.
(d) Plot the steady state concentration of P as a function of σ.

10. Generalize the positive feedback system in the previous problem to a loop of
arbitrary length.

(a) Show that, when properly scaled, the steady state solution of the dynamical
equations is given by the roots of

φz =
²p + zp

1 + zp
(∗)

where φ = constant.
(b) Show that the system has saddle-node bifurcation points when (*) is satisÞed

simultaneously with

φ =
pzp−1(1− ²p)
(1 + zp)2

(∗∗)

(c) For ²¿ 1, show that (*) and (**) are satisÞed simultaneously for

z ≈ p
p
p− 1,φ ≈ 1

p
p

q
(p− 1)p−1 and

z ≈ ² p

q
2/(p− 1),φ ≈ ²p−1 p

q
(2/(p− 1))p−1

(d) Compute the saddle-node bifurcation points for p = 2, 3, 4, and compare to
numerical results from PhasePlane (pick some small value of ²).

11. Goodwin�s equations. Generalize the analysis in Section 9.3.3 to a negative feedback
loop with n components,

dx1
dt0

=
1

1 + xpn
− b1x1, dxj

dt0
= bj(xj−1 − xj), j = 2, 3, . . . , n.

Assume that b1 = b2 = . . . = bn = b, and show that the steady state (x1 = x2 =
. . . = xn = ξ) is unstable when bξ <

p−pmin
p
, where pmin = sec

n(π/n). Compute pmin
for n = 4, 8, 16.

12. Modify the Bliss-Painter-Marr equations (9.13), by writing a

1+x
p
3

in the Þrst differ-

ential equation. Let a = 1, b1 = b2 = 0.1,K = 1. Plot the locus of Hopf bifurcation
points in the (p, c) parameter plane.

13. . Calcium-induced calcium release. Goldbeter, Dupont & Berridge (Proc. Natl.
Acad. Sci. 87, 1461-1465, 1990) have presented a two-variable model for Ca2+
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oscillations in cells:

dX

dt
= v0 + v1β − V2 + V3 − k4X + k5Y, dY

dt
= V2 − V3 − k5Y

where

V2 = v2
X2

K2
2 +X

2
, V3 = v3

Y 2

K2
R + Y 2

· X4

K4
A +X4

.

In these equations, X = [Ca2+]cytosolic, Y = [Ca
2+]vesicular,

v0 = slow leak of Ca
2+ into the cytosol from extracellular ßuid

v1β = IP3-induced release of Ca
2+ into the cytosol from intracellular stores

V2 = ATP-dependent Ca
2+ pump

V3 = Ca
2+-induced Ca2+-release from storage vesicles

k4 = Ca
2+ elimination through the plasma membrane

k5 = Ca
2+ leak from storage vesicles

Goldbeter et al. estimated the parameters to be

v0 = 1µM/s, v1 = 7.3µM/s,β = 0, v2 = 65µM/s,K2 = 1µM,

v3 = 500µM/s,KR = 2µM,KA = 0.9µM, k4 = 10s
−1, k5 = 1s

−1

(a) Draw phase plane portraits for the basal parameter values.
(b) Increase β (the IP3 signal) from 0 to 1 (its maximum value), and Þnd values

that correspond to Hopf bifurcations.
(c) To simulate a pulse of IP3, let β(t) = β0e−αt, with α = 0.25 s−1. Try β0 = 0.85

and 0.95. Plot X(t). Compare to experimental results in Xenopus eggs (Fig.
9.12 in Goldbeter�s book).

14. For the distributed time lag deÞned in Eq. (9.15b), show that

(a)

∞Z
0

Gn
c (s)ds = 1

(b)
d

ds
Gn
c (s) = c (G

n−1
c (s)−Gn

c (s))

(c)Gn
c (s) has a maximum at s = n/c.

15. Goldbeter (Proc. R. Soc. Lond. B 261, 319-324, 1995) has presented a model for cir-
cadian rhythms of PER protein based on delayed negative feedback. His mechanism
is
The corresponding kinetic equations are

dM

dt
=

vs
1 + (Pn + k1)n

− vmM

Km1 +M

dP0
dt

= ksM − V1P0
K1 + P0

+
V2P1
K2 + P1
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Figure 9.18 Exercise (15)

dP1
dt

=
V1P0
K1 + P0

− V2P1
K2 + P1

− V3P1
K3 + P1

+
V4P2
K4 + P2

dP2
dt

=
V3P1
K3 + P1

− V4P2
K4 + P2

− k1P2 + k2PN − vdP2
Kd + P2

dPN
dt

= k1P2 + k2PN

with basal parameter values: n = 4,

vs = 0.76µM/h, vm = 0.65µM/h, vd = 0.95µM/h,

ks= 0.38h
−1, k1 = 1.9h

−1, k2 = 1.3h
−1,

V1= 3.2µM/h, V2 = 1.58µM/h, V3 = 5µM/h, V4 = 2.5µM/h,

K1= K2 = K3 = K4 = 2µM,KI = 1µM,Km1 = 0.5µM,Kd = 0.2µM.

(a) Solve these equations numerically, plottingM,PN and PT = [total PER protein]
as functions of time (hours). Plot a projection of this orbit in the (M,PT ) plane.

(b) Plot the period of oscillation as a function of PER degradation rate, 0.5 < vd <
2.5. How might you use these results to explain the phenotypes of perS and
perL mutant alleles, which cause short- and long-period autonomous rhythms
(19 h and 28 h, respectively)?

(c) Construct a one-parameter bifurcation diagram for this model, showing the
amplitude (PTmin and PTmax) and period of oscillations as functions of vs (per
gene dosage), for 0 < vs < 4.

(d) Construct a two-parameter bifurcation diagram, showing the locus of Hopf
bifurcations in the (vs, vd) plane.

16. Tyson et al. (Biophys. J. 77, 2411-2417, 1999) have presented a model for circadian
rhythms of PER protein based on positive feedback. Their mechanism is
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(a) Show that this mechanism can be described by three ODEs

dM

dt
=

vm
1 + (P2/A)2

−KmM

dP1
dt

= vpM − k1P1
J + P1 + 2P2

− k3P1 − 2kaP 2
1 + 2kdP2 +

2k2P2
J + P1 + 2P2

+ 2k3P2

dP2
dt

= kaP
2
1 − kdP2 −

2k2P2
J + P1 + 2P2

− 2k3P2

where M = [mRNA], P1 = [Protein], P2 = [Dimer],

vm, vp = rate constants for synthesis of mRNA and protein
km, k3 = rate constants for non-speciÞc degradation of mRNA and protein
k1, k2 = rate constants for phosphorylation of protein and dimer
ka, kd = rate constants for association and dissociation of dimer
J,A = Michaelis constants for binding protein (and/or dimmer) to
phosphatase and transcriptional regulation factors.

List all assumptions made in deriving these equations.
(b) Suppose the dimerization reaction is in rapid equilibrium. Show that

q =
2

1 +
√
1 + 8KPT

, P1 = qPT , P2 =
1− q
2
PT (#)

where PT = P1 + 2P2 = [total protein] and K = ka/kd = equilibrium binding
constant.

(c) Show that the system can now be described by a pair of ODEs

dM

dt
=

vm
1 + (P2/A)2 − kmM ,

dPT
dt

= vpM − k1P2 + 2k2P2
J + PT

− k3PT

with P1 and P2 given as functions of PT by (#) above.
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Table 9.1 Biochemical and Cellular Rhythms Source: Goldbeter (1996), Rapp (1979).

Rhythm Period

Membrane potential oscillations 10 ms - 10 s

Cardiac rhythms 1 s

Smooth muscle contraction seconds - hours

Calcium oscillations seconds - minutes

Protoplasmic streaming 1 min

Glycolytic oscillations 1 min - 1 h

cAMP oscillations 10 min

Insulin secretion (pancreas) minutes

Gonadotropic hormone secretion hours

Cell cycle 30 min - 24 h

Circadian rhythms 24 h

Ovarian cycle weeks - months

(d) Given basal parameter values: vm = 1, vp = 0.5, km = k3 = 0.1, k1 = 10, k2 =
0.03, J = 0.05,K = 200, A = 0.1, explore the dynamics of this regulatory
system, using PhasePlane to plot phase portraits as various parameters are
twiddled.

(e) Find the locus of Hopf bifurcations in the (k1,K) plane.

9.8 Table
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Cell Cycle Controls
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In recent years, molecular biologists have uncovered a wealth of information about the
proteins controlling cell growth and division in eukaryotes. The regulatory system is
so complex that it deÞes understanding by verbal arguments alone. To probe into the
details of cell cycle control requires mathematical modeling of the type practiced in this
book. As in previous chapters, we will disassemble the complex control mechanism into
manageable pieces, develop mathematical representations of the component parts, and
then reassemble realistic models of the growth and division of yeast cells, embryonic
cells, and somatic cells of multicellular organisms. But, Þrst, what are the basic features
of cell reproduction that we want to understand?

10.1 Physiology of the Cell Cycle in Eukaryotes

The cell cycle is the sequence of events by which a growing cell duplicates all its
components and divides into two daughter cells, each with sufficient machinery and
information to repeat the process (Fig. 1.2). The most important components are the
cell�s chromosomes, which contain linear DNA molecules in association with proteins.
First, each DNA molecule must be accurately replicated, and then the two copies must
be carefully segregated to daughter cells at division. In eukaryotic cells, these two pro-
cesses occur in temporally distinct stages (Fig. 10.1). During S phase, a new copy of each



10.1: Physiology of the Cell Cycle in Eukaryotes 213

Cdk

Cyclin
S

Cdk

G2

G1

APC

Cdk

F
IN

IS
H

START

APC

+

+
+

+

cell division

M
(metaphase)

M 
(anaphase)

Figure 10.1 The cell cycle. Outer ring illustrates the chromosome cycle. The nucleus of a newborn
cell contains unreplicated chromosomes (represented by a single bar). At Start, the cell enters S phase
and replicates its DNA (signiÞed by replication bubbles on the chromosome). At the end of S phase,
each chromosome consists of a pair of sister chromatids (X) held together by tethering proteins. After a
gap (G2 phase), the cell enters mitosis (M phase), when the replicated chromosomes are aligned on the
metaphase spindle, with sister chromatids attached by microtubules to opposite poles of the spindle. At
Finish, the tether proteins are removed so that the sister chromatids can be segregated to opposite sides of
the cell (anaphase). Shortly thereafter the cell divides to produce two daughter cells in G1 phase. The inner
icons represent the fundamental molecular machinery governing these transitions. Start is triggered by a
protein kinase, Cdk, whose activity depends on association with a cyclin subunit. Cdk activity drives the cell
through S phase, G2 phase, and up to metaphase. Finish is accomplished by proteolytic machinery, APC,
which destroys the tethers and cyclin molecules. In G1 phase, APC is active and Cdk inactive, because it
lacks a cyclin partner. At Start, the APC must be turned off so that cyclins may accumulate. Cdk and APC
are antagonistic proteins: APC destroys Cdk activity by degrading cyclin, and cyclin/Cdk dimers inactivate
APC by phosphorylating one of its subunits.

chromosome is synthesized. (The two identical DNA molecules are called sister chro-
matids.) Some time later, during M phase (mitosis), the sister chromatids are separated
so that each daughter cell receives a copy of each chromosome.
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DNA synthesis and sister chromatid separation (alternating S and M phases) make
up the chromosome cycle of the cell. In parallel to it runs the growth cycle, whereby
the cell�s �hardware� (proteins, RNA, phospholipid bilayers, carbohydrates) is also du-
plicated and partitioned, more-or-less evenly, between daughters. During normal cell
proliferation, these two cycles turn at the same rate, so that each round of DNA syn-
thesis and mitosis is balanced by doubling of all other macromolecules in the cell. In
this way, the DNA/protein ratio of the cell is maintained within advantageous limits.
Of course, there are exceptions to this rule, such as oocytes, which grow very large
without dividing, and fertilized eggs (embryos), which divide rapidly in the absence of
growth. Nonetheless, the long-term viability of a cell line depends on balanced growth
and division.

The chromosome cycle is usually subdivided into four phases (G1, S, G2, M), but
it is better to think of it as two alternative �states� (G1 and S-G2-M) separated by two
transitions (Start and Finish), as in Fig. 10.1 (Nasmyth, 1996). In G1, chromosomes
are unreplicated and the cell is uncommitted to the replication-division process. At
Start (the transition from G1 to S phase), a cell conÞrms that internal and external
conditions are favorable for a new round of DNA synthesis and division, and commits
itself to the process. The decision is irreversible; once DNA synthesis commences, it
goes to completion.

During the process of DNA replication, sister chromatids are tethered together by
speciÞc proteins, called cohesins. As the mitotic spindle forms in M phase, microtubules
from the spindle poles attach to chromosomes and pull them into alignment at the center
of the spindle (metaphase). When DNA replication is complete and all chromosomes are
aligned, the second irreversible transition of the cycle (Finish) is triggered. The cohesins
are destroyed, allowing sister chromatids to be pulled to opposite poles of the spindle
(anaphase). Shortly thereafter, daughter nuclei form around the segregated chromatids
(telophase), and the incipient daughter cells separate.

These major events of the cell cycle must be tightly regulated. For instance, bal-
anced growth and division is achieved in most cells by a size requirement for the Start
transition. That is, cells must grow to a critical size before they can commit to chro-
mosome replication and division. If this requirement is compromised by mutation, cells
may become morbidly large or small. A second crucial regulatory constraint is to hold
off the Finish transition if there have been any problems with DNA replication or chro-
mosome alignment. Were anaphase to commence under such conditions, then daughter
nuclei would not receive a full complement of chromosomes, which is usually a fatal
mistake.

10.2 Molecular Mechanisms of Cell Cycle Control

Cell cycle events are controlled by a network of molecular signals, whose central com-
ponents are cyclin-dependent protein kinases (Cdks). Cdks, when paired with suitable
cyclin partners, phosphorylate many target proteins involved in cell cycle events. For
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instance, by phosphorylating proteins bound to chromosomes at �origins of replica-
tion� (speciÞc nucleotide sequences, where DNA replication can start), Cdks trigger
the onset of DNA synthesis. By phosphorylating histones (proteins involved in DNA
packaging), Cdks initiate chromosome condensation at the G2-M transition. Clearly, to
understand the timing of these basic cell cycle events, one must understand the patterns
of activation and inactivation of Cdks.

Cdk activities can be regulated throughout the cell cycle in many ways. In principle,
cells could regulate the availability of Cdk subunits, but this is uncommon; most Cdks
are present in constant abundance throughout the cell cycle. Their activity is regulated,
instead, by the availability of cyclin partners. Cyclin abundance is determined by the
rates of cyclin synthesis and degradation, both of which can be regulated during the
cell cycle, as we shall see. Secondly, Cdk/cyclin dimers can be put out of commission
by binding a third partner, a stoichiometric inhibitor, generally referred to as a CKI
(cyclin-dependent kinase inhibitor). CKIs come and go, because their synthesis and
degradation rates are also cell-cycle regulated. Finally, Cdk/cyclin activity depends on
phosphorylation of the Cdk subunit. To be active, Cdk must be phosphorylated on a
threonine residue on the �T-loop;� this phosphorylation is carried out by an enzyme
called CAK, which is active throughout the cell cycle (i.e., T-loop phosphorylation is
not involved in cell cycle regulation). Cdk may be inhibited by phosphorylation on a
tyrosine residue (residue #15 in Þssion yeast Cdk), and the phosphorylation state of
tyrosine-15 varies during the cell cycle as the activities of the tyrosine kinase (Wee1)
and tyrosine phosphatase (Cdc25) ßuctuate.

Because cells of higher eukaryotes contain many different Cdks and cyclins, �com-
binatorics� might play a major role in cell cycle progression, as the Cdk and cyclin
subunits change partners. However, lower eukaryotes accomplish all the same basic
tasks with many fewer components (one Cdk and 2-4 crucial cyclins), indicating that
one Cdk is sufficient and that Cdk/cyclin holoenzymes can substitute for one another,
to a large extent. Thus, progress through the cell cycle is not just a �square dance,�
with Cdks and cyclins swapping partners to a steady rhythm, as some textbook dia-
grams might suggest, but rather a complex, nonlinear, dynamical system of interactions
between Cdk/cyclin dimers and their regulatory agents: transcription factors, degrada-
tion machinery, CKIs, and tyrosine-modifying enzymes. Our task will be to understand
the basic principles of this dynamical system, but Þrst we need some more mechanistic
details.

Nasmyth�s two cell-cycle states, G1 and S-G2-M, are correlated with low and high
Cdk activity, respectively (see Fig. 1). Cdk activity is low in G1 because its obligate
cyclin partners are missing. Cyclin levels are low in G1 because cyclin mRNA synthesis
is inhibited and cyclin protein is rapidly degraded. At Start, cyclin synthesis is induced
and cyclin degradation inhibited, causing a dramatic rise in Cdk activity, which persists
throughout S, G2 and M. The initial rise in Cdk activity is sufficient to initiate DNA
replication, but further increase is required to drive cells into mitosis (Stern and Nurse,
1996).
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At Finish, a group of proteins, making up the anaphase-promoting complex (APC),
is activated. The APC attaches a �destruction label� to speciÞc target proteins, which
are subsequently degraded by the cell�s proteolytic machinery. The APC consists of a
core complex of about a dozen polypeptides plus two auxiliary proteins, Cdc20 and
Cdh1, whose apparent roles (when active) are to recognize speciÞc target proteins and
present them to the core complex for labeling. Activation of Cdc20 at Finish is nec-
essary for degradation of cohesins at anaphase, and for activation of Cdh1. Together,
Cdc20 and Cdh1 label cyclins for degradation at telophase, allowing the control system
to return to G1. We must distinguish between these two different auxiliary proteins, be-
cause Cdc20 and Cdh1 are controlled differently by cyclin/Cdk, which activates Cdc20
and inhibits Cdh1.

10.3 Division Controls in Yeast Cells

A major challenge for theoretical molecular biologists is to explain the physiology of
cell proliferation in a variety of unicellular and multicellular organisms in terms of their
underlying molecular control systems. Of necessity, such connections will be made by
ambitious computational models that reßect some of the inescapable complexity of real
cell cycle controls. In order to design such models and understand how they work, we
Þrst need a solid grasp of the basic control principles of the cell cycle.

To this end, we draw attention to a simple theme that runs through the morass
of molecular details. The irreversible transitions of the cell cycle (Start and Finish)
are consequences of a hysteresis loop that derives from a fundamental antagonistic
relationship between the central components of the machinery: the APC extinguishes
Cdk activity by destroying its cyclin partners, whereas cyclin/Cdk dimers inhibit APC
activity by phosphorylating Cdh1 (Fig. 10.1). This antagonism creates two, alternative,
stable steady states of the control system: a G1 state, with high Cdh1/APC activity
and low cyclin/Cdk activity, and an S-G2-M state, with high cyclin/Cdk activity and
low Cdh1/APC activity.

10.3.1 Hysteresis in the interaction of cyclin B/Cdk and
Cdh1/APC

The biochemical reactions in the center of Fig. 10.1 can be described by a pair of
nonlinear ordinary differential equations (ODEs):

d[CycB]

dt
= k1 − (k02 + k002 [Cdh1])[CycB] (10.1)

d[Cdh1]

dt
=
(k03 + k

00
3A)(1− [Cdh1])

J3 + 1− [Cdh1] − k4 ·m · [CycB] · [Cdh1]
J4 + [Cdh1]

(10.2)
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Figure 10.2 Phase plane portrait for the pair of nonlinear ODEs (10.1) and (10.2). Parameter values are
given in Table 1. Curves are nullclines (see text) for A = 0, m = 0.3 and 0.6. Arrows indicate direction
Þeld for m = 0.3 only. For m = 0.3, the control system has three steady states: a stable node (G1) at
([CycB], [Cdh1]) ≈ (0.039,0.97), a saddle point near (0.10, 0.36), and another stable node (S-G2-M) near
(0.90, 0.0045). Suppose a newborn cell resides at G1 (Cdh1 active and CycB missing). As the cell grows
(m increases), the G1 steady state is lost by a saddle-node bifurcation (at m ≈ 0.53), and the control
system is forced to the S-G2-M steady state. This Þgure was created using Phase Plane Þle 10 3 1.ode.

In these equations, [CycB] and [Cdh1] are the average concentrations of cyclin
B/Cdk dimers and active Cdh1/APC complexes, respectively. We assume that cy-
clin B molecules combine rapidly with an excess of Cdk subunits and accumulate
in the nucleus, where their effective concentration increases as the cell grows; hence,
m cdot[CycB] is the intranuclear concentration of CycB/Cdk dimers, where m repre-
sents cell �mass� (not to be confused with M for �mitosis�). We also assume that APC
cores are in excess, and that the total Cdh1 concentration is constant and scaled to 1.
The k�s are rate constants, the J �s are Michaelis constants, and A is a parameter used
to activate Cdh1 at Finish. (In the next section, we will show how A relates to Cdc20.)

The phase plane portrait for system (10.1)-(10.2) is illustrated in Fig. 10.2. The
nullclines are described by simple algebraic equations:

[CycB] =
β

J2 + [Cdh1]

[CycB] = p
(1− [Cdh1])(J4 + [Cdh1])
[Cdh1](J3 + 1− [Cdh1])

where β = k1
k00
2

, J2 =
k02
k00
2

and p =
k03+k

00
3A

k4·m . The CycB nullcline is a simple hyperbola. For

J3 = J4 ¿ 1, the Cdh1 nullcline is a sigmoidal curve passing through [CycB] = p at
[Cdh1] = 1/2.
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The Cdh1 nullcline can be rewritten for [Cdh1] as a function of [CycB], [Cdh1] =
G(p, [CycB], J3, J4), where G is the Goldbeter-Koshland function (see Exercise 10.8.1):

G(Va, Vi, Ja, Ji) =
2c

b+
√
b2 − 4ac

a = Vi − Va, b = Vi − Va + VaJi + ViJa, c = VaJi.
This function will come in handy later.

The control system has steady state solutions wherever the nullclines intersect.
The number of intersections depends on the value of p (Fig. 10.3). For p1 < p < p2, the
ODEs (10.1)-(10.2) have three steady states: two stable nodes separated by a saddle
point. The stable nodes we refer to asG1 (Cdh1 active, CycB low) and S-G2-M (Cdh1
inactive, CycB high); in bold face to distinguish the theoretician�s stable steady state
from the experimentalist�s cell cycle phase. In Exercise 10.8.2 you are asked to show
that, when J2 = J3 = J4 = ²¿ 1, the saddle-node bifurcations occur at:

p1 ≈ β{1 + 2
√
²+O(²3/2)}, [Cdh1] ≈ 1−√²+ ², [CycB]

≈ β(1 +√²− ²)
p2 ≈ β/(4²), [Cdh1] ≈ ², [CycB] ≈ β/(2²).

Progress through the cell cycle can be thought of as a tour around the hysteresis
loop in Fig. 10.3. For a small, newborn cell in G1 phase (with A ≈ 0 and p ≈ k03/k4m >
p1), the CycB-Cdh1 control system is attracted to the stable G1 steady state. As the
cell grows, m increases and p decreases. Eventually, p drops below p1, and the G1
steady state disappears, forcing the control system to jump irreversibly to the S-G2-
M steady state. High CycB/Cdk activity initiates the processes of DNA synthesis and
later mitosis, as the cell continues to grow. We assume that, when DNA replication
is complete and the chromosomes are properly aligned on the mitotic spindle, the
parameter A increases abruptly, forcing p to increase above p2. Consequently, the S-
G2-M steady state is lost by a saddle-node bifurcation, and the control system jumps
irreversibly back to the G1 state. The cell divides (m→ m/2), A decreases back to 0,
and the control system returns to its starting condition.

In this simple model, the irreversible transitions of the cell cycle (Start and Finish)
are the abrupt jumps of the hysteresis loop, at the saddle-node bifurcation points. The
G1→ S-G2-M transition is driven by cell growth, and the reverse transition is driven
by chromosome alignment on the mitotic spindle.

10.3.2 Activation of the APC at Anaphase

To Þll out the picture in the previous section, we must identify the activator of
Cdh1/APC and describe why A increases abruptly at the metaphase → anaphase
transition and decreases in G1 phase. The activator is a phosphatase (Cdc14) that
removes from Cdh1 the inhibitory phosphate groups placed there by CycB/Cdk. At
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Figure 10.3 Bifurcation diagram for Eqs. (10.1)-(10.2). The steady state concentration of CycB is plotted
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Figure 10.4 Phase plane portrait for Eqs. (10.1) and (10.3). [Cdh1] is computed from [CycB] by solving
for the steady-state of Eq. (10.2). Parameter values given in Table 10.1. (A) m = 0.5; (B) m = 1.
Solid curve: CycB nullcline. Dashed curve: Cdc20 nullcline. Dotted curve: trajectory. The control system
undergoes a saddle-node-loop bifurcation at m ≈ 0.8. (Phase plane Þle: 10 3 2A.ode)

the metaphase → anaphase transition, Cdc14 is activated indirectly by Cdc20/APC,
which disengages a complex pathway of Cdc14-inhibition. To keep our model as simple
as possible, we assume that A ∝ [Cdc14] ∝ [Cdc20] and write a differential equation
for the production of Cdc20:
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d[Cdc20T ]

dt
= k05 + k

00
5

([CycB] ·m)n
jn5 + ([CycB] ·m)n

− k6[Cdc20T ] (10.3)

Because Cdc20 is synthesized only in S-G2-M phase of the budding yeast cell cycle,
we have assumed that its transcription factor is turned on by CycB/Cdk according
to a Hill function with parameters n and J5. (The signiÞcance of the subscript T will
become clear shortly.) Notice that CycB, Cdc20 and Cdh1 are involved in a long,
negative feedback loop: CycB activates Cdc20, which indirectly activates Cdh1, which
destroys CycB.

By supposing that Cdh1 activity responds rapidly to changes in [CycB] and
[Cdc20T], we can solve Eq. (10.2) for [Cdh1] = G(k03 + k

00
3 [Cdc20T ], k4m[CycB], J3, J4)

, where G is the Goldbeter-Koshland function deÞned earlier. With this assumption,
our control system is still representable by a pair of ODEs, (10.1) and (10.3), and by
phase plane portraits (Fig. 10.4). Consider a newborn cell in G1 phase (Fig. 10.4A).
As the cell grows, the CycB nullcline moves to the right and the control system un-
dergoes a saddle- node-loop bifurcation at a critical value of m (mcrit ≈ 0.8). When
the G1 steady state is destroyed by coalescence with the saddle point, [CycB] starts
to increase (see the dotted trajectory in Fig. 10.4B). CycB-dependent kinase activity
drives the cell into S phase and mitosis, and it turns on synthesis of Cdc20. Cdc20 can
drive the cell out of mitosis because, unlike Cdh1, it is not inhibited by Cdk-induced
phosphorylation. After Cdc20 has done its job at Finish, it must be destroyed during
the subsequent G1 phase, to prepare the control system for the next Start transition.

Notice that the S-G2-M steady state in Fig. 10.4B is unstable: as Cdc20 accumu-
lates, the control system loops around the unstable steady state. Cdh1/APC is activated
by Cdc20, CycB is destroyed, and the cell exits mitosis. At cell division, m is reduced
two-fold, and the nullclines readopt the conÞguration in Fig. 4A. The control system
is captured by the stable G1 steady state, until cell size, m(t), once more increases to
mcrit.

In this picture, cells exit from mitosis �automatically� a certain time after Start (the
time required to make enough Cdc20 to activate APC); there is no connection between
alignment of replicated chromosomes on the metaphase plate and the transition to
anaphase. In budding yeast, the connection is established through further controls on
Cdc20 (see bottom part of Fig. 10.6). Newly synthesized Cdc20 is inactive. A Cdc20-
activating signal derives indirectly from CycB/Cdk; some intermediate steps between
CycB synthesis and Cdc20 activation assure a minimum time lag for DNA synthesis
and chromosome alignment to be completed before anaphase commences. If they are
not completed on time, a Cdc20-inactivating signal is imposed by the MAD-family of
spindle checkpoint genes. To take these additional feature into account, we write

d[Cdc20A]

dt
=
k7[IEP ]([Cdc20T ]− [Cdc20A])
J7 + [Cdc20T ]− [Cdc20A] − k8[Mad] · [Cdc20A]

J8 + [Cdc20A]

− k6[Cdc20A] (10.4)
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d[IEP ]

dt
= k9m[CycB](1− [IEP ])− k10([IEP ]) (10.5)

Here, [Cdc20A] is the concentration of �active� Cdc20, and [Cdc20T] is the total con-
centration of both active and inactive forms. From now on, we set A = [Cdc20A] in
Eq. (10.2). [IEP] is the concentration of the active form of an intermediary enzyme,
whose total concentration is scaled to 1. We treat [Mad] as a parameter; [Mad] = 1, if
chromosome alignment is completed on schedule, and = some large number, if not.

To complete this primitive model of cell cycle controls, we provide a differential
equation for cell growth:

dm

dt
= µm

µ
1− m

m∗

¶
(10.6)

where m∗ is the maximum size to which a cell may grow if it does not divide, and m
is the speciÞc growth rate whenm¿ m∗. Our model consists of Eqs. (10.1)-(10.6), with
the proviso that m → m/2, whenever the cell divides (i.e., when [CycB] drops below
some threshold level, taken to be 0.1). A typical simulation is presented in Fig. 10.5.
This simple model fulÞlls all the requirements of a functional, eukaryotic cell cycle, with
two irreversible transitions, Start (dependent on cell growth) and Finish (dependent on
chromosome alignment). However, all organisms that have been studied in detail have
additional layers of control on Cdk activity.

10.3.3 Stoichiometric Inhibitors

Yeast cells have a stoichiometric inhibitor (CKI) that keeps Cdk activity low in G1
phase. The CKI binds to CycB/Cdk to form inactive trimers (Fig. 10.6). The existence
of trimers changes slightly the interpretation of Eq. (10.1):

d[CycBT ]

dt
= k1 − (k02 + k002 [Cdh1] + k002 [Cdc20A])[CycBT ]

where [CycBT ] = [CycB] + [Trimer]. We also need a kinetic equation for total CKI:

d[CKIT ]

dt
= k11 − (k012 + k0012[SK] + k012m[CycB])[CKIT ] (10.7)

In Eq. (10.7), the rate of CKI degradation depends on CycB/Cdk activity, be-
cause CycB- dependent phosphorylation of CKI renders it unstable. Thus, CKI and
CycB/Cdk are mutual antagonists. The model (Fig. 10.6) postulates a �starter� kinase
(SK) that phosphorylates CKI in the absence of CycB/Cdk activity.

Notice also, in Eq. (10.1�), that we have given Cdc20 some ability to degrade cyclin
B. This well-known interaction enforces the negative feedback loop at exit from mitosis:
CycB activates IE, which activates Cdc20, which degrades CycB directly, as well as
activating Cdh1.
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Figure 10.5 Simulation of Eqs. (10.1)-(10.6), with parameter values in Table 10.1. Middle panel: CycB
(solid curve) scale to the right. Cell division occurs when [CycB] crosses 0.1 from above. (Phase plane Þle:
10 3 2B.ode)
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Figure 10.6 The basic cell cycle engine in eukaryotic cells. The generic components in this mechanism
correspond to speciÞc gene products in well-studied organisms (see Table 10.2). Dynamical properties of
this mechanism are determined by a set of kinetic equations (10.1�), (10.2) - (10.9), with A = [Cdc20A].
A basal set of parameter values, suitable for yeast cells, is given in Table 10.1.

We assume that CKI/CycB/Cdk trimers are always in equilibrium with CKI
monomers and CycB/Cdk dimers: [Trimer] = Keq[CycB][CKI] = Keq · ([CycBT ] −
[Trimer]) · ([CKIT ]− [Trimer]), or

[Trimer] = (2 · [CycBT ] · [CKIT ]) · {[CycBT ] + [CKIT ] +K
−1
eq + (10.8)q

([CycBT ] + [CKIT ] +K−1
eq )

2 − 4 · [CycBT ] · [CKIT ]}−1

To understand how the CKI part of the control system works, let us consider
the [CycBT], [CKIT] phase plane (Fig. 10.7) deÞned by Eqs. (10.1�) and (10.7). In
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Table 10.1 Parameter Values

Component Rate constants (min−1) Dimensionless constants

CycB k1 = 0.04, k02 = 0.04, k
00
2 = 1, k

000
2 = 1 [CycB]threshold = 0.1

Cdh1 k03 = 1, k
00
3 = 10, k

0
4 = 2, k4 = 35 J3 = 0.04, J4 = 0.04

Cdc20T k05 = 0.005, k
00
5 = 0.2, k6 = 0.1 J5 = 0.3

Cdc20A k7 = 1, k8 = 0.5 J7 = 10−3, J8 = 10−3, [Mad] = 1
IE k9 = 0.1, k10 = 0.02

CKI k11 = 1, k
0
12 = 0.2, k

00
12 = 50, k

000
12 = 100 Keq = 103

SK k013 = 0, k
00
13 = 1, k14 = 1, J15 = 0.01, J16 = 0.01

k015 = 1.5, k
00
15 = 0.05, k

0
16 = 1, k

00
16 = 3

Wee1 k0wee = 0.01, k00wee = 1, Jawee = 0.01, Jiwee = 0.01

Vawee = 0.25, V 0iwee = 0, V
00
iwee = 1

Cdc25 k025 = 0.05, k
00
25 = 5, Ja25 = 0.01, Ji25 = 0.01

V 0a25 = 0, V
00
a25 = 1, Vi25 = 0.25

m µ = 0.01 m∗ = 10
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Figure 10.7 Phase plane portrait for Eqs. (10.1�) and (10.7). [Cdh1] is computed from [CycB] by solving
for the steady state of Eq. (10.2). Parameter values in Table 10.1, plus [Cdc20A] = 0,m = 1, [SK]
adjustable. Dashed curve: CycB nullcline. Solid curves: CKI nullclines, for [SK] = 0.02, 0.1 and 1. =
stable steady state, o = unstable steady state. The control system has a saddle-node bifurcation at [SK]
≈ 0.9. (Phase plane Þle: 10 3 3A.ode)

these equations, [Cdh1] = G(k03+k
00
3 [Cdc20A], k4m[CycB], J3, J4), [CycB] = [CycBT ]−

[Trimer], with [Trimer] given by the equation directly above, and [SK], [Cdc20A] and
m are treated as parameters. The CKIT-nullcline is N-shaped because of the antag-
onism between CycB and CKI, and the CycBT-nullcline is N-shaped because of the
antagonism between CycB/Cdk and Cdh1/APC.
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For proper choice of parameters (Table 10.1), the control system exhibits bistability,
with a stable G1 state (CycB low, Cdh1 active, CKI abundant) and a stable S- G2-M
state (CycB high, Cdh1 inactive, CKI missing). Exit from mitosis (S-G2-M → G1)
is carried out by Cdc20, as described in the previous section. To start the chromosome
cycle (G1 → S-G2-M), we assume that synthesis of the �starter kinase� is turned
on when the cell reaches a characteristic size. As [SK] increases, the local maximum
of the CKIT-nullcline is depressed (Fig. 10.7), destroying the G1 steady state by a
saddle-node bifurcation.

Like CycB/Cdk, the starter kinase must phosphorylate CKI, but unlike CycB/Cdk,
it must be immune to inhibition by CKI and degradation by Cdh1/APC. These prop-
erties allow SK to ßip the switch from G1 to S. After SK has done its job, CycB/Cdk
can maintain the cell in S-G2-M. In order to prepare the control system for the next
Finish transition, SK then disappears. To write a dynamical equation for the time
course of [SK], we take our hint again from budding yeast, where two cyclins, Cln1 and
Cln2, in combination with Cdc28 (the catalytic subunit), phosphorylate CKI at Start,
permitting B-type cyclins (Clb1-6) to accumulate and drive the cell through S and M
phases. Synthesis of Cln1-2 is controlled by a transcription factor that is activated by
Cln/Cdc28 and inhibited by Clb/Cdc28, so we write

d[SK]

dt
= k013 + k

00
13[TF ]− k14[SK] (10.9)

[TF ] = G(k015m+ k
00
15[SK], k

0
16 + k

00
16m[CycB], J15, J16)

where G(...) is a Goldbeter-Koshland function describing the activity of the transcrip-
tion factor (TF) that regulates production of the starter kinase. Size control at Start
enters this model through the term k015m in the Þrst argument of G; when the cell gets
sufficiently large, k015m ≈ k016, it begins to synthesize SK. Increasing [SK] activates its
own transcription, Eq. (10.9), and destroys CKI, Eq. (10.7). We also assume that SK
phosphorylates Cdh1, although not as efficiently as CycB/Cdc28; that is, in Eq. (10.2)
we replace k4m[CycB][Cdh1] by (k04[SK] + k4m[CycB])[Cdh1], with k

0
4 ¿ k4.

With these changes, the system of equations (10.1�), (10.2)-(10.9) accounts for many
characteristic features of wild type and mutant budding yeast cells. Wild type cells
have a long G1 (unbudded period) and short S-G2-M (budded period); see Fig. 10.8A.
Throughout G1, SK (Cln) level steadily rises, causing CKI (Sic1) level to fall. In late G1,
several events occur in close succession. First, TF is activated and [SK] rises sharply,
causing rapid destruction of the remaining CKI. When [CKI] drops below [CycBT],
active CycB/Cdc28 dimers make their appearance, helping SK to inactivate Cdh1. As
Cdh1 activity drops off rapidly, CycB level rises further. Newly produced CycB/Cdc28
initiates DNA synthesis at about the same time that Cln/Cdc28 initiates a new bud.
Meanwhile, CycB/Cdc28 turns off SK production and SK level drops. CKI and Cdh1
do not make a comeback because CycB/Cdc28 keeps these proteins phosphorylated.
Persistent CycB/Cdc28 activity drives the cell into M phase. After a delay of about 45
min (during which IE is activated�not shown in Fig. 10.8A), Cdc20 is activated and
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destroys enough CycB to allow Cdh1 to reactivate and CKI to reaccumulate. When
CycB drops low enough, the cell divides. (In Fig. 10.8A, we assume symmetric division
for simplicity, although budding yeast cells typically divide asymmetrically.)

Mutant cells lacking SK (k013 = k
00
13 = 0) block in G1 with abundant CKI and active

Cdh1 (Fig. 10.8B), which is the phenotype of cells in which all Cln-cyclins are deleted
(cln1∆ cln2∆ cln3∆). (Although Cln3 plays a different role than Cln1-2, it can serve as
their backup; so it too must be deleted to see the expected phenotype.) Because the only
essential job of the Cln-cyclins is to remove Sic1 (CKI), the quadruple-deletion mutant
cln1∆ cln2∆ cln3∆ sic1∆ is viable; see Fig. 10.8C. For a more thorough analysis of
the budding yeast cell cycle, consult Chen et al. (2000).

10.3.4 Enzymatic Inhibitors

Properly interpreted (Table 10.2), Eqs. (10.1�), (10.2)-(10.9) also provide a reasonable
description of cell cycle controls in Þssion yeast cells lacking Wee1 (wee1∆ mutants);
but, to describe wild type Þssion yeast, we must add a new level of control, involving
tyrosine phosphorylation and dephosphorylation of Cdk subunits.

As described in Section 10.2, Wee1 inhibits CycB/Cdk activity by phosphorylating
the Cdk subunit on tyrosine-15. Cdc25 reverses the inhibitory phosphorylation. Wee1
and Cdc25 are, in turn, targets of CycB/Cdk phosphorylation: Wee1P is less active and
Cdc25P more active than the unphosphorylated forms. Thus, Wee1 and CycB/Cdk
are antagonistic proteins, whereas Cdc25 and CycB/Cdk are involved in a mutually
enhancing feedback loop.

We can incorporate these regulatory signals into the model in the previous section
by noticing that [CycBT ] is now the sum of four forms, [CycB/Cdk]+ [CycB/CdkP ]+
[CKI/CycB/Cdk] + [CKI/CycB/CdkP ]. Letting [Trimer] = [CKI/CycB/Cdk] +
[CKI/CycB/CdkP ] and [PF ] = [CycB/CdkP ] + [CKI/CycB/CdkP ], we can write
a differential equation for the phosphorylated forms (PF) that accounts for the actions
of Wee1 and Cdc25:

Table 10.2 Cell Cycle Regulatory Proteins in Yeasts and Vertebrates

Component Budding Fission Frog Mammalian

Yeast Yeast Egg Cell

Cdk Cdc28 Cdc2 Cdc2 Cdk1

CycB Clb1-6 Cdc13 Cyclin B Cyclin B

Cdh1 Cdh1 Ste9 Fizzy-related Cdh1

Cdc20 Cdc20 Slp1 Fizzy p55cdc

IE Cdc5? Plo1? Plx1? Plk1?

CKI Sic1 Rum1 Xic1 p27Kip1

SK Cln1-2 Cig2 Cyclin E? Cyclin D, E
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Figure 10.8 The budding yeast cell cycle. In each panel, the topmost trace is cell size, m(t), whose scale
is to the right. (A) Wild type cells: simulation of Eqs. (10.1�), (10.2)- (10.9), with parameter values in Table
10.1, except m = 0.005 min-1. (B) Mutant cells lacking SK (k13 = 0) block in G1 with copious CKI and
active APC. Compare to cln1∆ cln2∆ cln3∆ cells. (C) Mutant cells lacking SK and CKI (k11 = k13 = 0)
are viable; compare to cln1∆ cln2∆ cln3∆ sic1∆ cells. (Phase plane Þle: 10 3 3B.ode)
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d[PF ]

dt
= kwee([CycBT ]− [PF ])− k25[PF ]
− (k02 + k002 [Cdh1])[PF ] (10.10)

kwee = k
0
wee + k

00
weeG(Vawee, V

0
iwee + V

00
iwee[MPF ], Jawee, Jiwee)

k25 = k
0
25 + k

00
25G(V

0
a25 + V

00
a25[MPF ], Vi25, Ja25, Ji25)

We have assumed that Wee1 and Cdc25 function as Goldbeter-Koshland ultrasensi-
tive switches. The kinase that phosphorylates Wee1 and Cdc25 is CycB/Cdk (called
here MPF, �M-phase promoting factor�). Vawee and Vi25 refer to phosphatase activities
that oppose MPF. To compute [MPF] from [CycBT], [Trimer] and [PF], we use the
approximate expression (see Exercise 10.8.7):

[MPF ] ≈ ([CycBT ]− [Trimer]){1− ([PF ]/[CycBT ])} (10.11)

Figure 10.9 shows a simulation of this model of the Þssion yeast cell cycle. Parameter
values for the Wee1-Cdc25 interactions have been chosen so that size control in wild
type Þssion yeast occurs at the G2-M transition, rather than at G1-S. This is evident
from the large size of cells at birth and the short duration of G1 phase. A wee1∆mutant
(k00wee = 0) behaves much like Fig. 10.8: cells divide at about half the size of wild type
and have a long G1 phase, exactly as observed. (The wee1 mutant, discovered by Paul
Nurse in 1975, played a central role in unraveling the molecular machinery of the cell
cycle.) It should be clear that cdc25− is a lethal mutation, but the double mutant,
cdc25− wee1−, is viable and small (see Exercise 10.8.6).

10.3.5 Checkpoints and surveillance mechanisms

A basic job of the cell cycle engine (Fig. 10.6) is to coordinate DNA synthesis and
mitosis with overall cell growth. We have seen how cell size (m) might feed into the
engine to ensure balanced growth and division. If cells are too small, the engine stops
at a stable steady state (G1 in Fig. 10.7). Only when m exceeds some critical value
is this stable steady state lost by coalescence with an unstable steady state (saddle-
node bifurcation). When the G1 attractor is lost, the cell can proceed into S phase. In
this way, Start can be controlled by cell size. In Þssion yeast, size control operates at
the G2-M transition by the same principle: a stable G2 steady state (lots of inactive
CycB/CdkP dimers) is lost when cells grow beyond a critical size, preMPF is converted
into active MPF, and the cell enters mitosis.

Figure 10.9 The Þssion yeast cell cycle. Simulation of Eqs. (10.1�), (10.2)-(10.11), with parameter
values in Table 10.1, except µ = 0.005min−1. This simulation represents wild- type cells, whereas Fig.
10.8A represents wee1- mutant cells. Notice that, as observed, wee1− mutants are about half the size
of wild-type cells and have a considerably longer G1 phase. (Phase plane Þle: 10 3 4.ode)
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We believe that this is a general principle of cell cycle control. A checkpoint cor-
responds to a stable steady state of the cell cycle engine (no further progress). The
checkpoint is lifted by changes in crucial parameters, carrying the control system across
a bifurcation. The crucial parameters are controlled by surveillance mechanisms that
monitor the internal and external milieus of the cell. For instance, if DNA synthesis
stalls for any reason, an inhibitory signal suppresses mitosis until the genome is fully
replicated. If DNA is damaged in G1 or G2 phases, other surveillance mechanisms
suppress entry into S phase or M phase, respectively. If chromosome alignment on
the metaphase plate is delayed for any reason, a signal inactivates Cdc20 and blocks
progression from metaphase to anaphase.

10.4 Division Controls in Egg Cells

The physiology of animal eggs is quite different from yeast cells. In the ovary, oocytes
grow very large without dividing: the cytoplasm is packed with supplies, and the nucleus
is arrested in G2 phase (DNA replicated, lots of CycB/CdkP, low MPF activity). In
response to hormone signals, a clutch of these �immature� oocytes leaves the G2-
arrested state and proceeds through meiosis I and II. Frog eggs stop at metaphase of
meiosis II (haploid complement of replicated chromosomes aligned on the spindle, high
MPF activity). In this state, the �mature� oocyte awaits fertilization. Sperm entry
triggers the egg to exit meiosis II, the sperm and egg nuclei replicate their DNA and
fuse to form a diploid G2 nucleus. In the frog, the Þrst mitotic cycle takes about 1 h and
is followed by eleven rapid (30 min), synchronous, mitotic cycles without checkpoints.
These cell cycles are not size-regulated (the cells get smaller at each division), they
are not stopped by drugs that block either DNA synthesis or spindle formation, and
there is little or no tyrosine phosphorylation of Cdk subunits during these cycles. In
the fertilized egg, the checkpoints (stable steady states) are missing, and the cell cycle
engine exhibits its capacity for free-running oscillation.

25 50 75 1000.0

0.2

0.4

0.6

[IEP]

[Cdc20  ]A
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Figure 10.10 Spontaneous oscillations
of CycB/Cdk activity in early embryonic
cells. Simulation of Eqs. (10.10)-(10.12),
with parameter values in Table 10.1.
Period = 41 min. (Phase plane Þle:
10 4 1.ode)
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10.4.1 Spontaneous Oscillations in Fertilized Eggs

The cyclin/Cdk network controlling cell divisions in early embryos is a stripped-down
version of Fig. 10.6, lacking CKI and Cdh1. With CKI missing, SK has no role to play
in the model. Also, Wee1 is inactivated, so we can neglect tyrosine phosphorylation
reactions. All the antagonistic interactions are gone, leaving only the delayed negative
feedback loop:

d[CycB]

dt
= k1 − (k02 + k002 [Cdc20A])[CycB] (10.12)

d[IEP ]

dt
= k9[CycB](1− [IEP ])− k10[IEP ] (10.13)

d[Cdc20A]

dt
=
k7[IEP ]([Cdc20T ]− [Cdc20A])
J7 + [Cdc20T ]− [Cdc20A]

− k8[Mad] · [Cdc20A]
J8 + [Cdc20A]

(10.14)

For simplicity, we assume that Cdc20 is a stable protein in the early embryo and set
[Cdc20T ] = 1 in Eq. (10.14). Furthermore, [Mad] = 1, because the spindle assembly
checkpoint is inoperative. Cell size (m) does not appear in these equations, because the
embryo is not growing.

The system of equations (10.12)-(10.14) is a classical negative-feedback oscillator;
see Chapter 9 and Exercise 10.8.9. As shown in Fig. 10.10, it has limit cycle solutions,
corresponding to spontaneous oscillations in activity of CycB/Cdk (usually called MPF
in the frog-egg literature). After 12 rapid, synchronous divisions, the frog egg undergoes
an abrupt reorganization of the cell cycle (called the midblastula transition). Expres-
sion of zygotic genes provides the missing components of the cell cycle checkpoints.
Consequently the pace of cell division slows, as the controls described in Section 10.5
are put into place.

10.4.2 Immature and Mature Oocytes

To describe the characteristic arrested states of frog oocytes, we must add tyrosine
phosphorylation of Cdk subunits to the negative-feedback oscillator above. So, to Eqs.
(10.12)-(10.14), we add

d[MPF ]

dt
= k1 − kwee[MPF ] + k25([CycB]− [MPF ])
− (k02 + k002 [Cdc20A])[MPF ] (10.15)

where kwee and k25 are deÞned below Eq. (10.10), and [CycB]-[MPF] is just the con-
centration of tyrosine-phosphorylated dimers. In Eq. (10.13), we must replace [CycB]
by [MPF], the active form of CycB/Cdk dimers.
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Figure 10.11 Phase plane portraits for a model of frog oocytes: Eq. (10.12) and (10.15), with
[Cdc20A] given by (10.16). Parameter values as in Table 10.1, except k1 = 0.06, and k8 varied. (A)
Immature oocyte: k8 = 0.4. Stable steady state with copious cyclin B, and MPF dimers in the inactive,
tyrosine-phosphorylated form. (B) Mature oocyte: k8 = 0.8. Stable steady state with copious cyclin
B and high MPF activity. (C) Oscillating extract: k8 = 0.55. Periodic oscillation of cyclin B level and
MPF activity; period = 28 min. (Phase plane Þle: 10 4 2.ode)

System (10.12)-(10.15) can be reduced to two variables and analyzed by phase-
plane methods, if we make pseudo-steady state approximations to [IEP] and [Cdc20A].
In this case, we are left with Eqs. (10.12) and (10.15), with

[Cdc20A] = G

µ
k7[MPF ]

(k10/k9) + [MPF ]
, k8, J7, J8

¶
(10.16)

Phase plane portraits for this model are illustrated in Fig. 10.11. With proper choice
of parameter values, one can observe stable G2 arrest (immature oocyte), stable
metaphase arrest (mature oocyte), and stable limit cycle oscillations (reminiscent of
MPF oscillations in frog egg extracts, which exhibit periodic tyrosine phosphorylation).

The full model, Eqs. (10.12)-(10.15), with both positive and negative feedback loops,
can be studied by bifurcation theory; see Borisuk and Tyson (1998), Fig. 10(c).

10.5 Growth and Division Controls in Metazoans

In multicellular organisms, cell growth and division are under additional �social� con-
straints, because most somatic cells, though they Þnd themselves bathed in a richly
nutritious medium, are restrained from proliferating. Only if they receive speciÞc �per-
mission� from the body as a whole may these cells grow and divide. The permission
slips include growth factors (small polypeptides secreted into the blood stream or inter-
stitial ßuids), and signals that reßect cell-cell contacts and adhesion to the extracellular
matrix. Surveillance mechanisms monitor these signals and hold the cell in a resting
state (alive but not proliferating) until conditions permit cell growth and division. If
these surveillance mechanisms become mutated so that a cell loses crucial social con-
straints, it becomes transformed, in stages, to an invasive cancer, whose uncontrolled
proliferation eventually interferes with some vital function and kills the organism.

10.5.1 The Cell Cycle Engine

Kohn (1999) has recently summarized our knowledge of the molecular signals controlling
the cell cycle in mammals. The �wiring� diagram extends in Þne print over four journal
pages, and most people would agree that we are only beginning to unravel the details.
How are we to make sense of a control system of such complexity? In this chapter we
have seen that the molecular regulation of cell division can be understood in terms
of some basic building blocks. Antagonistic interactions between CycB and Cdh1 and
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Figure 10.12 Cell cycle controls in mammals. The central icon represents the basic cell cycle engine (as
in Fig. 10.6). The Retinoblastoma protein (Rb) inhibits progress through the cell cycle and overall growth
of the cell. This inhibition is relieved, in response to growth factors (GF), by cyclin D-dependent kinase
activity, which phosphorylates and inactivates Rb. ERG = early response genes, DRG = delayed response
genes. DNA damage inhibits the cell cycle engine through a CKI (p21), which is synthesized in response
to rising levels of p53. If the damage cannot be repaired, p53 stimulates synthesis of Bax1, which initiates
apoptosis by binding to and inhibiting Bcl2. Casp = active form of caspase.

between CycB and CKI create the fundamental distinction between G1 and S-G2-M,
starter kinases trigger the G1-S transition (Start), tyrosine phosphorylation of Cdk
enforces a G2 checkpoint, and Cdc20 activation induces exit from mitosis (Finish).
Within the complex wiring diagram of mammalian cell cycle controls, we can easily
Þnd all these basic building blocks. In other words, the generalized cell cycle control
system in Section 10.3 applies equally well to mammalian cells as to yeast. Although
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the full mammalian control system has lots of extra bells and whistles, at its core lies
a yeast-like cell cycle engine. What makes metazoans different from single-celled yeasts
are the �social controls� on the brakes and accelerators of the engine. To illustrate this
idea, we propose (Fig. 10.12) a simple model of the pathways that respond to growth
factor and DNA damage.

10.5.2 Accelerators and Brakes

In mammalian cells, the Retinoblastoma protein (Rb) represses progress through the
cell cycle (by inactivating transcription of essential cyclins) and overall growth of the
cell (by inactivating transcription of ribosomal and transfer RNAs). The �default� state
of Rb is its active form. Active Rb keeps a somatic cell in the resting state (often called
G0). For this cell to proliferate, Rb must be inactivated. Cyclin D, in combination with
Cdk4 and Cdk6, is principally responsible for inactivating Rb (by phosphorylation) and
bringing a resting cell out of G0 and into G1-S-G2-M.

Cyclin D is a growth factor sensor in mammalian cells. If growth factor is absent,
so is CycD and the cell rests. When growth factor is provided to a resting cell, it
binds to a membrane receptor and initiates a cascade of events: transcription of early
response genes, which in turn stimulate transcription of delayed response genes, in-
cluding CycD. As CycD-dependent kinase activity rises, Rb is phosphorylated and the
brakes on growth and division are released.

DNA damage is relayed to the cell cycle engine through p53 and p21. The transcrip-
tion factor, p53, is normally very unstable and consequently rare. However, in response
to DNA damage, p53 is stabilized and its concentration increases. p53 induces synthesis
of p21, which binds to and inhibits cyclin/Cdk complexes essential to progress through
the cell cycle. The cell pauses in the cycle, as it tries to repair the damage. If the damage
can be repaired in a timely fashion, p53 and p21 disappear and the cycle resumes. If
the damage is too extensive to be repaired, p53 induces synthesis of Bax, which binds
to and inhibits Bcl2. The role of Bcl2 in a normal, undamaged cell is to block the self-
activation of caspases, a family of proteolytic enzymes that carry out a cell-suicide pro-
gram known as apoptosis. When Bax inhibits Bcl2, the caspases turn on and destroy
the damaged cell before it can pass on its genetic defects to future generations.

As explored in Exercise 10.8.10, the caspase control system has the potential for hys-
teretic switching. The default state of the system is Casp OFF (�do not self-destruct�).
The p53-Bax-Bcl2 pathway may ßip the switch to the Casp ON state, and the cell
commits suicide. The hysteretic nature of the switch makes the self-destruct decision
irreversible, just like Start and Finish.

10.6 Evolution of Cell Cycle Controls

We have taken a modular approach to the cell cycle control network, breaking it down
into fundamental dynamical components (small sets of interacting proteins) and then
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reassembling these components into ever more complicated and realistic models of
present-day organisms. Of course, we can play the game backwards, speculating on the
simplest, functional control system the primitive eukaryotic cell and on the selective
pressures that drove the evolution of modern, multifunctional control systems.

In our view, the cell cycle is organized by a hysteresis loop (Fig. 10.3). Proliferating
cells alternate between two stable attractors, G1 and S-G2-M, driven by irreversible
transitions, Start and Finish, at saddle-node bifurcations. Such a loop can be created
by an antagonistic interaction between cyclin/Cdk and one of its negative regulators,
either APC or CKI. (Wee1 is also an opponent of Cdk activity, but it is involved in
stabilizing G2 phase, so it is not likely to have been the original �enemy� of Cdk.) Thus,
we can imagine two scenarios for the evolution of modern cell cycle control.

10.6.1 Scenario 1: Cdh1/APC First

In this scenario, the cell cycle of the primordial eukaryote was organized around the
antagonism between CycB/Cdk and Cdh1/APC; see Eqs. (10.1) and (10.2), and Fig.
10.3. As we have seen, such a control system would have had two checkpoints, in G1
phase and metaphase, governed by growth and chromosome readiness, respectively. S
and M phases overlapped, which was acceptable as long as chromosomes were small
(as in present-day budding yeast). As chromosomes lengthened and needed to be con-
densed before the mitotic spindle could handle them, mitosis became incompatible with
ongoing DNA synthesis. In order to separate the onset of M from the end of S, tyrosine
phosphorylation of Cdk by Wee1 might have been introduced. If the tyrosine- phospho-
rylated form were compatible with ongoing DNA synthesis but not active enough to
support mitosis, a G2 checkpoint would have been created. Size control in vegetative
cells could easily have migrated from the G1 checkpoint to the G2 checkpoint (as in
present-day Þssion yeast). In this scenario, the third step involved introduction of CKIs
to stabilize the G1 state, in order to permit sexual reproduction. (Yeast mutants that
cannot halt in G1 because crucial CKIs are missing are sterile.) Much later, with the
evolution of multicellularity, social controls over cell division would have been added,
exploiting CKIs and transcriptional regulators as brakes on cell proliferation.

10.6.2 Scenario 2: CKI First

Equally well, the primordial control system could have centered on the antagonism be-
tween CycB/Cdk and CKI (see Exercise 10.8.13), with Cdc20/APC a �downstream�
component involved only in cohesin degradation. As in scenario 1, Wee1 and Cdc25
evolved next to create a G2 checkpoint. Then, presumably by gene duplication, a
Cdc20 homolog (Cdh1) evolved the capacity to degrade mitotic cyclins, giving cells the
advantage of more robust arrest in G1. Social controls evolved with multicellularity.
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10.7 Spontaneous Limit Cycle or Hysteresis Loop?

Almost by deÞnition, the cell cycle is a periodic process, and for years this observation
has tempted theoreticians to think of cell-cycle progression as a limit cycle solution of
the underlying dynamical control system. By contrast, in this chapter we have been
emphasizing a quite different picture: the cell cycle as an alternation between two
self- maintaining states, G1 (unreplicated DNA) and S-G2-M (DNA replication and
mitosis). From a dynamical point of view, these two self-maintaining states are stable
steady states of the kinetic equations describing the production of cyclin/Cdk activity
and its destruction by cyclin proteolysis and CKI accumulation.

The control system is bistable because of the fundamental antagonism between
Cdk and its �enemies. As expected for a dynamical system of this sort, bistability is
observed only within a restricted region of parameter space; the boundaries of this
region are parameter values where saddle-node bifurcations occur (e.g., Fig. 10.3). The
control system can be driven from one state to the other by parameter changes that
carry the system across saddle-node bifurcation points. Because the stable state initially
occupied by the cell (G1) is lost at the saddle-node bifurcation, the cell is forced to
make an irreversible transition (Start) to the other stable state (S-G2-M). In general,
the opposite transition (Finish) can only be induced by parameter changes that carry
the system across a different boundary, where the S-G2-M state is lost and the system
jumps irreversibly to G1. When traced out in a diagram like Fig. 10.3, these parameter
changes and state transitions create a �hysteresis loop.�

The parameter changes that drive cells through Start and Finish are carried out
by additional components of the control system, called �helper� molecules. The role of
starter kinases is to destroy CKI so that the cell can leave G1, and the role of Cdc20 is
to activate Cdh1 and stabilize CKI so that the cell can reenter G1. The helpers do not
participate in the antagonistic interactions: starter kinases are not inhibited by CKI
and not degraded by Cdh1/APC, and Cdc20 is not inhibited by cyclin/Cdk. Helper
activity is only transient: it rises to induce a transition, but then falls back down in
preparation for the reverse transition. Were the helper activity to stay high, it would
impede the reverse transition. Mutations that interfere with the rise and fall of helper
proteins are usually inviable or severely compromised in progress through the cell cycle.

If production and destruction of the helpers are included in the ODEs, converting
former parameters into dynamical variables, don�t we retrieve the notion of a limit cycle
solution to the expanded equations? For instance, isn�t Fig. 5 a limit cycle solution
to Eqs. (10.1)-(10.6)? Indeed, it is a stable periodic solution, but it lacks many of
the properties that we usually associate with limit cycles. Our intuition about limit
cycles has been honed on continuous, autonomous ODEs, but system (10.1)-(10.5) is
discontinuous and non-autonomous, with m = m(t) given by solution of Eq. (10.6)
and the prescription that m → m/2 whenever the cell exits mitosis. Hence, over a
broad range of parameter values, the period of the cell cycle rhythm is identical to
the mass-doubling time, Td ≈ ln2/µ, and independent of all other kinetic parameters
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of the dynamical system. In our opinion, it is more proÞtable to think of m not as a
dynamical variable, but as an external parameter that drives the control network, Eqs.
(10.1)-(10.5), back and forth between regions of stable steady states (Fig. 10.4A, when
m is small) and stable limit cycles (Fig. 10.4B, when m is large).

The principle of balanced growth and division necessitates size control operating
somewhere in the cell cycle. If all size controls are removed by mutation (e.g., in Þssion
yeast, wee1ts removes size control at the G2 checkpoint and rum1D removes it at the
G1 checkpoint), then the underlying limit cycle oscillation of the cyclin/Cdk control
network is revealed. But it is fatal! The double mutation, wee1ts rum1∆, is lethal:
because its division cycle runs faster than its growth cycle, this cell divides at ever-
smaller size until it dies.

Fertilized eggs behave something like autonomous limit cycle oscillators, because
all checkpoint requirements have been bypassed. But this is a temporary affair. At the
midblastula transition, the rapid, synchronous, autonomous cycles of the early embryo
disappear as checkpoints are reinserted in the control system. The egg replaces limit
cycle oscillations by checkpoint-controlled progression (from one stable steady state to
another), and it is high time theoreticians did the same!

Exercises

1. In a trail-blazing paper, Goldbeter and Koshland (1981) showed that covalent mod-
iÞcation of proteins (like the phosphorylation of Cdh1, described in Section 10.3.1)
can generate abrupt, switch-like changes in activity of the modiÞed protein. Let X
be the active form of the protein, XP its inactive form, and assume that the total
amount of protein is constant (X +XP = 1). Then

dX

dt
=
Va(1−X)
Ja + 1−X − Vi +X

Ji +X

If inactivation occurs by phosphorylation, then Va and Ja would be the activity
and Michaelis constant of the phosphatase, and similarly Vi and Ji for the kinase.
Clearly, the steady state activity of the protein is given by a quadratic equation,
AX2 −BX + C = 0, where A = Vi − Va, B = Vi − Va + VaJi + ViJa, C = VaJi .
(a) Show that X = G(Va, Vi, Ja, Ji)− 2C

B+
√
B2−4AC

.

(b) Why is it not a good idea (from a computational point of view) to write?
G = (B ±√B2 − 4AC)/2A

2. The equations for the CycB and Cdh1 nullclines in Section 10.3.1, assuming J2 =
J3 = J4 = ², can be written

Y =
β

²+ x
, y = p

(1− x)(²+ x)
x(²+ 1− x)
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Saddle-node (SN) bifurcations occur when these two curves �touch� each other
tangentially; i.e.,

β/p

²+ x
=
(1− x)(²+ x)
x(²+ 1− x)

−β/p
(²+ x)2

=
x(²+ 1− x)(1− ²− 2x)− (1− x)(²+ x)(²+ 1− 2x)

x2(²+ 1− x)2
Show that, if ²¿ 1, these equations have two solutions: x ≈ ², β/p ≈ 4², and

x = 1−√²+ ²+O(²3/2), p/β = 1 + 2√²+O(²3/2)
3. Rewrite Eqs. (10.1)-(10.2) as

d[CycB]

dτ
= β − (J2 + [Cdh1])[CycB]

α
d[Cdh1]

dt
= p

(1− [Cdh1])
J3 + 1− [Cdh1] − [CycB]

[Cdh1]

J4 + [Cdh1]

Basal parameter values are β = J2 = J3 = J4 = 0.04,α = k
00
2/k4m = 0.05, p = 0.1.

(a) Use XppAutor Winppto reproduce Fig. 10.3.
(b) Let J2 = J3 = J4 = ², and follow the saddle-node bifurcation points in two

parameters, p and ². (Answer: cusp at p = 0.0522 and ² = 0.265.)
(c) For β = J2 = 0.04 and p = 0.1, Þnd the region of bistability in the J3, J4

parameter plane. (Answer: cusp at J3 = 0.946 and J4 = 0.530.)

4. Figure 10.4 was constructed from Eqs. (10.1) and (10.3) with [Cdh1] = G(k03 +
k003 [Cdc20T ], k4m[CycB], J3, J4), and the parameter values in Table 10.1.

(a) Create a one-parameter bifurcation diagram to show how steady-state and
limit-cycle solutions depend on cell size,m. (Answer: saddle-nodes atm = 0.510
and 0.797, and Hopf at m = 1.731.)

(b) Using k002 as the second parameter, follow the saddle-node and Hopf bifurcation
points in part (a) to create a two-parameter bifurcation diagram. (Hint: cusp
at m = 0.457, k002 = 0.491; the full bifurcation diagram is quite a challenge!)

5. Figure 10.8 was constructed from Eqs. (10.1�), (10.2)-(10.9) and the parameter
values in Table 10.1. You should verify the results in Fig. 10.8A, for wild-type
budding yeast cells, before continuing.

(a) Supposing DNA synthesis starts when CycB activity rises above 0.1 and cell
division occurs when CycB activity falls below 0.1, determine the durations of
G1 phase (time from birth to beginning of S phase) and S-G2-M phase (from
onset of DNA synthesis to cell division), and determine cell size at birth, at
onset of DNA synthesis, and at division. Check your results against Table 10.3.
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Table 10.3 Budding Yeast Mutants

Genotype Parameter Duration Duration Size at Size at Size at Phenotype

Changes of G1 S-G2-M Birth DNA Syn. Division

Wild type none 108 39 0.40 0.66 0.80 wild type

sk∆ k13 = 0 - - - - - block in G1

sk∆cki∆ k11 = k13 = 0 105 42 viable

cki∆ k11 = 0 viable

cdh∆ k002 = 0 viable

cki∆cdh∆ k13 = k
00
2 = 0 - - - - - block in M

cdc20ts k003 = k
000
2 = 0 - - - - - block in M

CDC20OP k05 = 0.2 viable

SKOP k013 = 0.3 0.75 viable

SKOP k013 = 0.4 - - - - - inviable

SIC1 non- k0012 =
degradable k00012 = 0
CDC20 k6 = 0.01

non-degr

Notes: The duration of S-G2-M in the model is too short, compared to experimental observations (∼60 min).

(b) By simulation, conÞrm that skδ mutant cells are inviable, but sk∆ cki∆ double
mutant cells are viable (Fig. 10.8B,C). Fill in row 3 of Table 10.3.

(c) By simulation, show that cki∆ mutant cells are viable, and so are cdh1∆ mu-
tants, but cki∆cdh1∆ double mutants are inviable. Fill in rows 4-6 of Table
10.3.

(d) Finish the rest of Table 10.3.

6. In the same way that you investigated budding yeast mutants in the previous
problem, Þll in the missing elements in Table 10.4 for Þssion yeast mutants.

7. Show that Eq. (10.11) is exact if

[CycB/CdkP ]

[CycB/Cdk]
=
[CKI/CycB/CdkP ]

[CKI/CycB/Cdk]

Why should this condition be true?
8. Consider the negative feedback oscillator, Eq. (10.12)-(10.14) with [Cdc20T ] =
[Mad] = 1.

(a) Use XppAutto Þnd the unstable steady state and then follow it as parameter
k9 varies between 0 and 1. You should Þnd two Hopf bifurcation points, at
k9 = 0.042 and 0.23.

(b) Follow the Hopf bifurcation points in two parameters, k9 and k
00
2 .

9. Consider again the negative feedback oscillator in the previous problem.
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Table 10.4 Fission Yeast Mutants

Genotype Parameter Duration Duration Size at Size at Size at Phenotype

Changes of G1 S-G2-M Birth DNA Syn. Division

Wild type none 16 136 0.70 0.76 1.40 wild type

wee1− k00wee = 0.01 0.40 0.80 small

wee1−cki∆ k11 = 0,

k00wee = 0.01
cki∆ k11 = 0 wild type

cdh∆ k002 = 0 vialble

cki∆cdh∆ k13 = k002 = 0
cdc25− k0025 = 0.05
wee1− k00wee = 0.01,
cdc25− k0025 = 0.05 viable

Notes: There are two major discrepancies between the model and observations. (1) The simulated double mutant,

wee1− cki∆, is small but viable; whereas, in reality, these mutant cells become very small and die. (2) The simulated

cdc25− mutant grows very large but eventually divides; whereas, in reality, these mutant cells block in G2.

(a) Show that, to Þnd the steady state, one must solve a cubic equation in z =
[Cdc20A]:

k1k9
k002k10

=
k8z(J7 + 1− z)(z + ²)

k7(1− 7(J8 + z)− k8z(J7 + 1− z)
where ² = k02/k

00
2 .

(b) Show that, if k7 > k8 and both J7 and J8 are ¿ 1, the steady state is given
approximately by

[Cdc20A] =

µ
k1k9
k002k10

¶µ
k7 − k8
k8

¶
− k02
k002

[IEP ] =
k8
k7
, [CycB] =

k10
k9

µ
k8

k7 − k8
¶

(c) Show that the characteristic equation, which determines the stability of this
steady state, is

λ

∙
λ+

k1k9(k7 − k8)
k8k10

)

¸ ∙
λ+

k7k10
k7 − k8

¸
+ k002k8k10 = 0

(d) At a Hopf bifurcation, λ must be purely imaginary, λ = ±iω. Show that the
conditions for a Hopf bifurcation are

ω2 =
k1k7k9
k8

=
k002k

2
8k

2
10(k7 − k8)

k1k9(k7 − k8)2 + k7k8k210
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(e) With all the parameters Þxed at their values in Table 10.1, except k9, show
that the conditions for a Hopf bifurcation are satisÞed when k9 ≈ 0.23 and
ω ≈ 0.135. What is the period of the limit cycle oscillation close to this Hopf
bifurcation?

10. Programmed cell death, also known as �apoptosis,� is initiated by a set of pro-
teolytic enzymes called caspases. Like most proteases, caspases are encoded as
�proenzymes,� i.e., the primary gene product is an inactive polypeptide chain. The
proenzyme must be cleaved in two places; of the resulting polypeptide chains, one
is discarded and the other two associate to form the active protease. Active caspase
itself can cleave the proenzyme, so the process of activation is autocatalytic:

In the diagram, we have distinguished between effector caspases, which carry out
the cell suicide program, and initiator caspases, which get the process started. We
can describe this simple diagram mathematically by a single ODE for C = activity
of effector caspase:

dC

dt
= k01 + k

00
1

Cn

Jn + cn
− k2C

where we have assumed that the autocatalytic step is a cooperative process,
described by a Hill function.

(a) Recast this equation in dimensionless form

dx

dτ
= ²+

xn

1 + xn
− κx

Which parameter depends on initiator caspase activity?
(b) * For n = 2, Þnd the region in (e,k) parameter space where the ODE has mul-

tiple steady states. Repeat for n = 3, 4, 5. Notice that the region of bistability
increases with n. Prove that bistability is impossible for n = 1.

(c) From these results, it should be clear that programmed cell death can be con-
trolled by initiator caspase activity. In normal cells, Bcl2 inhibits activation of
initiator caspases. To turn on apoptosis, Bcl2 can be inhibited by a family of
proteins (Bax, Bad, ), which respond to different cellular insults. For example,
DNA damage stabilizes p53, which induces synthesis of Bax (Fig. 10.12). De-
sign a mathematical model for this signal transduction pathway, with effector
caspase as the Þnal component.

(d) Hysteresis in the modeled developed so far depends on our assumption of non-
linear (cooperative) auto-activation of effector caspases. There is another way
to generate hysteresis in the model. Because caspases degrade Bcl2 and Bcl2
inhibits caspase activation, these two components are antagonistic proteins. De-
velop a model of these antagonistic interactions, along the lines of CycB/Cdk
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and Cdh1/APC. Find conditions on the kinetic parameters that will permit
apoptosis to be activated by the p53 - Bax - Bcl2 pathway.

11. Show that the ODE in 10.8.9(a) has saddle-node bifurcations whenever

κ
nxn−1

(1 + xn)2
and² =

xn(n− 1− xn)
(1 + xn)2

Since we are looking for solutions with ² and x > 0, it is clearly necessary that
n > 1. In addition, show that, for bistability, we must have ² < ²crit = (n− 1)2/4n,
and plot ²crit as a function of n.

12. In the absence of growth factors (GF), both early response genes (ERG) and delayed
response genes (DRG) are not transcribed. When GF is provided, Þrst ERG proteins
appear, then later DRG proteins, then ERG proteins disappear, but DRG proteins
remain abundant. ERG proteins come and go over the course of about 6 h. Design
a circuit (interactions among GF, ERG, DRG) that will account for these facts.
Simulate your mechanism using Phase Plane. Design the circuit so that the output
(DRG present or absent) shows hysteresis in response to provision and withdrawal
of GF.

13. Because growth factors are soluble peptides secreted into the interstitial ßuid and
circulatory system, they allow multicellular organisms to regulate the proliferation
of target cells far from the secretory cell. In addition to such long-range signaling,
cell proliferation in metazoans is also controlled by local signals from extracellular
matrix attachements and nearest neighbor contacts. The rules are given roughly by
the Boolean function
Design a biochemical signaling mechanisms to implement this logic.

14. Suppose the primitive eukaryotic control system relied only on the antagonism
between CycB/Cdk and CKI, without any help from Cdh1/APC. Then

d[CycBT ]

dt
= k1 − k02[CycB]− k002 [Trimer]

d[CKIT ]

dt
= k11 − (k012 + k0012m[CycB])[CKIT ]

Input Output

ECM Attachment Cell-Cell Contact Cell Cycle Engine

No No Stop

Yes No Go

No Yes Stop

Yes Yes Stop
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where [CycB] = [CycBT ]− [Trimer], and [Trimer] is given by Eq. (10.8). We have
assumed that CKI binding renders CycB unstable (k002 À k02).

(a) Draw phase portraits for this system. Show that cell growth can drive a Start
transition.

(b) To execute Finish, we must assume that Cdc20 degrades CycB at anaphase.
Modify the ODEs to incorporate this signal, and show how Cdc20 activation
returns the control system to G1.



This is page 243
Printer: Opaque this

CHAPT E R 1 1

Stochasticity and
Discreteness

Gregory D. Smith and Joel Keizer

06-27

The underlying molecular nature of cellular processes is sometimes easy to see. For ex-
ample, the recent discovery of Ca2+ puffs and sparks is intriguing because these spatially
localized Ca2+ elevations are due to Ca2+ release from a small number of intracellular
Ca2+ channels (see Section (??)). Just as the patch clamp technique allows single chan-
nel electrical recording of plasma membrane ion channels, confocal microßuorimetry
provides optical measurements of the macroscopic consequences of a molecular event:
the gating of an intracellular Ca2+ channel.

It is intriguing that in these electrical and optical recordings a random or stochas-
tic phenomenon is uncovered by discreteness in an experimental measurement. For
example, in the case of Ca2+ puffs and sparks, the optical resolution of the confocal mi-
croscope (on the order of 1 µm3), is sufficient to distinguish between Ca2+ release from
neighboring clusters of intracellular channels. In the case of a voltage clamp recording
using an inside-out patch one or a few ion channels are physically and electrically iso-
lated (see Fig. (??)). These exquisite measurements are discrete in the sense that the
observables, though changing in time, only take on particular values.

When modeling a macroscopic current, a gating variable often represents the time-
varying fraction of open channels. When ordinary differential equations are written
describing the dynamics of these gating variables, the fraction fi of channels in a given
state i can take on any value between 0 and 1. However, for a cellular membrane contain-
ing N ion channels, each either open or closed, a careful accounting gives exactly N +1
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possible fractions of open channels: f ∈ {0, 1/N, 2/N, · · · , (N − 2)/N, (N − 1)/N, 1}.
Indeed, the fraction of open channels can only take on arbitrary values between 0 and 1
when the number of ion channels is effectively inÞnite. In the case of a single two-state
channel, the open �fraction� is always 1 or 0, all or none. The ODE models discussed in
previous chapters implicitly assume N is large enough that continuous (as opposed to
discrete) gating variables are a good approximation.

In this Chapter we will show how the ODEs used in deterministic modeling arise
from microscopic descriptions of stochastic ion channel kinetics. In addition, we will
discuss Brownian motion, ionic current and membrane potential ßuctuations due to
the stochastic gating of collections of ion channels, and dynamic phenomena, such as
stochastic excitability, induced by channel noise in cells and cellular models. In the
process we will introduce several important modeling techniques that are applicable
when stochasticity and discreteness are important aspects of a cellular phenomena of
interest.

11.1 Brownian motion

When molecular events are observed experimentally, many other events are not ob-
served. These hidden variables make the measurement of molecular processes inherently
statistical. For example, Ca2+ puffs in immature Xenopus oocytes have an average du-
ration of 250 ms, whilst Ca2+ sparks, observed in cardiac myocytes, are much faster
events. However, the statement that Ca2+ sparks in cardiac myocytes have a duration
of approximately 40 ms is, of course, a statistical characterization. Single Ca2+ release
sites observed over extended periods show tremendous variability in spark brightness,
duration, and size. This observation cannot be explained by heterogeneity among re-
lease sites, but rather suggests that molecular processes underlying Ca2+ sparks are
inherently stochastic.

Similarly, the erratic movement of a Brownian particle is random precisely because
we are unable to describe comprehensively what is essentially a deterministic system: a
large particle buffeted by many water molecules. The problem with a deterministic the-
ory of Brownian motion is that an extremely large number of water molecules inßuence
the particle�s motion. Though in principle it is only a technical difficulty to simultane-
ously integrate Newton�s equations of motion for all water molecules of interest, it will
always be impossible to accurately choose initial conditions to such a problem. For this
reason, theoretical descriptions of Brownian motion are statistical in nature.

An important model for Brownian motion is a one-dimensional random walk. Imag-
ine the motion of a particle restricted to movement along the real number line, and let
X(t) be a random variable that indicates it�s position at time t. Let�s further assume
the particle is �released� at the origin (X(0) = 0) and upon increments of time of
duration ∆t the particle moves with probability p (0 ≤ p ≤ 1) a particular distance
∆x to the right, and with probability 1 − p the same distance to the left. Because
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Figure 11.1 Two instantiations, X1 and X2, of an unbiased random walk are plotted, as well as the
increments (∆X1) for the upper trajectory. The simulation is continued for 1000 time steps. The mean of
100 trials is near zero while he variance of 100 trials increases linearly with time. Note that the increments
(∆X1) are distributed according to Prob{∆X = 1} = Prob{∆X = −1} = 1/2.

Prob{∆X = 1} = Prob{∆X = −1} = 1/2 the average increment in the position is zero
h∆Xi = 0

and after one such time step the particle will either be at position ∆x or −∆x with
probabilities

Prob{X(∆t) = ∆x} = p
Prob{X(∆t) = −∆x} = 1− p

Following the same rule of movement for the particle, let us repeat the process a total
of i times, for a total elapsed time of T = i∆t. Accounting for the particles current
position, X(t), the movement rule can be written as

Prob{X(t+∆t) = x+∆x|X(t) = x} = p
Prob{X(t+∆t) = x−∆x|X(t) = x} = 1− p

where the vertical bar indicates a conditional probability, Prob{A|B} is the probability
of A given B, that is, Prob{A ∩ B}/Prob{B}. For example, at the end of the second
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step, i = 2 and

Prob{X(2∆t) = −2∆x} = p2
Prob{X(2∆t) = 0} = 2p (1− p)
Prob{X(2∆t) = 2∆x} = (1− p)2

The reader can conÞrm conservation of probability, that is, because the particle must
be somewhere, the sum of the probabilities of these three possible outcomes is 1.

With further reßection, we can derive the probability distribution for X(t) for any
number of steps i. We do this by noting that with each step the probability of moving
to the right is p, and thus after i iterations the number of rightward steps taken (K) is
a binomially distributed random variable with parameters i and p,

Prob{K = k} =
Ã
i

k

!
pk(1− p)i−k (11.1)

where the Þrst term is the �i choose k� formulaÃ
i

k

!
=

i!

i! (i− k)!
Our knowledge of the probability distribution for K will allow us to Þnd the probability
distribution for X. This is because K and X are simply related to each other. If the
Brownian particle has moved K steps to the right, then there were i−K steps in which
it moved to the left, giving a Þnal position of

X = [K − (i−K)]∆x = (2K − i)∆x
Averaging both sides of this equation we Þnd the expected position of the Brownian
particle after i steps,

hXi = (2hKi− i)∆x (11.2)

Because K is binomially distributed, it has mean

hKi = ip
that can be substituting into Eqn. (11.2) to give

hXi = i (2p− 1)∆x
Thus, if the particle always moves to the right (p = 1), the expected value of its

position is i∆x; if the particle always moves to the left (p = 0), the expected value of its
position is −i∆x. Interestingly, if the random walk is unbiased, that is, the probability
of moving to the left and right are equal (p = 1− p = 1/2), the expected value of the
position of the particle is hXi = 0. There has been no net movement!

This is not the end of the story, however. Another important statistical parameter
for our particle is the mean square displacement, hX2i. This number will be nonnegative
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and related to hK2i and hKi by
hX2i = h[(2K − i)∆x]2i = [4hK2i− 4hKii+ i2] (∆x)2

Now the mean square value of the binomially distributed K is

hK2i = (ip)2 + ip (1− p)
giving a variance of

h(K − hKi)2i = hK2i− hKi2 = ip (1− p)
These facts allow us to calculate the mean square displacement of the Brownian particle,

hX2i = i (∆x)2

Interestingly, although the mean displacement of the particle is zero, the mean
square displacement increases by the Þxed amount (∆x)2 with each iteration. Remem-
bering that i was related to time by T = i∆t, and deÞning the parameter D to be
D = (∆x)

2
/2∆t, we can write

hX2i = 2DT
Here we see explicitly that the mean square displacement of the particle is linearly

proportional to time. Fig. (11.1) conÞrms this by showing two example random walk
trajectories, X1(t) and X2(t), as well as the mean square displacement (calculated from
100 trials) plotted as a function of time. In this simulation, ∆x = 1 and ∆t=1, so the
proportionality constant, 2D, is 1.

11.2 Stochastic Processes on Molecular States

In previous chapters we have seen several diagrams represent various molecular states
and transitions between them due to conformational changes and binding or unbinding
of ligands. If we assume a large number of molecules, we have seen in previous chap-
ters how to write rate equations consistent with these diagrams. However, in order to
mathematically interpret a transition-state diagram representing a single molecule, or
a small number of molecules? The short answer to this question is that transition rates
can be interpreted as transition probabilities per unit time.

For example, consider a single GLUT molecule and the four states (S1, S2, S3,
S4) and transitions shown in Fig. (??). DeÞne s to be a random variable taking values
s ∈ {1, 2, 3, 4} corresponding to these four states, and write Prob{s = i, t} (or for short,
Pi(t)) to represent the probability that s(t) = i, that is, the molecule is in state i at
time t. Because the molecule must be in one of the four states, total probability must
be conserved and we have

4X
i=1

Pi(t) = 1
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Now consider the possibility that the GLUT transporter is in state 1 at time t. If
this is the case, then the rate or ßux j12 = k12[G]out (e.g., with units of s−1) is related to
the probability that in a short interval of time ∆t the GLUT transporter will associate
with glucose, thereby transitioning out of state 1 and into state 2. That is,

j12∆t = Prob{s = 2, t+∆t|s = 1, t} (11.3)

where j12∆t is dimensionless (a pure number) and Prob{s = 2, t +∆t|s = 1, t} is the
probability, given the channel is in state 1, of a 1→ 2 transition occuring in the interval
[t, t+∆t]. Multiplying by P1(t), the probability that the GLUT transporter is indeed in
state 1, we Þnd that j12P1(t)∆t is the probability that transition 1→ 2 actually occurs.

Fig. (??) and Table (??) indicate four possible ways for the GLUT transporter to
enter or leave state 1. Accounting for all of these, we have

P1(t+∆t) = P1(t)− k12[G]outP1(t)∆t− k14P1(t)∆t+ k21P2(t)∆t+ k41P4(t)∆t

Writing three additional equations relating Pi(t + ∆t) and Pi(t) for i = {2,3,4} and
taking the limit ∆t→ 0 gives,

dP1
dt

= −k12[G]outP1 + k21P2 + k41P4 − k14P1 (11.4)

dP2
dt

= +k12[G]outP1 − k21P2 − k23P2 + k32P3 (11.5)

dP3
dt

= +k23P2 − k32P3 − k34P3 + k43[G]inP4 (11.6)

dP4
dt

= +k34P3 − k43[G]inP4 − k41P4 + k14P1 (11.7)

Note the similarity of these equations to Eqn. (??), the kinetic equation for average
fraction of N GLUTS in state 1. This is not accident. The equation governing changes
in probabilities for a single molecule always has same form as the rate equation for
a large number of molecules. Furthermore, we can always eliminate one of equation
using the conservation of probability. For example, P4(t) is always given by P4(t) =
1− P1(t)− P2(t)− P3(t).

11.3 An ensemble of two-state ion channels

In the previous section we argued that the equation governing changes in probabili-
ties for a single molecule has the same form as the rate equation for a large number
of molecules. Though true, this connection can be made more rigorous by specifying
the number of molecules we are considering in advance. To simplify calculations we
will consider a simple transition-state diagrams encountered Þrst in Chapter (??), the
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kinetic scheme for ion channel with two states, one closed (C) and the other open (O),

C (closed)

k+

*)

k−

O (open) (11.8)

11.3.1 Probability of Þnding N channels in a the open state

Let us write N as the number of molecules, and let PO(n, t) and PC(n, t) be the prob-
ability of having n molecules in state O or C, respectively. Because we will ultimately
be interested in the statistics of current ßuctuations, we will focus our attention on
PO(n, t). In any case, the presence of n open channels implies N − n closed channels,
i.e.,

PC(n, t) = PO(N − n, t) (0 ≤ n ≤ N)
Assume all N molecules are independent and consider a time interval [t, t+∆t] short
enough that only one molecule has appreciably probability of making a C → O or
O → C transition. During this short time interval, there are four events that can
inßuence PO(n, t), the probability that there n open channels. For example, it is possible
that there are currently n open channels, and during the time interval [t, t+∆t] one of
these channels closes. This probability is given by

loss− = k−nPO(n, t)∆t

where the parameter k− is the transition probability for O→ C, P0(n, t) is the proba-
bility that there were n open channels to begin with, and the n scales this probability
to account for the fact that any one of the n independent open channels can close with
equivalent result. Similar reasoning leads to the expression,

PO(n, t+∆t) = PO(n, t) + gain+ − loss+ + gain− − loss− (11.9)

where

gain− = k−(n+ 1)PO(n+ 1, t)∆t

loss+ = k+(N − n)PO(n, t)∆t
gain+ = k+(N − n+ 1)PO(n− 1, t)∆t

To give one more example, the gain+ term in this equation represents a probability ßux
due to the possibility that there are n−1 open channels and one of the closed channels
opens. This transition probability is given by is given by k+(N − n+1)PO(n− 1, t)∆t,
because any one of the N−(n−1) = N−n+1 closed channels can open with equivalent
result.

Taking limit ∆t→ 0 of Eqn. (11.9) gives the following ordinary differential equation

d

dt
PO(n, t) = k+(N − n+ 1)PO(n− 1, t)− k+(N − n)PO(n, t)

+ k−(n+ 1)PO(n+ 1, t)− k−nPO(n, t) (11.10)
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Figure 11.2 For an equilibrium ensemble of N two-state channels with open probability p, the likelihood
of observing n open channels is given by the binomial probability distribution with parameters N and p
(see Eqn. (11.11)). The binomial probability distribution has mean Np, variance Np(1−p), and coefficient
of variation [(1− p) /Np]1/2. Note that as the equilibrium open probability, p, increases the mean number
of open channels increases (rightward shift). The N−1/2 factor in the coefficient of variation is reßected
in the narrowing of the distributions (from left to right).

This rather complicated expression is called a master equation. It actually represents
N + 1 coupled ordinary differential equations, one for each PO(n, t) for 0 ≤ n ≤ N (all
possible values for the number of open channels).

The equilibrium solution to the master equation is N + 1 time-independent
probabilities, P∞

O (n), given by the binomial distribution,

P∞
O (n) =

Ã
N

n

!
pn(1− p)N−n (11.11)

where p = k+/ (k+ + k−) and Ã
N

n

!
=

N !

N !(N − n)!
Fig. (11.2) shows several binomial probability distributions with parameters N and
p varied. Given an ensemble of N two-state channels, these distributions represent
the equilibrium probability of Þnding n channels in the open state. In the top row,
the equilibrium open probability, of p = 0.5 results in a centered distribution: the
likelihood of observing n open channels is equal to the likelihood of observing N − n
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open channels. In the bottom row p = 0.75 and the enhanced likelihood that channels
are open is evident in the rightward shift of the distributions.

11.3.2 The average number of open channels

The equilibrium solution to the master equation for the two-state channel given by Eqn.
(11.11) is the binomial distribution, and thus the average number of open channels at
equilibrium is hNOi∞ = Np. But what about the time dependence of the average
number of open channels? Because the average number of open channels is given by

hNOi =
NX
n=0

nPO(n, t) (11.12)

we can Þnd an equation for dhNOi/dt by multiplying Eqn. (11.10) by n and summing.
This gives

dhNOi
dt

= k+

NX
n=0

n(N − n+ 1)PO(n− 1, t)− k+
NX
n=0

n(N − n)PO(n, t)

+ k−

NX
n=0

n(n+ 1)PO(n+ 1, t)− k+
NX
n=0

n(N − n)PO(n, t) (11.13)

In Exercise (2) the reader can show that this equation can be reduced to

dhNOi
dt

= k+ (N − hNOi)− k−hNOi (11.14)

where

N − hNOi = hNCi (11.15)

Note that Eqn. (11.14) is identical to the rate equation for a population of two-state
channels derived by other means in Chapter (??). For the duration of this chapter, we
will refer to such an equation as an average rate equation. Also note that the equilibrium
average number of open (hNOi∞) and closed (hNCi∞) channels can be found by setting
the left hand side of Eqn. (11.14) to zero, that is,

hNOi∞ = N k+
k+ + k−

= Np (11.16)

hNCi∞ = N k−
k+ + k−

= N (1− p) (11.17)

in agreement our knowledge of the mean of a binomial distribution.
If we divide Eqn. (11.14) by the total number of channels, N , we Þnd the average

rate equation for the fraction of open channels,

dhfOi
dt

= k+ (1− hfOi)− k−hfOi (11.18)
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where hfOi = hNOi/N , hfCi = hNCi/N , and Eqn. (11.15) implies hfOi+ hfCi = 1. The
equilibrium fraction of open and closed channels are hfOi∞ = k+/ (k+ + k−) = p and
hfCi∞ = k−/ (k+ + k−) = 1 − p. We thus see explicitly for a two-state channel that
the master equation implies an average rate equation of the sort introduced in Chapter
(??). This is true in general. In Exercise (3) the reader is encouraged to derive the
master equation for the GLUT transporter, corresponding the average rate equations
given by Eqn. (11.4) thru Eqn. (11.7).

11.3.3 The variance of the average number of open channels

One advantage of beginning with a master equation is that in addition to the average
rate equation, an evolution equation for the variance in the number of open channels
can be derived. The variance in the number of open channels is deÞned as

σ2NO = h(NO − hNOi)2i =
NX
n=0

(n− hNOi)2 PO(n, t) (11.19)

Similarly, the variance in the number of closed channels is

σ2NC
= h(NC − hNCi)2i =

NX
n=0

(n− hNCi)2 PC(n, t) (11.20)

Again, we are ultimately interested in the statistics of current ßuctuations, so we focus
on σ2NO . However, for the two-state channel under consideration, it is shown in Exercise
(4) that these quantities are equal.

Beginning with Eqn. (11.19) and the master equation, Eqn. (11.10), it can be shown
that the variance, σ2NO , satisÞes the following ODE

dσ2NO
dt

= −2 (k+ + k−)σ2NO + k+ (N − hNOi) + k−hNOi (11.21)

The equilibrium variance,
¡
σ2NO

¢
∞, is thus given by steady-states of this equation. Using

the methods of Chapter (??), we Þnd¡
σ2NO

¢
∞ = N

k+k−

(k+ + k−)
2 = Np(1− p) (11.22)

From this equation it is clear that the equilibrium variance is proportional to N , the
total number of channels. However, a relative measure of the variance known as the
coefficient of variation is more meaningful. The coefficient of variation of the number of
open channels, CV NO , is given by the ratio of the standard deviation, σNO (the square
root of the variance) and the mean, hNOi. At equilibrium, we have

(CV NO
)∞ =

(σNO)∞
hNOi∞ =

1√
N

s
k−
k+
=

s
1− p
Np

where the last equality is in agreement with the mean and variance of a binomially
distributed random variable being Np and Np(1−p), respectively. From this expression
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it is clear that the equilibrium coefficient of variation for the number of open channels
is inversely proportional to the square root of the number of channels, N . Thus, in
order to decrease this relative measure of channel noise by a factor of two, the number
of channels must be increased by a factor of 4.

11.4 Simulation of single channel gating

11.4.1 The transition probability matrix

Following our analysis of the GLUT transporter and Eqn. (11.3), we know that for a
channel closed at time t, k+∆t is the probability that it undergoes a transition and
opens in the time interval [t, t + ∆t] provided ∆t is small. By conservation, we also
know that the probability that the channel remains closed during the same interval is
1− k+∆t. Because a similar arguments applies when the channel is open at time t, we
can write the following transition probability matrix,

Q =

"
Prob{C, t+∆t|C, t} Prob{C, t+∆t|O, t}
Prob{O, t+∆t|C, t} Prob{O, t+∆t|O, t}

#
=

"
1− k+∆t k−∆t

k+∆t 1− k−∆t

#
(11.23)

where the elements of Qij (row i, column j) correspond to the transition probability
from state j to state i, and conservation of probability ensures that all the columns
sum to one, that is, for each column j,X

i

Qij = 1 (11.24)

The transition probability matrix is especially useful when we write the current state
of the channel as the vector,

~P (t) =

"
Prob{C, t}
Prob{O, t}

#
(11.25)

Using this notation, state of the channel at t+∆t is given by the matrix multiplication

~P (t+∆t) = Q~P (t) (11.26)

For example, if the channel is known to be closed at time t, then

~P (t) =

"
1

0

#
and the distribution of probability after one time step is

~P (t+∆t) =

"
1− k+∆t k−∆t

k+∆t 1− k−∆t

# "
1

0

#
=

"
1− k+∆t
k+∆t

#
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Applying Eqn. (11.26) iteratively, we see that if the channel is closed at time t, the
probability that is closed or open at time t+ 2∆t is given by,

~P (t+ 2∆t) = Q
h
Q~P (t)

i
= Q2~P (t)

or more generally,

~P (t+ n∆t) = Qn~P (t) (11.27)

This iterative procedure can be used to calculate the evolution of the probability that
the two-state channel is in an open or closed state. It amounts to using Euler�s method
to solve the master equation given by Eqn. (11.13) for a single channel (N = 1).

11.4.2 Dwell times for the two-state channel

Using the transition probability matrix, it is possible to derive an expression for the
average amount of time that channel remains in the open or closed state, i.e., the open
and closed dwell times. We have already seen that if a channel is closed at time t,
the probability that it remains open at time t+∆t is 1− k+∆t. The probability that
the channel remains closed for the following time step as well is thus (1− k+∆t)2. In
general, we can write

Prob{C, [t, t+ n∆t]|C, t} = (1− k+∆t)n (11.28)

This expression is actually much simpler than Eqn. (11.27) because here we are insisting
that the channel remain closed for the entire interval [t, t+ n∆t]. Eqn. (11.27), on the
other hand, accounts for the possibility that the channel changes states multiple times.
If we deÞne τ = n∆t, we can rewrite Eqn. (11.28) as

Prob{C, [t, t+ τ ]|C, t} =
µ
1− k+τ

n

¶n
which is an approximate expression that becomes more accurate (for Þxed τ) as ∆t→ 0
and n→∞. Taking this limit and using

lim
n→∞

³
1− α

n

´n
= e−α

we Þnd

Prob{C, [t, t+ τ ]|C, t} = e−k+τ

Thus, the probability that a channel closed at time t remains closed until t + τ is an
exponentially decreasing function of τ .

In order to complete our calculate of the closed dwell time for the two-state channel,
we must consider the probability that a channel closed at time t stays closed during
the interval [t, t+ τ ] and then opens for the Þrst time in the interval [t+ τ, t+ τ +∆t].
This probability is given by

Prob{C, [t, t+ τ ]|C, t}Prob{O, t+ τ +∆t|C, t+ τ} = e−k+τk+∆t
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Thus, the average closed time will be given by

hτci =
Z ∞

0

τe−k+τk+dτ =
1

k+

where we have used Z ∞

0

te−tdt = 1

Similar calculations show that for a channel is open at time t, the probability that it
remains continuously open until time t+ τ is

Prob{O, [t, t+ τ ]|O, t} = e−k−τ

and thus the average open time is given by

hτoi =
Z ∞

0

τe−k−τk−dτ =
1

k−

11.4.3 Monte-Carlo simulation of the two-state channel

The elements Qij of the transition probability matrix represent the probability of mak-
ing a transition from state j to state i in a time step of duration ∆t. A simple method
for simulating the transitions of a two-state channel is based on Eqn. (11.24). Because
conservation of probability ensures that each column of Q will sum to unity, we can
divide the interval [0,1] into regions, each corresponding to a possible change of state (or
lack of change of state). Next, we choose a random number, Y , uniformly distributed
on the interval [0,1] and make a transition (or not) based upon the subinterval in which
Y falls. For example, let�s return to the transition probability matrix for the two-state
channel given by Eqn. (11.23). If the current state is open, then a transition to the
closed state occurs if 0 ≤ Y ≤ k−∆t and the channel remains open if k−∆t < Y ≤ 1,
an interval of length 1 − k−∆t. Similarly, if the channel is closed, it remains closed if
0 ≤ Y ≤ 1− k+∆t and a transition to the open state occurs if 1− k+∆t < Y ≤ 1.

A Monte-Carlo simulation of the two-state channel can be easily performed using
XPP by declaring a Markov variable:

# Example two state channel simulation

params kp=0.1, km=0.1, tauavg=1000

po(0)=0.5

markov n 2

{}{kp}
{km}{}
po�=-(po-n)/tauavg

aux n=n

done

In this XPP Þle, the line markov n 2 declares a two state Markov variable, n, that
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Figure 11.3 A Monte-Carlo simulation of the two-state ion channel simulated using XPP. Top: k+ = 0.1
ms−1, k− = 0.1 ms−1, giving an equilibrium open probability (dotted lines) of 0.5. Middle: k+ changed
to 0.3 ms−1, and now the equilibrium open probability is 0.75. Bottom: transition probabilities increased
by factor of 5 (k+ = 1.5 ms

−1, k− = 0.5 ms−1). Note that average open time and average close time are
shorter in this case, as evidenced by many more transitions between states.

will by convention take values of 0 and 1. The 2 x 2 matrix that follows is related to
the transition probability matrix of Eqn. (11.23). To be consistent with XPP syntax,
we have reversed the rows and columns of the transition probability matrix, so that
the element in row i and column j now corresponds to a transition from state i to
state j (that is, QXPP is the transpose of the matrix Q). Furthermore, the diagonal
elements of the transition probability matrix are not included in the XPP Þle because
XPP automatically calculates the diagonal elements using conservation of probability.
(According to the row/column convention in XPP, each row must sum to unity). The
auxiliary variable n is included so the Markov variable can be plotted. In addition, the
differential equation po�=-(po-n)/tauavg performs a running average of n over the last
tauavg milliseconds. Since n=1 corresponds to an open channel, and n=0 corresponds
to a closed channel, this running average approximates the open probability of the
channel.

Fig. (11.3) gives several example simulations of stochastic gating of a two-state
channel using the Monte-Carlo method. By comparing open probabilities and dwell
times in the three simulations shown, one can see how the transition probabilities, k+
and k−, lead to distinct channel kinetics. The reader is invited to reproduce this Fig.
(11.3) using the XPP Þle presented above. In Exercise (6) the Monte-Carlo method
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is shown to extend naturally to more complicated models, for example, the four state
GLUT transporter model discussed in Section (11.2).

11.4.4 Simulating large numbers of independent channels

The gating of multiple independent channels can be simulated in one of several ways.
Though it is possible to simulate a collection of N two-state channels in XPP by
implementing N Markov variables with identical transition probability matrices, this
method is cumbersome when N is large.

Under the assumption of identical and independent channels, an alternative method
is to deÞne a single Markov variable for the number of open channels. As discussed
above, there are N+1 possibilities for the number of open channels, and the changes in
this number occur via gain and loss terms in the master equation. If we are considering
a time step small enough so that the likelihood of more than one channel changing state
is negligible, then we can use Eqn. (11.10) as a guide to write a tridiagonal transition
probability matrix,

QXPP =



D0 Nk+∆t

k−∆t D1 (N − 1)k+∆t
. . .

(N − 1)k−∆t DN−1 k+∆t

Nk−∆t DN


(11.29)

where we use XPP�s convention that element QXPP
ij corresponds to the transition prob-

ability from state i to state j. Thus, the entry QXPP
ij represent the probability, given

there are currently n = i open channels, that an open or closed channel changes state
to give n = j open channels. With this row/column convention, the diagonal terms are
such that each row sums to 1, that is,

D0 = 1−Nk+∆t
D1 = 1− k−∆t− (N − 1)k+∆t

DN−1 = 1− (N − 1)k−∆t− k+∆t
DN = 1−Nk−∆t

For example, to simulate 4 two-state ion channels using XPP, part of the .ode Þle
would contain,

markov n 5
{} {4*kp} {0} {0} {0}
{km} {} {3*kp} {0} {0}
{0} {2*km} {} {2*kp} {0}
{0} {0} {3*km} {} {1*vp}
{0} {0} {0} {4*km} {}
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Figure 11.4 Variance and mean sodium
current measured from voltage-clamped
single myelinated nerve Þbers from
Rana pipiens depolarized to −15 mV
after 50 ms prepulses to −105 mV.
After carefully accounting for contribu-
tions to the variance due to thermal
noise (A, solid line), variance aris-
ing from the stochastic gating of
sodium channels remains (A, dots).
This variance evolves as a function
of time, as does the mean current
(B). The parabolic relationship be-
tween variance and mean shown in (C)
implies a single channel conductance
is drawn with N=20,400 and iunit =
−0.55 pA. Reproduced with permis-
sion from Sigworth FJ. The variance
of sodium current ßuctuations at the
node of Ranvier. J. Physiol. (Lond).
307:97-129, 1980.

The reader is encouraged to implement a simulation for N = 4 (or more) identical and
independent two-state channels and conÞrm the analytical results from Section (11.3).

11.5 Fluctuations in macroscopic currents

When the voltage clamp technique is applied to isolated membrane patches, openings
and closings of single ion channels can be observed. Recall the single-channel record-
ings of T-type Ca2+ currents shown in the top panels of Fig. (??)). Importantly, the
bottom panel of Fig. (??) shows that when several hundred single-channel recordings
are summed, the kinetics of rapid activation and slower inactivation of the T-type
Ca2+ current are evident. In this summed trace, the relative size of the ßuctuations
in the macroscopic current is much smaller than those observed in the single-channel
recordings; however, the ßuctuations in ionic current are still noticeable.

During voltage clamp recordings of large numbers of ion channels, stochastic gating
leads to current ßuctuations. For example, panel B of Fig. (11.4) shows the time-
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Figure 11.5 Acetylcholine produced cur-
rent noise due to ßuctuations in ionic con-
ductance of voltage clamped end-plates
of Rana pipiens nerve-muscle preparation.
Iontophoretic application of ACh resulted
in an increase in mean current as well as
variance. The second trace labeled �Rest�
also shows a spontaneous miniature end-
plate current. Reproduced with permission
from Anderson CR, Stevens CF. Voltage
clamp analysis of acetylcholine produced
end-plate current ßuctuations at frog neu-
romuscular junction. J. Physiol. (Lond).
235(3):655-91, 1973.

evolution of the mean sodium current measured from voltage-clamped single myelinated
nerve Þbers of Rana pipiens (frog) that were depolarized to −15 mV after 50 ms pre-
pulses to −105 mV. After carefully accounting for contributions to the variance of the
sodium current due to thermal noise (panel A, solid line), the variance arising from the
stochastic gating of sodium channels remains (panel A, dots). Fig. (11.5) shows macro-
scopic current ßuctuations induced by the iontophoretic application of acetylcholine
(ACh) to voltage clamped end-plates of a Rana pipiens nerve-muscle preparation. In-
terestingly, iontophoretic application of ACh increased the variance of the end-plate
current as well as the mean. While the second trace in Fig. (11.5) shows a sponta-
neous miniature end-plate current, the phenomenon of interest is the 10-fold increase
in variance observed throughout the duration of the second trace compared to the Þrst.

In order to understand the relationship between ßuctuations in macroscopic cur-
rents and the underlying single-channel kinetics, consider the statistics of ionic current
implied by the two-state channel model presented in the previous section. In the sim-
plest case, the unitary current of each two-state channel will be a random variable taking
the value zero when the channel is closed or a Þxed value, iunit, when the channel is
open. That is, the unitary current will be a random variable, Iunit, given by

Iunit =

(
iunit = gunit (Vrev − V ) when open

0 when closed
(11.30)

where V is a Þxed command voltage, Vrev is the reversal potential for the single channel
conductance, gunit, and the unitary current, Iunit, is directly proportional to the con-
ductance of the open channel. With these assumptions, it is straightforward to apply
the results of Section (11.3) and derive the statistics of a ßuctuating current that will



260 11: Stochasticity and Discreteness

Figure 11.6 Variance of conductance
ßuctuations as a function of mean end-
plate conductance of Rana pipiens nerve-
muscle preparation. Because the unitary
conductance of end-plate channels is small,
the relationship is linear and the slope of
0.19 × 10−10mho = 19 pS gives the sin-
gle channel conductance. Reproduced with
permission from Anderson CR, Stevens CF.
Voltage clamp analysis of acetylcholine pro-
duced end-plate current ßuctuations at frog
neuromuscular junction. J. Physiol. (Lond).
235(3):655-91, 1973.
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Figure 11.7 The parabolic relationship between the variance and mean of ionic current through 10,000
two-state channels. Mean and variance are from 100 simulations performed simultaneously using XPP,
each involving a Langevin equation as described in text.

result from N two-state channels, each with unitary current given by Eqn. (11.30). The
ßuctuating macroscopic current will be a random variable deÞned by

Imacro = n iunit (0 ≤ n ≤ N)
where n is once again the number of open channels. Because the macroscopic current
is directly proportional to n, we can use Eqn. (11.12) to Þnd the equilibrium average
macroscopic current,

hImacroi∞ = iunithNOi∞



11.5: Fluctuations in macroscopic currents 261

Similarly, the equilibrium variance in the number of open channels, (σ2NO)∞, given by
Eqn. (11.22), determines the equilibrium variance of the macroscopic current,

(σ2Imacro
)∞ = i

2
unit(σ

2
NO
)∞

Recall that if we write p = k+/ (k+ + k−) the equilibrium mean and variance for
the number of open channels are given by hNOi∞ = Np and (σ2NO)∞ = Np(1 − p).
Thus, the equilibrium mean and variance for the macroscopic current are given by
hImacroi∞ = iunitNp and (σ2Imacro

)∞ = i
2
unitNp(1− p). Combining these expressions and

eliminatinating p gives

(σ2Imacro
)∞ = iunithImacroi∞ − hImacroi2∞/N (11.31)

where both hImacroi∞ and (σ2Imacro
)∞ are parameterized by p.

Eqn. (11.31) is the basis of a standard technique of membrane noise analysis
whereby current ßuctuations can be used to estimate the number of ion channels in
a membrane patch. By repeatedly manipulating the fraction of open channels channels,
p, an estimate of (σ2Imacro

)∞ as a function of hImacroi∞ is obtained. According to Eqn.
(11.31), the relationship will be will be parabolic with zero variance at hImacroi∞ = 0
and iunitN and a maximum variance of (σ2Imacro

)∞ = Ni
2
unit/4 at hImacroi∞ = iunitN/2.

In panel C of Fig. (11.4) this technique was applied to voltaged-clamped single myeli-
nated nerve Þbers from Rana pipiens. The parabolic relationship between mean and
variance of implied N=20,400 sodium channels at this node of Ranvier and a unitary
current of iunit = 0.55 pA.

In Fig. (11.6) this technique was applied to end-plate conductance ßuctuations of
Rana pipiens nerve-muscle preparation. Here, the equilibrium variance of the macro-
scopic conductance,

¡
σ2gmacro

¢
∞ is plotted against the mean conductance, hgmacroi∞,

where the macroscopic conductance is related to the unitary conductance through
gmacro = Ngunit. Using Eqn. (11.31) and the relations

hgmacroi∞ = hImacroi∞
Vrev − V (σ2gmacro

)∞ =
(σ2Imacro

)∞

(Vrev − V )2
iunit = gunit (Vrev − V )

the reader can conÞrm that this relationship is also expected to be parabolic, that is,

(σ2gmacro
)∞ = gunithgmacroi∞ − hgmacroi2∞/N

However, because the unitary end-plate channel conductance of Rana pipiens nerve-
muscle preparation is very small (hgmacroi2∞/N ≈ 0) the relationship is effectively linear,

(σ2gmacro
)∞ = gunithgmacroi∞

Indeed, the slope of the line in Fig. (11.6) gives a single channel conductance of 19 pS
for the open end-plate channel.
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11.6 Modeling ßuctuations in macroscopic currents
with stochastic ODEs

Fig. (11.7) shows an XPP simulation reproducing the parabolic relationship between the
variance and mean of current ßuctuations due to the stochastic gating of ion channels.
This simulation includes 10,000 identical two-state channels with unitary conductance
of 0.01 pA. A hundred trials were simultaneously performed and averaged to calculate
the mean and variance as the open probability, p, was ranged from 0 to 1. Because
the methods discussed in Section 11.4.3 would require the declaration of a Markov
variable with 10,001 possible states, the reader may be wondering how this simulation
was performed in XPP.

Indeed, when using XPP to simulate the stochastic gating of large numbers of ion
channels, the Monte-Carlo method becomes impractical. However, whenN is large, ßuc-
tuations in macroscopic currents can instead be described using a stochastic ordinary
differential equation, called a Langevin equation, that takes the following form,

df

dt
= g(f) + ξ

In this equation, the familiar deterministic dynamics given by g(f) are supplemented
with a rapidly varying random forcing term, ξ(t). Because ξ is a random function of
time, solving Eqn. (11.6) often means Þnding a solution f(t) that satisÞes the equation
for a particular instantiation of ξ. Alternatively, if the statistics of ξ are given, we may
be interested in deriving the statistics of the new random variable f(t) that is formally
deÞned by Eqn. (11.6).

The most common ßuctuating force to consider are the increments of a Wiener
process. Similar to the unbiased random walk discussed in Section (11.1), a Wiener
process, B, is a random function of time that has zero mean,

hB(t)i = 0 (11.32)

and variance directly proportional to time

hB(t)2i = t (11.33)

Indeed, the instantiations of a Wiener process, B1 and B2, shown in Fig. (11.8) are
remarkably similar to the random walks presented in Fig. (11.1). Just as the increments
of the random walk were ±∆x with equal probability, resulting in an increment with
mean zero h∆Xi = 0, the increments of the numerical approximation to a Wiener
process shown in Fig. (11.8) are normally distributed with mean zero

h∆Bi = 0
In order to understand variance of the increments of this simulated Wiener process,

we must remember that unlike the random walk shown in Fig. (11.1), a Wiener process
is a continuous function of time, B(t). A relevant statistic for the increments of a Wiener
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Figure 11.8 Two instantiations of a Wiener process, B1 and B2, have trajectories very similar to the
random walks shown in Fig. (11.1). The mean of 100 trials is near zero, while the variance of 100 trials
increases linearly with time. In these simulations, the increments (∆B) are normally distributed with mean
zero and variance 1/∆t, where ∆t is the integration time step.

process is the two-time covariance or autocorrelation function

h∆B(t)∆B(t0)i = δ (t− t0) (11.34)

which implies that the Wiener process increments at any two different times are inde-
pendent and uncorrelated. Eqn. (11.34) may appear unusual, especially if the reader is
unfamiliar with the delta function, deÞned by δ(t) = 0 for t 6= 0 andZ ∞

−∞
δ(t)dt = 1

Eqn. (11.34) is perhaps best clariÞed through a discussion of how the wiener declaration
is implemented in XPP.

The following XPP Þle demonstrates the statistics of a Wiener variable by
implementing a simple Langevin equation.

# Demonstration of Wiener variable

wiener db

b�=db

aux db=db
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done

Integrating b as a function of time results in Wiener trajectories similar to panels
A and C of Fig. (11.1), while plotting the Wiener increment db reveals an erratic
function of time (compare to panel B). The reader can conÞrm that decreasing the
size of the integration time step in XPP increases the variance of db, i.e., the Wiener
increments are have higher variance. In spite of this, the trajectories of b will appear to
be macroscopically very similar. In fact, the increased variance in of db for small time
steps is consistent with Eqn. (11.34). In XPP, the Wiener increment db is a normally
distributed random variable with zero mean that is held Þxed the time interval [t, t+∆t]
and updated after the integration time step is complete. If we rewrite Eqn. (11.34) to
account for XPP�s piecewise constant approximation to the Wiener process W (t), we
Þnd

h∆B(t)∆B(t0)i =
(
1/∆t t0 ∈ [t, t+∆t]
0 otherwise

XPP is thus correct to automatically adjust the variance of db depending on the integra-
tion time step, resulting in a numerical approximation to a Wiener process consistent
with Eqn. (11.32) and Eqn. (11.33).

11.6.1 Langevin equation for an ensemble of two-state channels

In order to use a Langevin equation of the form of Eqn. (11.6) to simulate a large
number of ion channels, we must make an appropriate choice for both the deterministic
function (g(f)) as well as the statistics of the random variable, ξ. Recalling the average
rate equation for the dynamics of the open fraction of channels, Eqn. (11.18), we write

dfO
dt

= k+ (1− fO)− k−fO + ξ (11.35)

= −hfOi∞ − fO
τf

+ ξ (11.36)

where fO = NO/N is a random variable, the ßuctuating fraction of open channels,
hfOi∞ = k+/ (k+ + k−), and τf = 1/ (k+ + k−). For Eqn. (11.36) to be meaningful,
we must specify the statistics of ξ. Although derivation of this fact is a result from
statistical physics beyond the scope of this chapter, an appropriate choice for ξ is a
ßuctuating function of time that has zero mean,

hξ(t)i = 0
and an autocorrelation function given by

hξ(t)ξ(t0)i = γδ (t− t0)



11.6: Modeling ßuctuations in macroscopic currents with stochastic ODEs 265

where γ is inversely proportional to N and proportional to the sum of the rates of both
the O→ C and C → O transitions, that is,

γ =
k+ (1− fO) + k−fO

N
(11.37)

An appropriate choice for ξ is thus ξ =
√
γ∆B where the ∆B are the increments of a

Wiener process.
Although we haven�t fully justiÞed this choice for ξ, we can check that this random

variable and Eqn. (11.36) deÞne the random variable, fO, in a manner consistent with
the work in previous sections. To do this we use the ßuctuation-dissipation theorem
[1, 2] from statistical physics that relates γ, which occurs in the correlation function of
ξ, to the equilibrium variance of fO. The relationship depends on the relaxation time
constant τf and is given by

γ =
2
¡
σ2fO

¢
∞

τf
(11.38)

Using Eqn. (11.22), and remembering that
¡
σ2fO

¢
∞ =

¡
σ2NO

¢
∞ /N

2, the reader can
conÞrm that the last equality holds at equilibrium.

Fig. (11.9) shows XPP simulations of the open fraction, fO, of 1000 two-state ion
channels calculated by integrating Eqn. (11.36). The transition rates used were k+ =
k− = 0.05 ms−1 in A and k+ = k− = 0.005 ms−1 in B, giving a time constant τf of
10 and 100 ms, respectively. This difference in relaxation time constants is evident in
the (normalized) autocorrelation functions compared in C. It can be shown that for an
inÞnitely long simulation the autocorrelation functions for fO is

hfO(t)fO(t0)i =
¡
σ2fO

¢
∞ e

|t−t0|/τf

The narrower autocorrelation function in panel C thus corresponds to case with small
time constant, τf . Note that although the time constant for relaxation to hfOi∞ =
0.5 is faster in A than in B, the equilibrium variance,

¡
σ2fO

¢
∞, shown in panel D is

approximately equal in the two cases, as expected according to Eqn. (11.22).

11.6.2 Fokker-Planck equation for an ensemble of two-state
channels

Rather than calculating trajectories for the fraction of open channels, fO, using a
Langevin equation, an alternative is to calculate the evolution of the probability distri-
bution function (PDF) for fO. While the binomial distribution encountered in Section
(11.3) is an example of a discrete probability distribution (NO takes on N+1 discrete
values), the Langevin equation for fO, Eqn. (11.36), implies that fO can take on any
value on the interval [0,1]. Thus, the PDF for fO is continuous and deÞned as

P (f, t) df = Prob{fO ∈ (f, f + df)}
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Figure 11.9 A,B) The open fraction, fO , of 1000 two-state ion channels simulated using a Langevin
equation in XPP. Transition rates are ten times faster in A than B so that the time constant τf is 10
and 100 ms, respectively. C) Numerically calculated autocorrelation function of fO . D) The equilibrium
variance of fO is approximately equal in the two cases.

where conservation of probability givesZ 1

0

P (f, t) df = 1 (11.39)

We can write an evolution equation for P (f, t), known as a Fokker-Planck equation,
that corresponds to the Langevin description given by Eqn. (11.36),

∂P (f, t)

∂t
= − ∂

∂f
[Jadv (f, t) + Jdif (f, t)] (11.40)

In this equation, Jadv(f, t) is a probability ßux due to the deterministic dynamics given
by

Jadv(f, t) = −f − hfOi∞
τf

P (f, t) (11.41)
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and Jdif(f, t) is a diffusional ßux that accounts for the spread of probability induced
by the random variable, ξ. This diffusional probability ßux is given by

Jdif(f, t) = −γ(f)
2

∂P (f, t)

∂f
(11.42)

where γ is the function of f given by Eqn. (11.37). Rewrite Eqn. (11.41) in terms of
the total probability ßux, Jtot = Jadv + Jdif , we have

∂P (f, t)

∂t
= −∂Jtot (f, t)

∂f
(11.43)

with associated boundary conditions

Jtot(0, t) = Jtot(1, t) = 0

that imply no ßux of probability out of the physical range for fO. An appropriate choice
of initial conditions would be P (f, 0) = δ(f−hfOi∞), implying that the system is known
to be in equilibrium at t = 0.

Setting the left hand side of Eqn. (11.40) equal to zero, we see that the equilibrium
probability distribution, P∞(f), solves J∞tot = 0, that is,

− f − hfOi∞
τf

P∞(f)− γ(f)
2

dP∞(f)

df
= 0 (11.44)

This is an ordinary differential equation that can be solved numerically. However, we
obtain more insight by approximating γ(f), by

γ∞ =
k+ (1− hfOi∞) + k−hfOi∞

N

a procedure that is valid when ßuctuations of fO away from equilibrium, hfOi∞, are
small (that is, when N is large). It is left as an exercise for the reader to show that if
we make this approximation the probability distribution

P∞(f) = A exp

∙
f (2hfOi∞ − f)

γ∞τf

¸
(11.45)

satisÞes Eqn. (11.44), where the normalization constant, A, is chosen to satisfy con-
servation of probability, Eqn. (11.39). While this expression may not look familiar,
when γ∞ is sufficiently small (N is sufficiently large), P∞ is well approximated by the
Gaussian,

P∞(f) =
1√

2π
¡
σ2fO

¢
∞
exp

"
−(f − hfOi∞)

2

2
¡
σ2fO

¢
∞

#
that is, at equilibrium fO will be a normally distributed random variable with mean
hfOi∞ and variance

¡
σ2fO

¢
∞ = γ∞τf/2, in agreement with Eqn. (11.38). Fig. (11.9) panel

D shows that P∞(f) is approximately Gaussian for N = 1000.
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Figure 11.10 Membrane voltage ßuctuations due to the stochastic gating of one or more sodium chan-
nels. In the top two panels a single channel is simualted. Transition probabilities are a factor of two slower
in the second panel, leading to longer dwell times and fewer transitions as evidenced by �kinks� in graph.
In the bottom panel twenty channels are simulated. As the number of sodium channels the variance in
membrane voltage decrease.

11.7 Membrane voltage ßuctuations

In Section (11.5) we discussed macroscopic current ßuctuations experimentally ob-
served in voltage clamp recordings and a membrane noise analysis technique that can
be used to measure the number N and unitary current iunit of two-state ion channels.
In this section we will simulate electrical recordings in which the membrane potential
is not clamped, but rather ßuctuates under the inßuence of two-state ion channels.
Although a misnomer, such measurements are sometimes referred to as current clamp
recordings. This is a considerably more complicated situation that is best modeled us-
ing a Fokker-Planck equation. To illustrate the method, let�s assume that membrane
voltage obeys the current balance equation,

C
dV

dt
= −gL (V − VL)− gNa (V − VNa) (11.46)

where gL is leakage conductance with reversal potential VL = −70 mV, and gNa a
sodium conductance with reversal potential VNa = 60 mV.

If membrane voltage ßuctuations are due to a single two-state sodium channel,
there are two relevant PDFs, each conditioned on the state of the channel,

PC(v, t)dv = Prob{V ∈ (v, v + dv)|C, t}
PO(v, t)dv = Prob{V ∈ (v, v + dv)|O, t}
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where conservation of probability impliesZ ∞

−∞
PC(v, t)dv +

Z ∞

−∞
PO(v, t)dv = 1

The equations for the evolution of these conditional PDFs are

∂

∂t
PC(v, t) = − ∂

∂v
JC(v, t)− k+PC(v, t) + k−PO(v, t) (11.47)

∂

∂t
PO(v, t) = − ∂

∂v
JO(v, t) + k+PC(v, t)− k−PO(v, t) (11.48)

where, in analogy with Jadv in the previous section, JC(v, t) and JO(v, t) are probability
ßuxes due to membrane voltage obeying Eqn. (11.46). These ßuxes are given by

JC(v, t) = − 1
C
[gL (v − VL)]PC(v, t)

JO(v, t) = − 1
C
[gL (v − VL) + gNa (v − VNa)]PO(v, t)

where the sodium current term occurs only in JO(v, t) because the dynamics of mem-
brane potential depends on whether the sodium channel is open or closed. The reaction
terms that appear in Eqn. (11.47) and Eqn. (11.48) account for the stochastic gating
of the sodium channel. For example, the conditional probability PC(v, t) can decrease
due to channel opening at a rate of k+PC(v, t) and increase due to closing of open
channels at a rate of k−PO(v, t). The reaction terms occur with opposite sign because
any increase or decrease in the conditional probability, PC(v, t), due to a channel gating
implies an commensurate change in PO(v, t) (and vice-versa).

The top panel of Fig. (11.11) shows the equilibrium conditional probability distri-
bution functions for the membrane voltage, P∞

C (v) and P
∞
O (v), calculated numerically
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Figure 11.11 Probability distribution functions (PDFs), P∞C (v) and P
∞
O (v) for the membrane voltage

conditioned on the state of a single two-state sodium channel. In the top panel transition probabilities are
k+ = 1 ms−1 and k− = 1 ms−1, while for bottom panel the transition probabilities are a factor of two
slower. The difference in dwell times results in distinct equilibrium PDFs.
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from Eqn. (11.48) and Eqn. (11.48). The simulation was run for 1 sec, corresponding to
1000 changes in channel state. As expected, P∞

O (v) is shifted toward the right (depolar-
ized V ) relative to P∞

C (v). The astute reader will note that the PDFs are not symmetric.
This is because probability advects toward VNa when the channel is open faster than it
advects toward VL when the channel is closed, i.e., an open sodium channel leads to a
smaller membrane time constant. The bottom panel of Fig. (11.2) presents a simulation
similar to that of the top panel, except that the rate constants k+ and k− are a factor
of ten slower. In this case, more probability accumulating near both VL and VNa.

11.7.1 Membrane voltage ßuctuations with an ensemble of
two-state channels

The Fokker-Planck formulation described above can be extended to the case where
membrane voltage ßuctuations are due to an ensemble N two-state channels. If we
write PO(n, v, t) for the conditional probability density for membrane voltage given n
open sodium channels, we have

∂

∂t
PO(n, v, t) = − ∂

∂v
JO(n, v, t)

+ k+(N − n+ 1)PO(n− 1, v, t)− k+(N − n)PO(n, v, t) (11.49)

+ k−(n+ 1)PO(n+ 1, v, t)− k−nPO(n, v, t)

where the reaction terms are based on the master equation formulation presented in
Section (11.3.1), JO(n, v, t) is given by

JO(n, v, t) = − 1
C

h
gL (v − VL) + gNa n

N
(v − VNa)

i
PO(n, v, t)

and gNa is the macroscopic sodium conductance. Note that Eqn. (11.49) represents
N + 1 coupled partial differential equations, one for each PO(n, v, t) where 0 ≤ n ≤ N .

Fig. (11.12) shows equilibrium conditional PDFs, P∞
O (n, v), for membrane voltage

ßuctuations induced by 20 two-state sodium channels. As before, these PDFs are calcu-
lated by numerically solving a Fokker-Planck equation, Eqn. (11.49), until a steady-state
is achieved. Careful inspection of the Þgure shows that in the case of high n (more open
channels), the equilibrium distribution of membrane voltage is shifted toward VNa.
Note that these PDFs appear to be consistent with a binomial distribution for the total
equilibrium probability for a given value of n, that is,

P∞
O (n) =

Z ∞

−∞
P∞
O (n, v)dv

is in agreement with Eqn. (11.16).
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Figure 11.12 Conditional probability distribution functions for membrane voltage ßuctuations due to
stochastic gating of 20 two-state sodium channels. Parameters as in the top panel of Fig. (11.11).

11.8 Stochasticity and discreteness in an excitable
membrane model

Using the results of previous sections, we are prepared to explore the consequences
of stochasticity and discreteness in an excitable membrane model. The deterministic
Morris-Lecar model for the excitability of barnacle muscle Þber is

C
dV

dt
= Iapp − gL (V − VL)− gkw (V − VK)− gCam∞(V ) (V − VCa) (11.50)

dw

dt
=
w∞(V )−w
τw(V )

(11.51)

where the activation function for the Ca2+ current, m∞(V ), the activation function for
the K+ current, w∞(V ), and voltage-dependent time scale for activation of K

+ current,
τw(V ), are given in the Appendix.

In Eqn. (11.51), w is usually thought to represent the fraction of open K+ channels.
However, we now understand that this differential equation is actually an average rate
equation similar to Eqn. (11.18). To be clear, let us write this deterministic average
rate equation as

dhwi
dt

=
w∞(V )− hwi

τw(V )

where w (a random variable) represent the fraction of open K+ channels. The reader
can easily verify that this average rate equation corresponds to the two-state kinetic
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scheme

C (closed)

α(V )

*)

β(V )

O (open)

where C and O indicate closed and open states of the K+ channel, and the voltage-
dependent transition rates, α(V ) and β(V ) are given by

α(V ) =
w∞(V )

τw(V )

β(V ) =
1−w∞(V )
τw(V )

This, in turn, implies that the equilibrium fraction of open K+ channels is

hwi∞ = w∞(V ) = α(V )

α(V ) + β(V )

and the time constant, τw(V ) is

τw(V ) =
1

α(V ) + β(V )

With these preliminaries, we can see that a Morris-Lecar simulation that includes chan-
nel noise due to a small number of K+ channels could easily be performed in XPP by
declaring several Markov variables using the voltage-dependent transition probability
matrix,

QXPP =

"
1− α(V )∆t α(V )∆t

β(V )∆t 1− β(V )∆t

#
for each channel. Alternatively, a larger collection of N channels can be simulated by
tracking only a single Markov variable, the number of open K+ channels. In this case,
the following tridiagonal transition probability matrix would be implemented in XPP,

QXPP =



D0 Nα

β D1 (N − 1)α
. . .

(N − 1)β DN−1 α

Nβ DN


(11.52)

where it is implicit that both α and β are functions of V , and the diagonal terms are
such that each row sums to 1, that is,

D0 = 1−Nα
D1 = 1− β − (N − 1)α
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Figure 11.13 Morris-Lecar simulations including stochastic gating of 100K+ channels. Top: spontaneous
excitability driven by channel noise is observed when Iapp = 10 and the deterministic model is excitable.
Middle: Stochastic oscillations are observed when Iapp = 12 and the deterministic model is oscillatory.
Bottom: Stochastic bistability is observed when the deterministic model is bistable (Iapp = 12 and v3 =
15 mV (rather than standard value of 10 mV).

DN−1 = 1− (N − 1)β − α
DN = 1−Nβ

11.8.1 Phenomenon induced by stochasticity and discreteness

Fig. (11.13) and Fig. (11.14) show stochastic Morris-Lecar simulations performed in
XPP using a hybrid of the two methods discussed above. As detailed in the Appendix,
these simulations include the stochastic voltage-dependent gating of 100 K+ channels.
In the top panel of Fig. (11.13) spontaneous action potentials are induced by this
realistically simulated channel noise. We will refer to this phenomenon as �stochastic
excitability,� because it is understood a sampling of the �excitable� phase space of
the deterministic model made possible by membrane potential ßuctuations due to the
stochastic gating ofK+ channels. Fig. (11.14) shows the trajectories from Fig. (11.13) in
the (V,w) phase plane. The stochasticity and discreteness of the K+ gating variable, w,
allows trajectories to ßuctuate around the Þxed point of the deterministic model (lower
left of top panel). Occasionally, K+ channels spontaneously inactivate (w ßuctuates
toward 0) and a regenerative Ca2+ current leads to an action potential. This type of
stochastic excitability has been observed in stochastic versions of the Hodgkin-Huxley
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Figure 11.14 Morris-Lecar simulations with stochastic gating of 100 K+ channels shown in the (V, w)
phase plane. Top, middle, and bottom panels correspond to stochastic excitability, oscillations, and
bistability shown in Fig. (11.13).

equations [3, 4] and is though to inßuence subthreshold membrane potential oscillations
and excitability of stellate neurons of the medial entorhinal cortex of the hippocampal
region [5, 6].

In the middle panel of Fig. (11.13) parameters are such that the deterministic
model (as N → ∞) is oscillatory. However, when N = 100 channel noise results in
irregular oscillations. In the bottom panel of Fig. (11.13) stochastic bistability is ob-
served. When parameters are chosen so that the deterministic model is bistable, channel
noise allows the alternate sampling of two stable Þxed points in the (V,w) phase plane,
a phenomenon known as basin hoping.

11.8.2 Fokker-Planck equations for the stochastic Morris-Lecar
model

The Fokker-Planck formulations described in Section (11.6.2) can be applied to
the stochastic Morris-Lecar model described above. The evolution equations for the
conditional PDFs take the following form

∂

∂t
PO(n, v, t) = − ∂

∂v
JO(n, v, t)

+ α(v)(N − n+ 1)PO(n− 1, v, t) (11.53)

− α(v)(N − n)PO(n, v, t)
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Figure 11.15 Probability distribution functions for the membrane voltage of the stochastic Morris-Lecar
model conditioned on the number of open K+ channels. The equilibrium PDFs show evidence of stochastic
excitability, oscillations, and bistability, corresponding to the trajectories shown in Fig. (11.14).
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+ β(v)(n+ 1)PO(n+ 1, v, t)− β(v)nPO(n, v, t)
similar to Eqn. (11.49) except that the transition probabilities are now voltage-
dependent, and the probability ßuxes, JO(n, v, t), are given by the Morris-Lecar current
balance equation, Eqn. (11.50), that is

JO(n, v, t) =− 1

C

h
Iapp − gL (v − VL)− gk n

N
(v − VK)

− gCam∞(v) (v − VCa)]PO(n, v, t)
Fig. (11.15) shows equilibrium PDFs for the membrane voltage of the stochastic

Morris-Lecar model conditioned on the number of openK+ channels. These equilibrium
PDFs are steady-state solutions to Eqn. (11.53) and correspond to the three types of
trajectories shown in Fig. (11.14). The amount of time that trajectories spend in differ-
ent regions of the (V,w) phase plane is reßected in these distributions. The top panel, for
example, reveals that the Morris-Lecar model exhibiting stochastic excitability spends
a large proportion of time near the threshold for excitation.

11.8.3 Langevin formulation for the stochastic Morris-Lecar
model

To consider the behavior of the Morris-Lecar model under the inßuence of channel
noise from a large number of K+ channels, it is most convenient to use the Langevin
formulation presented in Section (11.6.1). We do this by supplementing the rate equa-
tion for the average fraction of open K+ channels, Eqn. (11.51), with a rapidly varying
forcing term

dw

dt
=
w∞(V )−w
τw(V )

+ ξ

where w is a random variable, hξi = 0, and the autocorrelation function of ξ is given
by

hξ(t)ξ(t0)i = γ(w)δ (t− t0)
Following Eqn. (11.37), γ(w) is chosen to be

γ(w) =
α(V ) (1−w) + β(V )w

N

=
1

N

(1− 2w∞(V ))w + w∞(V )
τw(V )

Thus, ξ is a random variable deÞned by ξ =
p
γ(w)∆B where ∆B is the increments of

a Wiener process.
Fig. (11.16) presents stochastic Morris-Lecar model simulations implemented in

XPP using the Langevin formulation described above. Interestingly, the existence of
stochastic excitability depend on the the number of K+ channels included. When N is
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Figure 11.16 The stochastic Morris-Lecar model simulated using a Langevin equation for w, the fraction
of open K+ channels. As the number of K+ channels is increased (N = 25, 50, 100, 500, or 1000)
spontaneous action potentials induced by stochastic gating are eliminated. For large N , the model is
excitable, but essentially deterministic, i.e., ßuctuations in w are small and spontaneous action potentials
are no longer observed without applied current.

relatively small (N = 25, 50, 100) membrane potential ßuctuations are large and spon-
taneous action potentials are frequent. However, when more K+ channels are included
(N = 500, 1000), the model becomes essentially deterministic. Although the model is
still excitable, as N → ∞ ßuctuations in w become smaller and spontaneous action
potentials are no longer observed.

11.9 Appendix: Stochastic Morris-Lecar model

The following XPP Þle is the deterministic Morris-Lecar model (modiÞed slightly from
[7]) used as the starting point for the stochastic simulations presented in Fig. (11.13),
Fig. (11.14), and Fig. (11.16).
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# The deterministic Morris-Lecar model

# Based on Ermentrout and Rinzel�s chapter in Koch & Segev

params v1=-1, v2=15, v3=10, v4=14.5, gca=1.33, phi=.333

params vk=-70, vl=-50, iapp=10, gk=2.0, gl=.5, c=1

minf(v)=.5*(1+tanh((v-v1)/v2))

winf(v)=.5*(1+tanh((v-v3)/v4))+0.05

tauw(v)= 1/(phi*cosh((v-v3)/(2*v4)))

v�= (iapp-gl*(v-vl)-gk*w*(v-vk)-gca*minf(v)*(v-100))/c

w�= (winf(v)-w))/tauw(v)

A stochastic Morris-Lecar simulation can be implemented in XPP by deÞning a Markov
variable corresponding to the number of open K+ channels. In the case of 4 channels,
there are 5 possible values for the number of open channels, and the markov variable n
is deÞned as

markov n 5
{} {4*vp} {0} {0} {0}
{vm} {} {3*vp} {0} {0}
{0} {2*vm} {} {2*vp} {0}
{0} {0} {3*vm} {} {1*vp}
{0} {0} {0} {4*vm} {}

where the quantities vp and vm are deÞned in the XPP Þle by

vp=winf(v)/tauw(v)

vm=(1-winf(v))/tauw(v)

and the K+ conductance term in the voltage equation is modiÞed to give

v�= (iapp-gl*(v-vl)-gk*n/4*(v-vk)-gca*minf(v)*(v-100))/c

In the simulations presented in Fig. (11.13) this method was extended to 5 collections
of 20 channels. The markov variables were n1, n2, n3, n4, n5, and total conductance
was given by gk*(n1+n2+n3+n4+n5)/100.

The Langevin formulation of the stochastic Morris-Lecar model can be implemented
very simply: declare the wiener parameter db and modify the ODE for w in the following
way

wiener db

w�= (winf(v)-w))/tauw(v)+sqrt(((1-2*winf(v))*w+winf(v))/(n*tauw(v)))*db

Using this method the reader can reproduce the simulations shown in Fig. (11.16).
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Exercises

1. Using Eqn. (11.12)) as a guide, write an expression for the average number of
closed channels, NC , in terms of PC(n, t). Then show that N − NO = NC , as
stated in Eqn. (11.15). Hint: You will need to use PC(n, t) = PO(N − n, t) andPN

n=0 nPO(N − n, t) =PN

n=0(N − n)PO(n, t).
2. Using the result of Exercise (1), conÞrm that Eqn. (11.14) is equivalent to Eqn.
(11.15). In order to do so, you will need to show that

−NO =
NX
n=0

n (n+ 1)PO(n+ 1, t)−
NX
n=0

n2PO(n, t)

and

NC =
NX
n=0

n (N − n+ 1)PO(n− 1, t)−
NX
n=0

n (N − n)PO(n, t)

3. Eqn. (11.13) is the master equation for the two-state channel with kinetic scheme
given by Eqn. (11.8). The mathematically inclined reader may wish to derive the the
master equation for the GLUT transporter discussed in Section (11.2). The easiest
way to do this is to write three equations of the form of Eqn. (11.13), corresponding
to 3 (N + 1) coupled ODEs, where N is the number of GLUT transporters.

4. Show that in the case of the two-state channel, the variances deÞned with respect
to ßuctuations in open channel number, σ2NO

, and closed channel number, σ2NC , are
equal. You will need some of the relations from Exercise (1) as well as Eqn. (11.19)
and Eqn. (11.20).

5. ConÞrm Eqn. (11.21), the equation for the time-dependence of the variance of the
two-state channel. Hint: differentiate Eqn. (11.19), to obtain

dσ2NO
dt

=
NX
n=0

(
−2 ¡n−NO

¢ dNO

dt
PO(n, t) +

¡
n−NO

¢2 dPO(n, t)
dt

)
(11.54)

Now check to see if the right hand sides of Eqn. (11.21) and Eqn. (11.54) are equal.
Use Eqn. (11.14) and Eqn. (11.10) as well as

NX
n=0

¡
n−NO

¢2
(N − n+ 1)PO(n− 1, t) =

N−1X
n=0

¡
n+ 1−NO

¢2
(N − n)PO(n, t)

NX
n=0

¡
n−NO

¢2
(n+ 1)PO(n+ 1, t) =

NX
n=1

¡
n− 1−NO

¢2
nPO(n, t)

6. Beginning with Eqn. (11.4) through Eqn. (11.7), write an XPP Þle to simulate
the four state GLUT transporter model discussed in Section (11.2) and Chap-
ter ??. It will be necessary to implement a Markov variable deÞned by the transition
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probability matrix,

QXPP =


D1 k12[G]out∆t 0 k14∆t

k21∆t D2 k23∆t 0

0 k23∆t D3 k34∆t

k41∆t 0 k43[G]in∆t D4


where the diagonal entries are such that each row sums to 1, that is,

D1 = 1− k12[G]out∆t− k14∆t
D2 = 1− k21∆t− k23∆t
D3 = 1− k23∆t− k34∆t
D4 = 1− k41∆t− k43[G]in∆t

Remember that XPP implements the diagonal entries automatically, so that it will
suffice to include a matrix of the form

markov n 4
{} {J12} {J13} {J14}

{J21} {} {J23} {J24}
{J31} {J32} {} {J34}
{J41} {J42} {J43} {}

7. ConÞrm the form of the conditional PDFs shown in Fig. (11.11) using XPP. This
can be done using the following XPP Þle,

# Example two state channel simulation

params kp=0.5, km=0.5

params c=2, gl=0.5, gch=1.0, vl=-70, vch=20

v(0)=0

markov n 2

{}{kp}
{km}{}
v�=(-gl*(v-vl)-gch*n*(v-vch))/c

aux n=n

@ total=5500,trans=500,DT=.001

@ maxstore=1000000,bounds=10000

done

After a run is complete, view v as a function of time. Then select nUmer-
ics/stocHastic/Histogram and set the lower bound to −70, upper bound to 20 mV,
number of bins to 90, and condition to n==0 (or n==1). The resulting histogram
will appear in the Data Table and can be viewed by selecting Window/View. You
should observe a PDF qualitatively similar to those in Fig. (11.11). Now change
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km and kp to 0.5, recalculate the voltage trajectory, compute the histograms, and
observe PDFs as in Fig. (11.12).
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CHAPT E R 1 2

Molecular Motors

Alex Mogilner, George Oster and Joel Keizer

07-28

Evolution has created a class of proteins that have the ability to convert chemical energy
into mechanical force. Some of these use the free energy of nucleotide hydrolysis as fuel,
while others employ ion gradients. Some are �walking motors�, others rotating engines.
Some are reversible, others are unidirectional. Could there be any common principles
amongst such diversity?

The mechanics of proteins are counterintuitive because their motions are dominated
by Brownian motion. The most obvious effect of Brownian movement is to �smear out�
deterministic trajectories. However, it introduces other effects as well. For example, it
serves as a very effective �lubricant� allowing molecules to pass over high energy barriers
that would arrest a deterministic system. More subtly, it make possible �uphill� motions
against an opposing force by �capturing� occasional large thermal ßuctuations.

After discussion of the motion on the molecular scale and derivation of a mathe-
matical formalism quantifying such motion, we will focus our attention to a subset of
motor proteins that function by using chemical energy to rectify Brownian motion -
so called �Brownian ratchets�. These do not exhaust the varieties of molecular motors,
but they have certain unique features that make them interesting both biologically and
theoretically. We will derive and treat a �toy� models of a protein whose structure and
biochemistry is known with some degree of certainty, for this will force us to forsake
abstract formulations and confront the realities of macromolecular geometry, chemical
kinetics and thermodynamics. This protein will be ATP synthase - main agent of energy
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transduction in a living cell. The chapter will conclude with a review of different motor
proteins including a molecular machine for mitochondrial protein import, kinesin and
polymerization ratchet.

The conversion of chemical energy into mechanical work is one of the main themes
of modern biology. Biochemists characterize energy transduction schemes by a free en-
ergy diagram. But thermodynamics tells only what cannot happen. Recent advances
in laser trap and optical technology, along with advances in molecular structure deter-
mination can augment traditional biochemical kinetic and thermodynamic analyses to
make possible a more mechanistic view of how protein motors function. The result of
these advances has been data that yield load-velocity curves and motion statistics for
single molecular motors. This sort of data enables a more detailed, mechanistic level of
modeling. Here we will consider several situations where mathematical modeling yields
new insights into the mechanism of energy transduction, and provides expressions for
the load-velocity curve of a molecular motor that can be compared to experiment.

12.1 Modeling Molecular Motions

The botanist Robert Brown Þrst observed Brownian movement in 1827. While studying
a droplet of water under a microscope, he noticed tiny specks of plant pollen dancing
around. Brown Þrst guessed, and later proved, that these were not living, although at
the time he had no clue as to the mechanism of their motion. It was not until Einstein
contemplated the phenomenon 75 years later that a quantitative explanation emerged.
In order to develop an intuition about molecular dynamics we begin with some simple
remarks on Brownian motion of proteins in aqueous solutions.

12.1.1 The Langevin model

A water molecule is about 0.1 nm in diameter, while diameter of proteins, d, is two
orders of magnitude larger, in the range 2-10 nm. This size difference suggest that we
can view the ßuid as a continuum. A protein moving through the ßuid is acted on by
frequent and uncorrelated momentum impulses arising from the thermal motions of the
ßuid. We model these ßuctuations as a random �Brownian force�, fB(t), where t whose
statistical properties can be mimicked by the random number generator in a computer
in a fashion described below. At the same time, the ßuid continuum exerts a frictional
drag force, fd = −ζv proportional to the protein�s velocity, v = dx/dt. Here x is the
1-dimensional coordinate, and ζ is the frictional drag coefficient (see Box 1). Assuming
that the frictional and stochastic forces add we can write Newton�s law (Feynman) for
the motion of a protein moving in a one-dimensional domain of length L:

m
d2x

dt2
= −ζv + fB(t), 0 ≤ x(t) ≤ L. (12.1)

The mass, m, of a typical protein is ∼ 10−21kg (Alberts).
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Box 1: The drag coefficient.
Natural units of distance and force on molecular scale are nanometers (1nm
= 10−9m) and piconewtons (1pN = 10−12N), respectively. In this units, the
viscosity of water at room temperature is η ' 10−9pN·sec/nm2. Then, a typ-
ical value for the hydrodynamic drag coefficient of a sphere of radius R is
ζ = 6πηR ' 10−7pN·sec/nm (for a typical protein, we use R ∼ 10nm). Drag
coefficients for other shapes, factored by a dimensionless geometric coefficient of
order one, are given in (Berg), a good source of intuition on Brownian motion.
A dimensionless number that measures the ratio of inertial to viscous forces is
the Reynolds Number:Re ≡ ρvR/η, where ρ is the density of water (103kg/m3 =
10−21pN·sec2/nm4) (Happel, Purcell). Typical velocities of molecular motors are
v < 103nm/sec, so on the molecular scale, Reynolds number is very small indeed:
Re ∼ 10−8. This conÞrms our calculation below that we can safely ignore the
inertial term in equation (12.1).

If we multiply equation (12.1) by x(t) and use the chain rule, we get:

m

2

d2(x2)

dt2
−mv2 = −ζ

2

d(x2)

dt
+ xfB(t). (12.2)

In order to see the consequences of equation (12.2) for molecular motions we Þrst
must average (12.2) over a large number of proteins so that the peculiarities of any par-
ticular trajectory are averaged out. We use the notation < . > to denote this ensemble
average:

m

2

d2 < x2 >

dt2
− < mv2 >= −ζ

2

d < x2 >

dt
+ < xfB(t) > . (12.3)

Next we take advantage of a central result from statistical mechanics called the Equipar-
tition Theorem which states that which states that each degree of freedom of a Brownian
particle carries average energy:

< E >= kBT/2, [Equipartition Theorem] (12.4)

where kB is Boltzmann�s constant and T the absolute temperature (Landau, see Box 2).
Therefore, the second term in equation (12.3) is just twice the average kinetic energy of
the protein:< mv2 >= kBT . Because the random impulses from the water molecules are
uncorrelated with position, < xfB(t) >= 0. Introducing these two facts into equation
(12.3) and integrating twice between 0 and t with x(0) = 0, we obtain:

d < x2 >

dt
=
kBT

ζ
(1− e−ζt/m), < x2 >=

kBT

ζ
[t− 1

τ
(1− e−t/τ)], (12.5)

where we have introduced the time constant τ = m/ζ.
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Box 2: The Equipartition Theorem.
Let us consider a collision of a two particles of masses m1 and m2 with velocities
v1 and v2 before the collision, and with velocities v

0
1 and v

0
2 after the collision, re-

spectively. Conservation of energy and momentum guarantee conservation of the
velocity of the center-of-mass after the collision, as well as of the absolute value
of the relative velocity (Feynman). One of the central assumptions of statistical
mechanics is that the velocities of the scattered particles are uncorrelated. From
this one can show that < m1v

02
1 > =< m2v

02
2 >. Thus the mean kinetic energy

of a point particle moving in 1-D is constant equal to < mv2/2 >= kBT/2.
At room temperature, the quantity kBT ' 4.1pN·nm is the �unit� of thermal
energy, natural unit of energy on molecular scale.

� Exercise 1: For a 10nm sphere moving in water, compute the relaxation time τ .
�

� Exercise 2: Use conservation of energy and momentum to demonstrate that the
velocity of the center-of-mass, Vcm = (m1v1+m2v2)/(m1+m2), and the absolute value of
the relative velocity, |v1−v2|, are conserved after the collision. Then, assuming that the
velocities of the scattered particles are uncorrelated:< v01·v02 >= 0 and< Vcm·v01,2 >= 0,
prove that < m1v

02
1 > =< m2v

02
2 >. �

For very short times, t¿ τ , we can expand the exponential in (12.5) to the second
order to obtain:

< x2 >=
kBT

m
t2, t¿ τ. (12.6)

That is, at very short times the protein behaves as a ballistic particle moving with a
velocity v =

p
kBT/m. For a protein with m = 10−21kg = 10−18pN·sec2/nm, v ' 2m/s.

However, in a ßuid the protein moves at this velocity only for a time τ ' 10−13sec,
much faster than any motion of interest in a molecular motor. During this short time
the protein travels a distance v · τ ' 0.02nm before it collides with another molecule.
This is only a fraction of a diameter, so the ballistic regime is very short lived indeed!
Very quickly, the kinetic energy of the protein comes into thermal equilibrium with
the ßuid environment (gets �thermalized�). Thus when t À τ , the exponential term
disappears and (12.5) becomes

< x2 >= 2
kBT

ζ
t, tÀ τ. (12.7)

Comparing (12.7) with a familiar relationship between the mean square displacement
of a particle and its diffusion coefficient, D:

< x2 >= 2Dt. (12.8)

Einstein recognized that the same force that create the frictional drag on a moving
body was caused by random collisions with the ßuid molecules, which is the same effect
as the Brownian force that gives rise to the diffusive motion of the body. Therefore,
there must be a connection between the drag coefficient and diffusive motion. This is
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captured in the famous Einstein relation:

D = kBT/ζ, (12.9)

where the diffusion coefficient of the protein is typically D ∼ 107nm2 /sec.
Thus, at a time scale of interest, inertial effect can be neglected, and protein

movements can be modeled by the equation ζdx/dt = fB(t). Finally, if an external
force, F, acts on the protein, this can be added to this equation, so that it becomes:
ζdx/dt = F (x, t) + fB(t). In general, forces acting on proteins can be characterized by
a potential, F (x, t) = −∂φ(x, t)/∂x ≡ −φ0(x, t), so the equation of motion for a protein
moving through a ßuid becomes:

ζ
dx

dt
= F (x, t) + fB(t) = −∂φ(x, t)

∂x
+ fB(t). (12.10)

Equation (12.10) is frequently referred to as a Langevin equation, although this term
more properly applies to the corresponding equation (12.1) that includes inertia.

Equation (12.8) suggests a method for modeling the Brownian force term, fB(t), on
a computer: in a time interval∆t, fB(t) should produce a root mean square displacement
of
√
2D∆t. Since the force is random, the displacement consists of a large number of

uncorrelated spatial steps. According to the Central Limit Theorem of statistics (Ross),
these steps should be symmetrically distributed about the mean value, so we can model
the random force as

1

ζ

Z ∆t

0

fB(t) =
√
2D∆t ·N(0, 1), [Brownianforce]

where N(0, 1) is the unit normal distribution, i.e. with mean 0 and variance 1. The ran-
dom number generator, N(0, 1) is generally a standard function in most programming
languages. Using this model Brownian force, equation (12.10) is very easy to simulate
numerically using the Euler method with time step ∆t:

x(t+∆t) = x(t)− D

kBT
F (x(t), t)∆t+

√
2D∆t ·N(0, 1). (12.11)

We can nondimensionalize (12.11) by deÞning time and space scales. If the domain
0 ≤ x ≤ L, the spatial variable can be normalized as x/L. A time scale can be deÞned
by τ = L2/D, characteristic time to diffuse across the domain. Introducing the space
and time scales, (12.11) can be written in dimensionless form as:

x(t+∆t) = x(t) +w∆t+
√
2∆t ·N(0, 1), w =

FL

kBT
, (12.12)

where t and x are now dimensionless.
� Exercise 3: Simulate equation (12.11) with the double well potential φ(x) =

kBT [(x/L)
4 − (x/L)2] and x(0) = −L. Remember that you have to choose small steps:

�h ¿ 1 (think why). Run simulations until (i) tend = L2/D, (ii) tend = 10L2/D, (iii)
tend = 100L

2/D. Discuss results. �
Although simulating equation (12.12) on a computer is easy, it is also easy to

generate erroneous results, e.g. numerical instabilities which look very like random
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displacements due to Brownian motion, or currents that do not vanish at equilibrium.
A better numerical method of simulating random motions that does not have these
problems will be given in Chapter .

12.1.2 The Smoluchowski model

Consider the motion of a protein moving under the inßuence of a constant external
force, for example, an electric Þeld. Because of Brownian motion no two stochastic
trajectories will look the same. Moreover, even a detailed examination of the path
cannot distinguish whether a particular displacement �step� was caused by a Brownian
ßuctuation or the effect of the Þeld. Only by tracking the particle for a long time and
computing the average position vs. time can one detect that the diffusion of the particle
exhibits a �drift velocity� in the direction of the force. Therefore, a better way to think
about stochastic motion is to imagine a large collection of independent particles moving
together. Then we can deÞne the concentration of particles at position x and time t as
c(x, t) [#/nm], and track the evolution of this ensemble.

As the cloud of particles diffuses and drifts we can write an expression for the ßux of
particles, Jx [#/sec]. The diffusive motion of the particles is modeled well by Fick�s law
(Chapter 6): Jx = −D∂c/∂x. The external Þeld exerts a force on each particle, F = −φ0
which, in the absence of any diffusive motion, would impart a drift velocity proportional
to the Þeld: v = F/ζ. Thus the motion of the body is the sum of the Brownian diffusion
and the Þeld-driven drift: Jx = −D∂c/∂x+ vc, which can be written in several ways:

Jx = −D ∂c
∂x
− D

kBT
· ∂φ
∂x
· c = −D( ∂c

∂x
+
∂(φ/kBT )

∂x
· c) = −1

ζ
(kBT

∂c

∂x
+ c · ∂φ

∂x
). (12.13)

At equilibrium the ßux vanishes: (kBT/ceq)(∂ceq/∂x)+∂φ/∂x = 0. Integrating this
over all x, shows that the concentration of particles at equilibrium in an external Þeld
is given by the Boltzmann distribution:

ceq = c0e
−φ/kBT . [Boltzmann distribution] (12.14)

� Exercise 4: Plot the Boltzmann distribution in the case of the double well
potential (Exercise 3). Discuss results. �
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Box 3: Some connections with thermodynamics.
Note that the ßux (12.13) can also be written as Jx = − c

ζ

∂

∂x
(kBT ln c+φ). There

can be many steady states characterized by a constant ßux: Jx = const; one of
these is the special case of equilibrium: Jx = 0. At equilibrium, one can deÞne
the quantity µ = (kBT ln ceq + φ) called the chemical potential. The equilib-
rium distribution of ceq(x) can be computed by setting the gradient in chemical
potential to zero, so that µ =const; this is exactly equivalent to enforcing a
Boltzmann distribution, (12.14).
The chemical potential is also the free energy per mole, G = µN , where N
is the mole number (mole is ' Na molecules of a substance; Na ' 6 · 1023 is
Avogadro�s number). At equilibrium we can deÞne the entropy, S ≡ −kBN ln ceq
and the enthalpy as H = φN . Then we arrive at the deÞnition of the free energy:
G = H − TS. These deÞnitions will prove useful when we discuss chemical
reactions. Here we note simply that diffusion smoothes out the concentration
leading to an increase in entropy. Thus entropic increase accompanying the
motion of the ensemble is handled by the Fickian diffusion term in the ßux
(12.13).
When the particles are charged (e.g. protons), then the chemical potential
difference between two states, or across a membrane, is written as: ∆µ =
µ2 − µ1 = (φ2 + kBT ln c2)− (φ1 + kBT ln c1) = (φ2 − φ1) + kBT (lnc2 − lnc1) =
∆φ − 2.3 kBT ∆pH. Here pH = −log10cH+. The protonmotive force is deÞned
as p.m.f. = ∆µ/e = ∆ψ − 2.3 (kBT/e) ∆pH, where e is the electronic charge,
and ∆ψ = ∆φ/e, [mV], is the transmembrane electric potential.

Since the number of particles in the swarm remains constant, c(x, t) must obey the
conservation law (see Chapter 6):

∂c

∂t
= −∂Jx

∂x
, [conservation of particles] (12.15)

Rather than focussing our attention on the swarm of particles, we can rephrase our
discussion in terms of the probability of Þnding a single particle at (x, t). To do this we
normalize the concentration in equation (12.13) by dividing by the total population,
p(x, t) = c(x, t)/(

R L
0
c(x, t)dx). Inserting equation (12.13) expressed in terms of p(x, t)

into the conservation law (12.15) yields the Smoluchowski equation:

∂p

∂t
= D[

∂

∂x

¡
p
∂(φ/kBT )

∂x

¢
+
∂2p

∂x2
]. (12.16)

Comparing this with the Langevin equation (12.10) shows that the Brownian force is
replaced by the diffusion term and the effect of the deterministic forcing is captured by
the drift term.

We can nondimensionalize (12.16) scaling time and space similarly to (12.12). In
terms of the dimensionless t and x, (12.16) can be written in the form:

∂p

∂t
=
∂

∂x

¡
p
∂φ

∂x

¢
+
∂2p

∂x2
, (12.17)
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where the potential, φ, is measured in units of the thermal energy, kBT . Equation
(12.17) must be augmented by appropriate boundary conditions that will depend on
the system being modeled.

An important generalization is necessary to model molecular motors. We have spo-
ken of the potential, φ(x, t), that provides the deterministic forcing as an external force.
However, for a molecular motor φ(x, t) generally includes forces generated internally
by the motor itself which drive the motor forward. Thus the potential term in equation
(12.17) must be broken into two parts: φ(x, t) = φi(x, t) + φl(x, t), where φi(x, t) is
internally generated force, and φl(x, t) is the external load force. A common situation
is a constant load force, Fl, in which case φl(x, t) = Flx, so that −∂φ/∂x = −Fl; i.e. the
load force acts to oppose the motor�s forward progress. The internally generated force
potential will generally depend on the chemical state of the system. That is, the me-
chanical evolution of the system�s geometrical coordinates governed by equation (12.17)
is coupled to the chemistry. Each chemical state is characterized by its own probability
distribution, pk(x, t), where k ranges over all the chemical states, and each chemical
state is typically characterized by a separate driving potential, φk(x, t). Thus there will
be a Smoluchowski equation (12.17) for each chemical state, and these equations must
be solved simultaneously to obtain the motor�s motion. To see how to couple these
equations together to make a complete mechanochemical model for a molecular motor,
we next discuss how one can model chemical reactions.

Box 4: A motor driven by a �ßashing potential�.
A protein is driven by alternating its exposure to two potentials, φ1 (solid line)
and φ2 (dashed line), as shown in the Þgure below. While in either potential,
the motion of the particle is given simply by ζdx/dt = −dφi/dx, i = 1, 2. If
switching between the potentials is governed by a chemical reaction (vertical
arrows) which is timed to occur only at the bottom of each potential, then
the protein moves steadily forward. The arrows show the forward progress of
the motor, although all steps are reversible. ∆Gsw is the free energy difference
associated with switching between potentials 1 → 2. The motion down the
potential 2→ 3, generates an amount of heat Q. The free energy consumption
in the reaction cycle 1 → 2 → 3 is ∆G. Note that in this situation, the heat
generated by frictional dissipation due to motion is actually larger than the free
energy drop in the reaction cycle Q > ∆G. (Where does the �extra� energy come
from?)

12.1.3 Modeling chemical reactions

The energy to drive a molecular motors is supplied by chemical reactions. Two of the
most common energy sources are nucleotide hydrolysis and transmembrane protonmo-
tive force. The former uses the energy stored in the covalent bond that attaches the
terminal phosphate (γ-phosphate) to the rest of the nucleotide. The latter uses the elec-
trical and entropic energy arising from a difference in ion concentrations across a lipid
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Figure 12.1

bilayer. Hydrolysis is a complicated process, still incompletely understood. Therefore,
we will introduce the reaction model using the simple example of a positively charged
ion (e.g. H+) binding to a negatively charged amino acid: H+ + A− ←→ H · A. If we
focus our attention on the amino acid, we see it exists in two states: charged (A−) and
neutral (H · A ≡ A0), so that the neutralization reaction from the viewpoint of the
amino acid is simply

A−

k1 · [H+]

−→
←
k−1

A0. (12.18)

Here we use the chemists� convention of denoting concentrations in brackets: k1 · [H+]
and k−1 are the forward and reverse rate constants; the forward rate constant depends
on the ion concentration, [H+], which we will treat as a constant parameter (i.e. we
shorten our notation to k1 · [H+] ≡ k1, where k1 is called a pseudo-Þrst order rate
constant).

The rate constants in reaction (12.18) conceal a great deal of physics, for the process
of even a simple reaction as this is, at the atomic level, quite complex. To model
this reaction at a more microscopic level involves introducing additional coordinates
to describe the process by which an ionic chemical bond is made and broken. These
coordinates have a spatial scale much smaller than the motion of the motor itself (e.g.
angstroms vs. nanometers), and a time scale much faster than any motion of the motor
(picoseconds vs. microseconds). This is because all reactions involve a redistribution
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of electrons, and electrons, being very small, move very rapidly. Moreover, in all but
the simplest cases, their movements are governed by quantum mechanics rather than
classical mechanics. Nevertheless, it is instructive to use the Smoluchowski model to
derive a more detailed expression for the rate constants. A more detailed discussion can
be found in (Billing, Warshel, Naray-Szabo).

The fundamental concept underlying the modeling of reactions is the notion of a
�reaction coordinate�, which we denote by ξ. In molecular dynamics simulations, this
is actually a 1-D path through a very high dimensional state space along which the
system moves from reactants to products (Billing, Warshel, Naray-Szabo). For the
reaction (12.18), ξ(t) is the distance between the ion (H+) and the amino acid charge,
(A−). The spatial scale of this coordinate is much smaller (i.e. angstroms) than the
spatial scale of the motor�s motion, but we can imagine a �super-microscopic� view of
the process as shown in Figure 12.2a, where we have plotted the free energy change,
∆G, during a reaction as a function of the reaction coordinate, ξ. The reason for using
free energy is because there are many �hidden� degrees of freedom that must be handled
statistically, as will become clear presently. Here the chemical states of the amino acid,
A− and A0, are pictured as energy wells separated by a barrier of heights ∆G+

1 and
∆G+

2 , and whose difference in depth is ∆G. The �transition state� (TS) is located at
the top of the pass between the two wells.

For a Þxed H+ concentration, the forward chemical reaction A− → A0 proceeds
with a rate k1 · [A−] [#/sec]. However, this rate is a statistical average over many
�hidden� events. For a particular reaction to take place, the proton must diffuse to
within a few angstroms of the amino acid charge so that the electrostatic attraction
between them is felt. Moreover, if the amino acid is located within a protein, there will
be steric diffusion barriers that must be circumvented before the two ions �see� each
other electrostatically. As the concentration of H+ increases, there will be more �tries�
at neutralization (i.e. hops from the right well to the left well).

Similarly, the reverse reaction, A0 → A− takes place when a thermal ßuctuation
confers enough kinetic energy on the proton to overcome the electrostatic attraction.
Even then, the �free� proton will more often than not diffuse back and rebind to the
amino acid, especially if the route between the solution and the amino acid is tortuous.
Only when the proton manages a successful escape into solution (the left well) does it
count in computing k−1.

The net ßux over the barrier is

Jξ = k1 · [A−]− k−1 · [A0]. (12.19)

After a long time the net ßux between the two wells will vanish: Jξ = 0, so that the popu-
lation of neutral and charged sites will distribute themselves between the wells in a Þxed
ratio, which we denote by Keq (the equilibrium constant): Keq ≡ [A0

eq]/[A
−
eq] = k1/k−1.

If the transition state is high (∆G+
1 > kBT ), then we can assume that population

apportions between the two wells according to the generalized Boltzmann distri-
bution: Keq = exp(∆G/kBT ) (compare this formula with (12.14)). We know that
∆G = ∆H − T∆S (Box 3). The enthalpy term, ∆H, is due to the electrostatic attrac-
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Figure 12.2 (a) Free energy diagram illustrating the chemical reaction A←→ B and the corresponding
Markov model. The transition state, TS, is ∆G+1 above the left well and ∆G

+
2 above the right well. ∆G is

the free energy difference between the well bottoms. The equilibrium distribution between the wells depends
only on ∆G. (b) The effect of entropic factors on the reaction A ←→ B. The equilibrium populations
in each well remain the same, but the transition rates between the wells are different due to the entropic
effects of widening the transition state, TS, and the width, W, of the right well.

tion between the proton and the charged site. The entropic term, T∆S, incorporates
all the effects that inßuence the diffusion of the proton to the site and its escape from
it, the �hidden coordinates�. Note that the value of ∆G determines how far the reaction
goes, independently of the absolute height of the TS.

There is one effect that is very signiÞcant in biochemical reactions, and which
illustrates the importance of entropic effects: hydration. Before the proton can bind to
the amino acid, it must divest itself of several �waters of hydration�. This is because
water, being a dipole, will tend to cluster about ions in solution, hindering them from
binding to a charged site which is also insulated by its own hydration shell. Suppose
for the sake of illustration that the energies binding the waters to the two reactants
are just equal to the electrostatic energy of binding between the reactants. Binding
seems unfavorable since the proton will loose its translational and rotational degrees of
freedom (∼ 3kBT according to the equipartition theorem, Box 2). The binding reaction
can still proceed strongly because the liberation of the hydration waters is accompanied
by a large entropy increase since each water gains ∼ 3kBT of rotational and translational
energy, and so the term −T∆S is strongly negative.
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Box 5: Jumping beans and entropy.
An analogy may make the role of entropic factors more clear. Imagine that
the left well is Þlled with Mexican jumping beans whose hops are random in
height and angle. We can vary the equilibrium populations of beans in each well
without altering the height of the barrier by simply increasing the width of the
transition state or of one of the wells. This is shown in Figure 12.2b. Now a
bean in the right well may execute many more futile jumps before hurdling the
barrier: if it jumps from the right side of the well it will fall back into the well
even if its jump is high enough, or if it reaches the transition state it must diffuse
(hop) along the plateau randomly with a high probability of hopping back into
the right hand well. Both of these effects make it more difficult to escape from
the right well, and so the equilibrium population there will increase, as will Keq,
the equilibrium population ratio.
The rate at which beans can pass the barrier from right to left will have the
form

k−1 = ν · exp(∆G+
2 /kBT ) = ν · exp(∆S/kB) · exp(−∆H/kBT ),

where ν is a frequency factor (number of jumps/unit time). For reactions
that involve an atomic vibration, this is approximately kBT/h̄, where h̄ is
Planck�s constant. For diffusion controlled reactions this can estimated from
more detailed models (Hanggi, Risken). The entropic term, e∆S/kB , accounts
for geometric and �hidden variables� effects. The enthalpic term, e∆H/kBT , ac-
counts for the electrostatic and/or hydrophobic interactions. Note that the
height of the barrier, ∆G+

2 determines how fast the reaction goes. The expo-
nent exp(∆G+

2 /kBT ) is called the Arrhenius factor. Because of this factor the
reaction rate depends dramatically on the height of the energy barrier.

All this means that the rate constants summarize the statistical behavior of a large
number of �hidden� coordinates that are very difficult to compute explicitly, but may be
easy to measure phenomenologically (see, for example (Hanggi)). For our purposes, we
shall adopt this phenomenological view of chemical reactions, and assume that the rate
constants can be speciÞed, so that the only entropic effect we need deal with explicitly
is the concentrations of the reactants, such as [H+] in equation (12.18). Therefore, we
can treat reactions using Markov chain theory, as indicated by the 2-state model shown
at the bottom of Figure 12.2a, whose equations of motion are:

d

dt
[A0] = − d

dt
[A−] = net ßow over the energy barrier = Jξ = k1[A

−]− k−1[A0],

or in the vector form:

d

dt
A = Jξ = K ·A, A =

µ
[A−]
[A0]

¶
, K =

µ
k1 −k−1
−k1 k−1

¶
. (12.20)

In general, the net chemical ßux will have the form Jξ = K(A) ·A, where the matrix
K(A) is the matrix of transition rates, i.e. pseudo-Þrst order rate constants which may
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contain reactant concentrations that are held parametrically constant. Implicit in this
formulation are the assumptions that (i) the actual reaction takes place instantaneously
(electronic rearrangements are very fast), so that a substance remains in a chemical
state for an exponentially distributed mean time before jumping (reacting) to another
state; (ii) the transition out of a state depends only on the state itself, and not an any
previous history.

12.1.4 A mechanochemical model

We can now assemble a complete formalism for modeling mechanochemical systems.
We use the Smoluchowski model (12.16) to model the spatial degrees of freedom of the
motor, and a Markov chain (12.20) to model the chemical reactions. Thus the total
change in probability, p(x, ξ, t) is given by

∂

∂t

µ
p1
p2

¶
= −

µ
(∂/∂x1)Jx1
(∂/∂x2)Jx2

¶
+

µ
Jξ1
Jξ2

¶
=

−D
µ−(∂/∂x1)[p1(φ1/kBT ) + (∂p1/∂x1)]
−(∂/∂x2)[p2(φ2/kBT ) + (∂p2/∂x2)]

¶
+

µ
k−1p2 − k1p1
k1p1 − k−1p2

¶
, (12.21)

where the probability densities φi(xi, t), i = 1, 2 now keep track of the motion along
the spatial and reaction coordinates. We can visualize the mechanochemical coupling
by plotting the spatial and reaction coordinates as shown in Figure 12.3.

Figure 12.3 The mechanochemical phase plane. A point is deÞned by its spatial and reaction coordinates
(x(t), ξ(t)). The ßow of probability in the spatial direction is given by the Smoluchowski model (12.16),
and the ßow in the reaction direction is given by the Markov model (12.20).
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12.2 Model of a Simple Molecular Motor

To illustrate the formalism, we shall examine in detail a simpliÞed model of the ion-
driven Fo motor of ATP synthase (Elston, Dimroth). This will illustrate many of the
principles of mechanochemical energy conversion by proteins, but is sufficiently simple
to analyze analytically. The motor is sketched schematically in Figure 12.4. It consists
of two reservoirs separated by an ion impermeable membrane. The reservoir on the
left is acidic (high proton concentration), and the reservoir on the right is basic (low
concentration). The motor itself consist of two �parts�: (i) a �rotor� carrying negatively
charged sites spaced a distance L apart that can be protonated and deprotonated; (ii)
a �stator� consisting of a hydrophobic barrier that is penetrated by a polar strip that
can allow a protonated site to pass through the membrane, but will block the passage
of an unprotonated site.

Qualitatively, the motor works like this. Rotor sites on the acidic side of the mem-
brane are nearly always protonated. In this state (a nearly neutral dipole) the rotor can
diffuse to the right allowing the protonated site to pass through the membrane-stator
interface to the basic reservoir. Once exposed to the low proton concentration in the
basic reservoir, the proton quickly dissociates from the rotor site. In its charged state,
the rotor site cannot diffuse backwards across the interface: its diffusion is �ratcheted�.
A transmembrane potential, ∆ψ, will add an additional electrostatic driving force to
the right.

We will assume that the rotor can exist in two possible states, shown in Fig. (??A).
The state with two empty binding sites is static. In another state, all but one site are
protonated. This nearly neutral site can diffuse through the membrane-stator interface.
This diffusion is limited from both sides by the neighboring unprotonated sites that
cannot pass through the membrane. We call this state is rotating. For the sake of
simplicity, we forbid the state, in which more than one site is protonated. The transitions
between these states depend on the position of the rotor. In the rotating state, the
constant �internal� (electrostatic) force, Fi = e∆ψ/L, and the external load force, −Fl,
are applied to the rotor.

The most important characteristics of a molecular motor is its force-velocity relation
showing functional dependence between the rate of movement and the load. Because of
the microscopic scale and omnipresence of the brownian movement, protein machines
have another important quantitative characteristics accounting for the stochastisity of
motor�s movement, which is rate of growth of displacement variance.

12.2.1 Force-velocity relation: fast diffusion, slow reaction
kinetics

The model can be described in terms of the probability that the sites at the sides of the
membrane are de-protonated, pd(t) [n/d], and the probability that one site is protonated
and is at the distance x from the membrane midline, pp(x, t) [1/nm],−L/2 ≤ x ≤ L/2.
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Figure 12.4 SimpliÞed model illustrating the principle of the Fo motor.

The equations governing the probabilities have the form:

dpd
dt

= −kppd + kdpp(L
2
) + kdpp(−L

2
), (12.22)

∂pp
∂t

= kppd − kdpp(L
2
)− kdpp(−L

2
)

+D
∂

∂x

¡∂pp
∂x

− Fi − Fl
kBT

pp
¢
. (12.23)

The Þrst terms in (12.22-12.23) describe the protonation from the acidic reservoir and
basic reservoirs with the rate kp [1/sec], respectively. The second and third terms in
these equations account for dissociation of a proton to the basic and acidic reservoirs.
The corresponding rates are proportional to the probabilities of the protonated site
reaching the basic and acidic reservoirs, pp(L/2) and pp(L/2), respectively. The propor-
tionality coefficient, kd has dimension [nm/sec]. The last two terms in (12.23) describe
the rotor�s diffusion and drift. No ßux boundary conditions at x = ±L/2 complete
equation (12.23).

Choosing L as the length scale, the time scale of the de-protonation reaction, L/kd,
as the time scale, we rescale the model variables: x0 = x/L, t0 = kdt/L. The non-
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dimensionalized equations have the form (where we omitted primes):

dpd
dt

= −κpd + pp(1
2
) + pp(−1

2
), (12.24)

∂pp
∂t

= −κpd + pp(1
2
) + pp(−1

2
) + Λ

∂

∂x

¡∂pp
∂x

−wpp
¢
, (12.25)

Λ = D/kdL, w = (Fi − Fl)L/kBT, κ = kpL/kd. (12.26)

The model�s behavior depends on three dimensionless parameters. Parameter Λ is the
ratio of the reaction and diffusion time scales. Parameters κ is the ratio of the proto-
nation and de-protonation rates. Parameter w is the work done by the total force on
the spatial scale measured in the units of thermal energy.

Here we will discuss the situation when the diffusion is much faster, than the reac-
tion: ΛÀ 1, which is true for Fo motor. In this case, powerful apparatus of perturbation
theory (Lin and Segel) can be applied. We perform the corresponding analysis heuristi-
cally. One can see from the right hand sides of equations (12.24-12.25) that the diffusion
and drift terms in equation (12.25) are large, and thus describe the movement of the
rotor on the �fast� diffusion time scale. All the other terms of order one account for the
reactions taking place on a �slow� time scale. The conjecture is that on the the slow,
reaction, time scale, the mechanical ßuctuations relax to the thermal equilibrium de-
scribed by Boltzmann distribution. In the zeroth approximation, pp(x, t) = pp(t)φ(x),
where pp(t) is the probability of the rotating state, and φ(x) is the equilibrium probabil-
ity density for the rotor�s position relative to the stator. Effectively, the fast brownian
dynamics is separated from the slow, reaction dynamics. The function φ(x) can be
found from the requirement that, on the slow time scale, the last terms in (12.25) have
to be of order one. Because of the greatness of parameter Λ, in the zeroth approxima-
tion, the expression in the last brackets in (12.25) has to be equal to zero. Therefore,
function φ(x) has to obey the stationary Smoluchowski equation with no ßux boundary
conditions:

dφ

dx
− wφ = 0, φ(x) =

w ewx

2sinh(w/2)
, −1

2
≤ x ≤ 1

2
. (12.27)

Boltzmann distribution φ(x) is normalized on 1. Thus, pp(± 1

2
, t) = pp(t)φ(± 1

2
). Sub-

stituting this expression into equation (12.24) and using the conservation of the total
probability, pd(t) + pp(t) = 1, we obtain:

dpd
dt

= −dpp
dt

= −κpd + φ+pp + φ−pp, φ± =
we±w/2

2sinh(w/2)
. (12.28)

Effectively, we reduced the complex motor�s mechanochemistry to the simple effective
reaction kinetics.

¿From (12.28), the stationary probabilities to Þnd the motor in the protonated and
de-protonated states are:

pp =
φ+ + φ−

κ+ φ+ + φ−
, pd =

κ

κ+ φ+ + φ−
. (12.29)
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respectively.
There is a simple way to Þnd the average rate of the rotor�s motion. When empty

rotor site is protonated from the acidic reservoir with the rate kap , the rotor effectively
makes an average step of the size L/2 to the right (because the site localized at −L/2
starts to diffuse between −L/2 and L/2). Similarly, when empty rotor site is protonated
from the basic reservoir with the rate kbp (note that kp ≡ kbp + kap), the rotor effectively
makes a step L/2 to the left. Thus, the average rate of displacement factored by the
probability to be in the de-protonated state is (L/2)pp(k

a
p − kbp). By analogy, release of

the proton to the basic or acidic reservoir corresponds to the step to the right or to the
left respectively. Corresponding average rate displacement factored by the probability to
be in the protonated state is (L/2)pd(kdφ+−kdφ−). Adding these rates of displacement,
we obtain the dimensional expression for the average velocity of the motor:

V =
L

2
[pp(k

a
p − kbp) + pd(kdφ+ − kdφ−)]. (12.30)

We assume that the rates of protonation are proportional to the corresponding proton�s
concentrations: kap =

�kpca, kbp =
�kpcb. Then, the dimensional expression for the force-

velocity relation has the form:

V (f) =
L

2

w�kpkd (caew/2 − cbe−w/2)
�kpL(ca + cb) sinh(w/2) + kdw cosh(w/2)

, w =
(Fi − Fl)L
kBT

. (12.31)

Let us examine the numerator of equation (12.31). Clearly, if there is a symmetry
in the system, Fi = Fl = 0, ca = cb, then V (0) = 0, but if either ca > cb, or Fi > 0, or
both, then V (0) > 0.

In Fig. 12.5, we plotted the average motor�s velocity as a function of the load force
for the pure brownian ratchet case (ca > cb, Fi = 0). The shape of the force-velocity
curve may vary depending on the values of the model parameters. Fitting the result of
the mathematical model to an experimental data provides valuable information on the
motor�s mechanochemical cycle.

At certain force, the average velocity becomes equal to zero - the motor is stalled.
The corresponding stall force, Fs, can be easily found equalizing the numerator in
(12.31) to zero:

Fs = Fi +
kBT

L
ln[
ca
cb
]. (12.32)

In the pure power stroke limiting case (ca = cb, Fi > 0), Fs = Fi: when the load force
exactly balances the membrane potential, the motor is stalled. In the pure brownian
ratchet limiting case, Fs = (kBT/L)ln[ca/cb]. In most important cases, the logarithmic
factor is of the order of unity (in the case of the proton driven motor, this factor is
equal to (−∆pH)). Thus, the order of magnitude of the force generated by the brownian
ratchet mechanism is equal to thermal energy divided by the motor�s step size. The stall
force (12.32) for our simple motor is the direct sum of the force generated by the power
stroke and brownian ratchet mechanisms. Note, that the expression in the right hand
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Figure 12.5 Force-velocity curve

side of formula (12.32) multiplied by L becomes the expression for the protonmotive
force per one proton: p.m.f. = FL+kBT ln[ca/cb] = e∆ψ−2.3kBT∆pH. Near the stall,
when the motor moves slowly close to a thermodynamic equilibrium, the work done by
the motor, FsL, is equal to the protonmotive force, so the motor�s efficiency approaches
100%.

Note also that, hypothetically, if the temperature is lowered to the absolute zero
(of course, life would stp, so this is a mental experment), the power stroke mechanism
would still work. Meanwhile the brownian ratchet depending on thermal ßuctuations
to operate would stop. The brownian movement is a �lubricant� that can �freeze�.
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12.2.2 Statistical behavior of the motor

Because of the omnipresence of brownian motion on the molecular scale, motor�s ad-
vancement is not deterministic. A useful measure of the corresponding ßuctuations is
the variance of the motor�s displacement: var =< x2 > − < x >2. Here, we look at the
variance in the limiting situation, when both the membrane potential is very strong,
F À kBT/L, and the pH gradient is very high, ca À cb. In this case, the processes of
the protonation from the basic reservoir and dissociation into the acidic reservoir can
be neglected, and the mechanochemical cycle simpliÞes considerably Fig. (??C).

Effectively, the cycle consists of two �half-steps� of size L/2 each made with the rates
k1 and k2, respectively. Both half-steps are stochastic Poisson processes. Using simple
tools of the probability theory (Ross), it is easy to compute the mean duration of the full
step, < τs >= k

−1
1 +k−12 , and its variance, σ

2 = (k21+k
2
2)/k

2
1k

2
2 . According to the theory

of stochastic processes (Ross), the expected number of full steps of size L over the time
interval ∆t is n = ∆t/ < τs >, while the variance of this number is σ

2∆t/ < τs >
3.

Respectively, the average velocity, V = L/ < τc >, is just the step size divided by
the average duration of the cycle. The rate of growth of the displacement variance,
d(var)/dt = (σ2/τ 2s )LV . This expression shows that the variance of dispalcement grows
at the constant rate proportional to the product of the step size and average velocity.
The dimensionless proportionality coefficient, r = σ2/τ 2s = (k

2
1+k

2
2)/(k1+k2)

2, is called
randomness parameter due to the following reasons.

With the help of elementary calculus, one can conÞrm easily that 0.5 ≤ r ≤ 1.
The randomness parameter reaches the maximal value of 1 as the ratio of the rates of
the half-steps, k1/k2, approaches either zero, or inÞnity, and the minimal value of 0.5
as this ratio is equal to 1. There is a notion of a Poisson stepper - hypothetic walker
that makes steps of Þxed size and direction. The steps are made at time moments
distributed according to Poisson distribution, with certain constant average rate. Our
motor becomes the Poisson stepper, when the ratio k1/k2 approaches either zero, or
inÞnity, and duration of one of the half-steps can be neglected relative to the other. So,
for the Poisson stepper, the randomness parameter is equal to 1: in certain sense, this is
the �most stochastic� mode of propulsion. If the rates of the half-steps are comparable,
the motor becomes less stochastic, r < 1. The motor is the most deterministic when
the durations of both half-steps are equal, and the displacement variance grows with
the rate half that of the corresponding Poisson stepper. Of course, the motor gets even
more deterministic if each cycle involves more chemical steps.

Note, that we could deÞne the effective diffusion constant, Deff = (var)/2t for
long times. Its value accounts for both variance due to Brownian movement and the
randomness along the reaction coordinate. The randomness parameter and the effective
diffusion constant are related by r = 2Deff/LV , or r = DeffLV r/2. Both parameters
bear the same information. However, in some situations it is more appropriate to use
one of them rather than the other. For example, if the reaction process is reversible,
but the spatial step is not (motor only steps forward), the (1/r) gives a lower bound on
the number of reaction processes per step. Then, knowing the step size and measuring
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the variance and displacement, one can Þnd an information about the chemical cycle.
Alternatively, if the number of reaction processes per step is known, the step size can
be estimated. Meanwhile, spatial diffusion does not affect the effective dispersion. This
situation is better treated using the randomness parameter. In the general case, neither
r, nor Deff gives information about the number of reaction processes per step.

12.3 Other Motor Proteins

12.3.1 �Walking motor�: kinesin

The cytoplasm of eucaryotic cells is Þlled with cytoskeleton, dynamic meshwork of linear
protein Þlaments providing mechanical support and mobility for the cell and serving
as tracks for transport between different cell regions. Microtubules (MTs) are one of
three major types of linear cytoskeletal polymers. They are polar structures that have
distinct plus and minus ends. Structurally, MTs are long, straight hollow cylinders with
an outer diameter of 25 nm. Their walls consist of 13 protoÞlaments, each of which is
a linear polar assembly of 8 nm longtubulin subunits. Tubulin is a dimeric protein
assembled of α- and β-subunits.

A host of motor proteins uses MTs as lines of transport. One of this motors (or,
rather, one of the motor families), kinesin is a dimeric motor protein that converts
the energy of ATP hydrolysis into mechanical work, transporting organelles toward the
plus ends of MTs (Bray, 1992). Kinesin �walks� along a single MT�s protoÞlament in
a stepwise manner using tubulin dimers as �steps of the ladder� (Ray et al., 1993, last
Vale). The length of a step is 8nm (Svoboda et al., 1993), the same as protoÞlament
period. Kinesin mainly interacts with β-tubulin. This walk, at speeds of few hundreds
nanometers per second, is resisted by viscous drag of the cytoplasm. At such speeds
the viscous drag is negligeable, but at higher loads the rate of motion slows down,
and the motor gets stalled by forces of 5-6 pN (Svoboda & Block, 1994). The motor
can therefore produce an energy of ' 40 pN·nm per step, which is about 50% of the
energy available from one ATP molecule (Bray, 1992). Conventional dimeric kinesin
is a highly processive motor able to move along more than 100 tubulin units before
detaching (Block et al., 1990; Vale et al., 1996).

Essential features of the kinesin�s mechanical behavior are captured by a �head-over-
head� model (Peskin & Oster, 1995) based on the following remarkable structure of the
motor molecule. Kinesin contains two 7 nm globular domains - heads - connected to a
75 nm tail by the neck linker (Vale & Fletterick, 1997). Each head has a �catalytic core�
that binds ATP and MTs. Affinity of the heads to MTs is coupled to ATP hydrolysis
cycle. Details of the mechanochemical cycle are still not completely known, but based
on the available data, the following cycle can explain the motor�s processive motion
(there are alternative models, see ()).

When ATP is bound to one of the heads, this head is strongly bound to MT. Its neck
linker is docked to the catalytic core of the head in the forward pointing state. This keeps
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the other, ADP-head, bound to the β-tubulin site 8 nm ahead of the ATP-head. Next,
coordinated events of hydrolysis and phosphate release from the rear head and ADP
release from the front head lead to the state, in which the front head remains bound
to MT. Meanwhile, the rear head looses its affinity to MT in new chemical state. The
neck linker of the bound nucleotide-free head is ßexible, so ADP-head diffuses over the
bound head �in search� of an MT binding site. Finally, binding of ATP molecule to the
nucleotide-free head docks its neck linker in the forward pointing position completing
the cycle. As a result, one ATP molecule is hydrolyzed, and kinesin advances 8 nm
toward MT plus end.

In this model, asymmetry in hydrolysis rate between front and rear heads and the
geometry of the head�s binding and associated elastic power stroke drive the motor
forward. This power stroke is assisted by thermal diffusion. The reason we introduce
the model of kinesin walk here, besides this motor�s importance and despite the fact
that the details of the hydrolysis cycle are much more complicated than the process of
utilizing the protonmotive force, is that, mathematically, the kinesin walking model is
equivalent to the model of the previous section!

Indeed, the state when the rotor is static with two sites nearest to the membrane
unprotonated is equivalent to the state with two kinesin�s heads bound to two adjacent
β-tubulin sites. The state with one head bound to MT and the other ßuctuating between
the adjacent MT�s binding sites is equivalent to the state with one protonated rotor�s
site diffusing between the membrane�s faces (see Þgure). The Þnite length of the tether
between kinesin�s heads limit this diffusion to the interval ±8 nm similar to how the
hydrophobic barrier limits the rotor�s ßuctuations to ±L. The transmembrane potential
is equivalent to a protein elastic force created as a result of a conformation change
induced by the ATP binding. Protonation from the acidic or basic reservoir that make
rotor mobile is analogous to dissociation of the rear or front head of kinesin respectively.
Smaller rate of the dissociation of the rear head is due to coupling of the hydrolysis cycle
to head�s strain, which depends on the head�s relative locations. Proton�s release in the
stator-rotor model is analogous to binding of ATP to the diffusing head and consequent
association of this head with MT. Binding of the diffusing head to the β-tubulin site
8 nm ahead of the stationary head corresponds to the proton�s release into the basic
reservoir. Higher rate of this event compared to binding 8 nm behind the stationary
head is due to the bias by the elastic force that keeps the diffusing head mostly in
the forward pointing position. Finally, in both systems diffusion is much faster, than
reactions (refs).

Because of this complete quantitative analogy between the models, we can rely on
the analysis of the previous section to immediately write down the expression for the
force-velocity relation of kinesin:

V (f) = L
wka (k

r
de

w − kfde−w)
(krd + k

f
d ) sinh(w) + kaw cosh(w)

, w =
(Fe − Fl)L
kBT

. (12.33)

Here L = 8nm is the distance between two adjacent β-tubulin sites - kinesin�s step.
Fe and Fl are elastic and load forces, respectively. Parameters ka, k

r
d, k

f
d are the rates of
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ATP binding (and immediate head�s association) and rear and front head�s dissociation,
respectively.

The stall force in this model is given by the equation:

Fs = Fe +
kBT

L
ln[
krd
kfd
]. (12.34)

Force-velocity relation for single kinesin motors were measured independently by
few groups (Block, Vale). Comparing the measurements with theoretical results, Oster
and Peskin and Mogilner et al. () estimate the effective degree of coordination between
the rear and front heads (quantitatively, the ratio krd/k

f
d ) as k

r
d/k

f
d ' 20. This means

that brownian ratchet mechanism can generate (kBT/L) ln(k
r
d/k

f
d) ' (4pN · nm/8nm)

×3 ' 1.5pN. At the same time, the measured stall force is ' 5−6pN. Thus, 65−80% of
the force is generated by protein elasticity. This conclusion is supported by independent
facts.

12.3.2 �One shot� assembly motor: polymerization ratchet

The simplest mechanism for converting chemical energy into mechanical force is via
polymerization of a Þlament. The elongation velocity of a freely polymerizing Þlament
is given simply by the net rate of the polymerization times the �polymerization step�:

Vp = L(konM − koff). (12.35)

Here the polymerization step L [nm] is the size of a monomer, M [µM] is the local
monomer concentration, and kon [1/(sec ·µM)] and koff [1/sec] are the polymerization
and depolymerization rate constants, respectively.

Now, imagine an object with diffusion coefficient D placed in front of a growing
polymer, which is assumed to be perfectly rigid (Þgure). In order to add a monomer
onto the end of the polymer the object must diffuse at least a distance L away from
the tip to allow a monomer of size δ to intercalate between the Þlament tip and the
object. Suppose for the moment that the object diffuses freely, and that koff = 0,
so that the polymerization can be considered irreversible. The natural length scale
of the system is the monomer�s size, L. Two characteristic temporal scales are the
scale of the polymerization, 1/(konM), and the scale of diffusion, L

2/D. Here we will
consider the limiting case of fast polymerization and slow diffusion, konM À D/δ2,
opposite to that treated in the previous section. In this limit, the polymerization can
be considered instantaneous. This is a perfect brownian ratchet: each time the object
diffuses a distance L to the right, a monomer is instantly inserted that prevents it from
diffusing back to the left. How fast does the object move to the right? This can be
viewed as a Þrst passage time problem (Van Kampen). The mean Þrst passage time for
the object to diffuse the distance L is simply τfp = L

2/2D. Over many such intervals,
the mean velocity is V = L/τfp. Thus the velocity of a perfect brownian ratchet is
V = 2D/L, the result remarkable in its simplicity.
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Note that it seems that if the monomer�s size could be reduced, then we would be
able to get a faster motor. However, the dependence V ∼ 1/L is only true as far as
konM À D/L2, or L À p

D/konM . At smaller values of the monomer�s size, the rate
of polymerization becomes the limiting factor, and the velocity V ' LkonM becomes a
decreasing function of the monomer�s size. The greatest velocity that can be achieved by
the perfect brownian ratchet V ∼ √DkonM . It is an increasing function of parameters
D,kon,M , and is achieved at certain monomer�s size L ∼

p
D/konM .

When the load force, f > 0, resists the object�s motion to the right, energy must
be supplied to push the load. This energy is provided by the free energy associated
with monomer addition to the tip of the Þlament. The purely entropic free energy of
polymerization is given by ∆Gp = kBT ln(konM/koff). The process of polymerization
against a load can be represented as shown in Þgure,where the object is diffusing on a
staircase energy surface, V (x), with a step height of ∆Gp. The stall force, Fs, of the
polymerization ratchet can be found from the argument that close to thermodynamic
equilibrium, the work against the load over one polymerization step is equal to the free
energy of polymerization: FsL = kBT ln(konM/koff). Thus:

Fs =
kBT

L
ln[
konM

koff
]. (12.36)

12.3.3 Protein translocation

If the polymerization rate is very large compared to the load�s diffusion, while the
depolymerization rate is very small, the approximate force-velocity relation can be
obtained with the help of the following calculations.

Average position of the diffusing particle can be computed by solving a
Smoluchowski equation of the form:

∂p

∂t
= D[

d2p

dx2
+
1

l

dp

dx
], (12.37)

where p(x, t) is the probability of Þnding the particle at position x at time t, and
the parameter l = kBT/Fl [nm]. The problem has to be solved on the interval [0, L]
with the following boundary conditions. We put an absorbing boundary at x = L,
because as soon as the distance between the Þlament�s tip and the object is L, the
process of monomer�s assembly onto the tip occurs. Mathematically, p(L, t) = 0.
Therefore, we have to allow certain inßux through the left boundary of the do-
main. Let us Þnd the stationary solution of the corresponding Smoluchowski equation,
(d2p/dx2) + (1/l)(dp/dx) = 0.

Integrating once, we Þnd: dp/dx+(p/l) = −J/D, where J is an unknown constant
ßux. Integrating the second time, we obtain the stationary solution: p = −(Jl/D) +
Aexp(−x/l), where A is the integration constant. The ßux can be expressed in terms
of the normalization constant A with the help of the absorbing boundary condition:
p(L) = 0, J = (AD/l) exp(−L/l), p(x) = A[exp(−x/l)− exp(−L/l)]. The constant of
integration can be found from the condition that exactly one object is at the interval



308 12: Molecular Motors

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 12.6 Force-velocity curve

[0, L]:
R L
0
p(x)dx = Al[1− exp(−w)(1 +w)] = 1, w = (FlL/kBT ). Then:

J =
D

L2
· w2

exp(w)− 1−w.

The ßux has the dimension [sec−1] and can be interpreted as the rate of making a
step L forward. Effective rate of polymerization is then:

V = LJ =
D

L
· w2

exp(w)− 1− w, w =
FlL

kBT
. (12.38)

The corresponding force-velocity curve is plotted in Figure 12.6.
This situation is applicable to some cellular processes driven by polymerization:

protein synthesis on cytoplasmic ribosomes. Subsequently, proteins must be imported
into membrane compartments where they assume their biochemical duties. The process
by which proteins are targetted to and imported into intracellular organelles has been
studied extensively and many of the proteins involved have been identiÞed. The me-
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chanical process by which an unfolded peptide chain is transported across a lipid bilayer
begins when the unfolded chain binds to a transmembrane pore called the translocation
channel

12.3.4 Protrusion of the cell�s leading edge and motion of
cellular pathogens

When the polymerization rate is Þnite, then the picture becomes somewhat more com-
plicated. Now the particle is diffusing along a sequence of potentials, V (x+ nL), offset
by the monomer size, L, with transition rates between them, as shown in Þgure. Equa-
tions () are now replaced by a differential-difference equation. The resulting expression
for the load-velocity relationship is more complicated (Peskin).

In these cases polymerization and depolymerization rates are much slower than
the ideal ratchet velocity (i.e. LkonM and Lkoff ¿ 2D/L). Then, the load-velocity
relationship takes the simple, intuitive form:

V = L(konMPL(f)− koff),
where PL(f) is the probability of a gap of size L between the Þlament tip and the object.
When the polymer is perfectly rigid, PL(f) = exp(−w), where w = fL/kBT is the work
done against the load force in moving one ratchet distance, L, in units of thermal energy.
More complicated formulas for PL(f) govern the cases when the polymer is ßexible and
when it impinges on the barrier an angle, but the basic principle remains the same: the
work of pushing a load is performed by brownian motion, with the energy to rectify the
ßuctuations being supplied by the binding free energy of the polymerization reaction
(Mogilner).

Exercises

Exercise 1
Use equations (1) and (4) to prove that the relative velocity of two particles does not
change after the collision.
Hint: rather than going through a tedious process of solving quadratic equations, con-
sider the molecules in the coordinate system moving with the center-of-mass velocity.
Demonstrate that in this coordinate system the molecules either move with unchange
velocities after the collision, or they exchange their respective velocities.

Exercise 2
1) Write a subroutine for Matlab code 1 to get a hystogram showing how many times
the working domain visited each of 20 small intervals
[−1,−0.9], [−0.9,−0.8], ..., [0.9, 1]. Analyze such hystograms at increasing values of the
computation time, tend.
1) again to estimate characteristic time scales for crossing the potential barrier.
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2) Write a subroutine for Matlab code 1 to compute intervals of time between moments
when the protein passes the point x = 0. Using this subroutine and running the code
at increasing values of tend, estimate the average rates of transition from the left to the
right and back.
3) Repeat parts 1 and 2 in the case of weak force..

Exercise 3
Use Matlab or any other software to plot numerically Boltzmann distribution in the
limit of weak force. Find the ratio of probability densities at x = 0,−1, 1.

Exercise 4
1) Modify Matlab code 2 to solve Fokker-Planck equation in the same limit of weak
force, as in the stochastic simulations. Note, that it would be wiser to use the faster
diffusion scale in this limit. Therefore, re-do scaling and non-dimensionalization. Dis-
cuss the biological meaning of the results.
2) Change initial condition to estimate numerically the rate of transition from the right
to the left.
3) In both limits, compare the ratio p(1)/p(0) numerically obtained at the end of a
long (say, 100 time units) simulations with the same ratio computed analytically from
Boltzmann distribution. Explain the discrepancy (is this numerical error, model error,
something else?). Hint: compare analytical solutions of continuous stationary Fokker-
Planck equation with constant force on a Þnite interval and discretized equation, and
remember that ex ' 1 + x at small values of x, but ex 6= 1 + x.

Exercise 5
Prove the formulae of section 6.4.

Exercise 6
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As noted in Chapter (1), nonlinear ordinary differential equations are notoriously dif-
Þcult or impossible to solve analytically. On the other hand, the solution to linear
equations�like those encountered in the kinetic model of the GLUT transporter Section
(??)�can be expressed in terms of simple functions, and their behavior analyzed using
standard results from linear algebra. In Section (??) of this chapter we summarize the
main results for linear equations with two dependent variables. Although one often
encounters models like the GLUT transporter that involve more than two variables,
the basic ideas for two-variable ODEs carry over more or less unchanged for larger sets
of linear equations. Thus the intuition gained from understanding simple two variable
ODEs is enormously useful in understanding more complicated models. To help develop
this intuition, we introduce the notion of the phase plane in Section Section (??) and use
phase plane analysis to help understand the solution of two-variable linear equations
in Section (??). Another reason for focusing on linear equations is that the stability
of nonlinear ODEs can be understood by examining the behavior of small deviations
around steady or oscillatory states. In Section (??) we show how the properties of lin-
earized equations can be used to understand stability of steady states for a membrane
with a gated ion channel.
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A.1 Linear ODEs

The simplest time-dependent differential equations to solve are linear in the dependent
variables and Þrst order in the time. First order implies that only the Þrst time deriva-
tive appears on the left hand side of the equations and linear implies that the right
hand side is a linear function of the dependent variables. The most general equations
of this type in n variables have the form

dx1/dt = a11x1 + a12x2 + · · ·+ a1nxn + y1
dx2/dt = a21x1 + a22x2 + · · ·+ a2nxn + y2

... (A.1)

dxn/dt = an1x1 + an2x2 + · · ·+ annxn + yn.
Here we consider only the case where the aij and yi are parameters that are independent
of time. For simplicity, we focus in this chapter on the special case of two variables,
which shares the main features of the more general case. Using the column vector and
matrix notation introduced in Section (??), we can write these equations concisely as:

dx/dt = �Ax+ y (A.2)

with

x =

Ã
x1

x2

!
, y =

Ã
y1

y2

!
, �A =

Ã
a11 a12

a21 a22

!
. (A.3)

The basic properties of matrices that we will need are summarized in the appendix to
this chapter. Using the rules for differentiation of vectors, matrix multiplication, and
vector addition it is easy to verify that the vector equation (Eqn. (A.2)), when written
in terms of component vectors, is the special case of Eqn. (A.1) for two variables, i.e.

dx1/dt = a11x1 + a12x2 + y1 (A.4)

dx2/dt = a21x1 + a22x2 + y2 (A.5)

In this book we will be interested in equations for which there is a unique steady
state solution, xss. This is a solution that is independent of time, so that setting the
left hand side of Eqn. (A.2) equal to zero and rearranging gives y = −�Axss. Using this
expression we can eliminate y from Eqn. (A.2) by deÞning x0 = x− xss, to get

dx0/dt = �Ax0. (A.6)

This has the same form as Eqn. (A.2) with y = 0. In the next section we will show how
to solve equations of this type using simple algebra.

A.1.1 Solution of dx/dt = �Ax

The simplest way to solve an equation like (Eqn. (A.2)) is to use the component form
of the equation to obtain a new equation that is second order in time. For simplicity
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we focus on the special case that y = 0 and introduce the notation úx1 for the Þrst time
derivative and ẍ1 for the second, so that

úx1 = a11x1 + a12x2 (A.7)

úx2 = a21x1 + a22x2. (A.8)

Thus differentiating both sides of Eqn. (A.7) with respect to time gives:

ẍ1 = a11 úx1 + a12 úx2

= a11 úx1 + a12(a21x1 + a22x2)

= a11 úx1 + a12a21x1 + a22(a12x2) (A.9)

= a11 úx1 + a12a21x1 + a22( úx1 − a11x1)
= a11 úx1 + a22 úx1 − a11a22x1 + a12a21x1

where in rewriting the right hand side we have Þrst used Eqn. (A.8) to replace úx2 and
the used Eqn. (A.7) to eliminate the term a12x2. Using the last equality in (Eqn. (A.9))
and the deÞnitions of the trace and determinant of �A in the Appendix, gives a second
order equation for x1:

ẍ1 − (tr �A) úx1 + (det�A)x1 = 0. (A.10)

Using similar manipulations, an identical second order equation can be derived for x2
(see Exercise 2.1):

ẍ2 − (tr �A) úx2 + (det�A)x2 = 0. (A.11)

To solve Eqn. (A.10), we try the exponential function x1(t) = c exp(λt) (c 6= 0).
Substituting this into the left hand side of (Eqn. (A.10)) gives

cλ2 exp(λt)− cλ exp(λt)tr �A+ c exp(λt)det�A. (A.12)

Therefore, c exp(λt) is a solution to (Eqn. (A.10)) if

λ2 − (tr �A)λ+ det�A = 0. (A.13)

This is called the characteristic equation of the matrix �A. It is a quadratic equation in
λ with the well-known solution:

λ± =
tr �A±

³
(tr �A)2 − 4det�A

´1/2
2

. (A.14)

For example if �A =

Ã
1 −1
3 6

!
, then tr �A = 7, det �A = 9, and λ± = (7±

√
13)/2. As

long as λ+ 6= λ−, then the solution to the characteristic equation gives two independent
solutions to Eqn. (A.10). In this case because Eqn. (A.10) is linear, it is easy to verify
that the sum of these two solutions, c+ exp(λ+t) + c− exp(λ−t), is also a solution.

The argument of the square root in Eqn. (A.14) is the discriminant of the matrix
�A deÞned in the Appendix. As long as disc�A 6= 0, then it is clear from Eqn. (A.14)
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that there are two independent solutions for x1(t). Using the result in Eqn. (A.10), it
follows that the solution for x2(t) also has the same form. We write this concisely as

xi(t) = bi1 exp(λ+t) + bi2 exp(λ−t) (A.15)

with i = 1, 2. The values of the constants b1i and b2i need to be chosen to satisfy the
initial conditions. This is easily worked out, for example, for x1. Recall that there are
two initial conditions, x1(0) and x2(0), since there are two equations. Using Eqs. (Eqn.
(A.7)) and (Eqn. (A.15)) it follows that:

x1(0) = b11 + b12 (A.16)

úx1(0) = a11x1(0) + a12x2(0) = b11λ+ + b12λ−. (A.17)

Since x1(0), x2(0), λ+, and λ−are known, Eqn. (A.16) and the second equality in Eqn.
(A.17) provide two independent equations for the two unknowns, b11 and b12. Solving
these using elementary algebra gives:

b11 =
úx1(0)− λ−x1(0)

λ+ − λ− (A.18)

b12 =
− úx1(0) + λ+x1(0)

λ+ − λ− (A.19)

Since λ+ 6= λ−, the denominators of these equations are different from zero.
The time dependence of x1(t) is strongly dependent on the nature of the char-

acteristic values. There are three possibilities that are determined by the sign of the
discriminant and the trace. If disc�A > 0, then according to Eqn. (A.14) the two char-
acteristic values will be distinct real numbers since for a matrix with real components,
tr �A is a real number. However, if disc�A < 0, then the roots will be either conjugate
complex numbers (if tr�A 6= 0) or conjugate pure imaginary numbers (if tr �A = 0).

When the characteristic values are complex or pure imaginary, Eq. (Eqn. (A.15))
can be reexpressed in terms of sines, cosines, and exponentials. This follows from the
representation of the exponential of a complex number, r + iω (with i =

√−1) as
exp(r + iω) = exp(r) exp(iω) = exp(r) (cos(ω) + i sin(ω)) . (A.20)

If we express the characteristic values in this fashion as λ± = r ± iω, then it is not
difficult to show using Eqs. (Eqn. (A.15))-(Eqn. (A.19)) that

x1(t) = exp(rt)

µ
x1(0) cos(ωt)− ( úx1(0)− rx1(0))

ω
sin(ωt)

¶
. (A.21)

Straightforward differentiation of this expression veriÞes that it satisÞes the initial
conditions and that it is identical to the expression in Eqn. (A.15).

The solution to Eqn. (A.10) is slightly different when disc�A = 0. In this case,
according to Eqn. (A.14) λ+ = λ−, and there is only a single characteristic value
λ = tr�A/2. In this case in addition to c exp(λt) there is a second solution to Eqn.
(A.10), which is c0t exp(λt). This can be veriÞed using the facts that tr�A = 2λ and
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(since disc�A = (tr �A)2 − 4det�A = 0) that det�A = λ2. Substituting these expressions for
the tr�A and det�A into Eqn. (A.10) gives:

ẍ1 − 2λ úx1 + λ2x1 = 0. (A.22)

It is easy to show then by substitution (see Exercise 2.3) that c0t exp(λt) solves Eqn.
(A.22). Thus when disc�A = 0, the general solution to Eqn. (A.10) is:

x1(t) = b11 exp(λt) + b12t exp(λt). (A.23)

Using the initial conditions

x1(0) = b11 (A.24)

úx1(0) = a11x1(0) + a12x2(0) = λb11 + b12, (A.25)

it is easy to show that in this case

b11 = x1(0) (A.26)

b12 =
a11 − a22

2
x1(0) + a12x2(0). (A.27)

Although matrices with a vanishing discriminant are not typical, it is easy to con-

struct speciÞc examples, e.g., �A =

Ã −3 5

0 −3

!
. For this matrix tr�A = −6, det�A = 9,

disc�A = 0, and λ = −3, and the solution for x1 is easily found from Eqs. (Eqn.
(A.23))-(Eqn. (A.27)) to be

x1(t) = (x1(0) + 5tx2(0)) exp(−3t). (A.28)

A.1.2 Numerical Solutions with XppAut

Although we have characterized the solutions to Eqs. (Eqn. (A.7))-(Eqn. (A.8)) ana-
lytically, it is just as easy to solve them numerically. For example, a simple XppAut Þle

that does this for the matrix �A =

Ã
1 −1
3 6

!
is

#linear2.ode

init x1=1,x2=1

param a11=1,a12=-1,a21=3,a22=6

dx1/dt=a11*x1+a12*x2

dx2/dt=a21*x1+a22*x2

done

The characteristic values of this matrix are λ± = (7 ±
√
13)/2 = 5.31 and 1.70. Since

these values are distinct, we know from Section 2.2.1 that the solution is a sum of two
exponentials with positive exponents. Thus as long as x1(0) 6= 0 and x2(0) 6= 0, the
magnitude of x1 and x2 will increase exponentially with time. This is shown in Fig.
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Figure A.1 Solution of the 2× 2 linear equations using the Þle linear2.ode in XppAut. Panels A-C give
the time course of the solutions for the three matrices descibed in the text.

2.1A, where the solution generated using XppAut. is plotted. Notice that x1 rapidly
declines whereas x2 increases even more rapidly. The difference is due to the coefficients
of the two exponentials, which can be calculated explicitly from the formulae in Eqs.
(Eqn. (A.18)) and (Eqn. (A.19)).
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Figure 2.1B shows another solution for the matrix �A =

Ã −1 −1
4 1

!
for which

disc�A = −16 and, therefore, λ± = ±4i. Since the characteristic values are imaginary,
Eqn. (A.21) shows that the solution is a sum of sines and cosines, as shown in the

Þgure. The matrix �A =

Ã −2 −1
4 1

!
, on the other hand, has complex solutions with

a real part equal to -1. Thus the solution for this matrix will be a sum of sines and
cosines multiplied by exp(−t). Using XppAut to solve the equations leads to the damped
oscillations shown in Fig. 2.1C.

A.1.3 Eigenvalues and Eigenvectors

The characteristic values of �A are also the eigenvalues corresponding to the eigenvectors
of the matrix. An eigenvector, eλ, of �A has the property that

�Aeλ = λeλ, (A.29)

where λ is a number called the eigenvalue. In other words, the matrix �A transforms an
eigenvector into a constant multiple of the eigenvector. This equation can be rewritten
in component form as:

(a11 − λ)e1λ + a12e2λ = 0
a21e1λ + (a22 − λ)e2λ = 0. (A.30)

The only way to have a non-zero solution to this equation for eλ is that the determinant
of the coefficients on the left hand side of Eqn. (A.30) vanishes, i.e.:

det�A =

Ã
a11 − λ a12

a21 a22 − λ

!
= 0. (A.31)

Expanding the determinant, one obtains the characteristic equation (Eqn. (A.13)),
which shows that the eigenvalues are the same as the characteristic values of the matrix.

The eigenvectors of a matrix are deÞned only upto a multiplicative constant since
if eλ satisÞes Eqn. (A.29), then so does ceλ. As long as λ+ 6= λ−, then it is not difficult
to a verify that the eigenvectors are given by the simple formula:

eλ =

Ã
1

(λ− a11)/a12

!
. (A.32)

For example, for the matrix �A =

Ã
1 1

2 1

!
tr�A = 2, det�A = −1, and λ± = 1 ±√2.

Applying Eqn. (A.32) the eigenvectors are:

e+ =

Ã
1√
2

!
and e− =

Ã
1

−√2

!
. (A.33)
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A useful property of eigenvectors of �A is that if eλ is the initial condition for Eqs.
(Eqn. (A.7)) and (Eqn. (A.8)), then the solution is

x(t) = exp(λt)eλ. (A.34)

This result can be veriÞed by differentiating the right hand side of Eqn. (A.34) to get
úx(t) = λ exp(λt)eλ and then noticing that Eqn. (A.29) implies that

�Ax(t) = �A exp(λt)eλ = exp(λt)�Aeλ = λ exp(λt)eλ, (A.35)

which shows that x(t) solves the equations. We apply this result in the following
sections.

A.2 Phase Plane Analysis

Obtaining a �solution� to Þrst order ODEs means that you have expressed all of the
dependent variables as functions of the time. In the case of the 2× 2 linear equations
in Sections 2.1.1, this means that we have the time series for x1 and x2. A great deal
can be learned about these solutions by plotting the dependent variables as a function
of time as done in Fig. 2.1. However, there are other ways of plotting solutions that
give additional insight. For example, one can plot úx1 versus time, or some function of
x1 and x2 versus time. Perhaps the most useful plot is a phase plane plot in which x2
is plotted versus x1 with time serving only as a parameter. It is easy to make this type
of plot using XppAut, since the Data Viewer window tabulates the value of x1 and x2
for each time point (see Exercise 2.8). Saving the table from the Data Viewer we have
made phase plane plots in Figs. 2.2A-C of the numerical solutions given in Figs. 2.1A-C.
This type of plot represents the trajectory of the solution just as the arc of a baseball
thrown in the air is a trajectory in three dimensional space.

Technically, the phase plane (or phase space for more than two variables) is a
Cartesian plane with coordinates (x1,x2). Since the initial condition for the ODEs is
arbitrary, any one of these points could be the initial point of a trajectory like those in
Figs. 2.2A-C. Continuing the analogy of phase space trajectories to the trajectory of a
baseball, it makes sense to associate a velocity with the trajectory that goes through a
point in phase space. This can be done directly using the differential equations, since
the right hand side of the equations are explicit expressions for úx1 and úx2 as a function

of x1 and x2. Thus for the matrix �A =

Ã −2 −1
4 1

!
that gives rise to the trajectory in

Fig. 2.2C, the x1 component of the velocity at the point (x1, x2) is −2x1 − x2, whereas
the x2 component of the velocity is 4x1 + x2. For the initial point (0.5,0.5) of the
trajectory in Fig. 2.2C the velocity the vector at that point has components (-1.5,2.5).
In the Þgure, the head of the arrow on the velocity vector indicates its direction and
the length is proportional to its magnitude. Just as the velocity of a baseball is parallel
to its trajectory, so is the velocity vector in phase space parallel to its trajectory (see
Exercise 2.10).
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Figure A.2 The three solutions in Fig. 2.1A-C rep-
resented in phase plane plots in corresponding Panels
A-C. The arrow represents the direction of the ini-
tial point on the trajectory, which is given by the full
line. The dashed line is the x2 nullcline, the broken
dashed line is the x1 nullcline, and their intersection
is the steady state, which is unstable in Panel A,
marginally stable in Panel B, and stable in Panel C.

There are a number of important curves and points in the phase plane that are
deÞned by the differential equations. Isoclines are lines in the phase plane where the time
rate of change of a variable are constant. For example, for the matrix in the previous
paragraph, the isoclines for x1 are deÞned by c = −2x1−x2, i.e., x2 = −2x1+c, and the
isoclines for x1 are given by x2 = −4x1 + c, where c is a constant. A particularly useful
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isocline is the nullcline for which the time rate of change is zero, i.e., c = 0. So for this
special case the nullclines are given by the straight lines through the origin, x2 = −2x1
and x2 = −4x1, shown in Fig. 2.2C. It is straightforward to show that the nullclines for
the general 2× 2 linear equations (Eqn. (A.4)) and (Eqn. (A.5)) are also straight lines
(see Exercise 2.11). Since úx1 = 0 on the x1 nullcline, x1 cannot decrease if the trajectory
crosses the nullcline from the right and cannot increase if the trajectory crosses it from
the left. This means, as can be veriÞed by looking at Fig. 2.2, that the trajectory must
cross the x1 nullcline perpendicular to the x1 axis. Similary, the trajectory crosses the
x2 nullcline perpendicular to the x2 axis.

Steady states are deÞned as points in the phase space at which both úx1 = 0 and
úx2 = 0. These points, which are also known as singular points, equilibrium points, or
stationary points, have the property that neither variable changes as a function of time.
They are determined graphically by the intersection of the nullclines. However, just
because the variables do not change in time at a steady state does not mean that
trajectories starting from nearby points will end up at the steady state. Three different
situations are illustrated in Fig. 2.2. In panel A the steady state is at the origin, (0,0).
However, the trajectory starting at (0.5,0.5) grows without bound. In panels B and
C the steady states are also at the origin, but the trajectory in B circles the origin
periodically whereas in C it spirals into the steady state.

XppAut provides excellent tools for analyzing solutions of 2-variable ODEs in the
phase plane. Indeed, the �pp� in XppAut stands for phase plane. XppAut will calculate
the nullclines when the plotting windows is set-up for the two independent variables. It
will also plot a direction Þeld, which is a set of lines parallel to trajectories at a uniform
grid of points. Other options can be used to generate trajectories for a Þxed time interval
starting at a uniform grid of points in the plotting window. XppAut also has options
for calculating singular points. This phase plane functionality is not restricted to linear
equations. In Chapter 3 we analyze nonlinear equations using XppAut and its phase
plane options.

A.3 Stability of Steady States

As we saw in the preceding section, a steady state may or may not be an attractor for
nearby trajectories, i.e., just because an initial condition is close to the steady state, it
does not mean that after a time the trajectory will approach the steady state. However,
when this is the case, the steady state is said to be stable and attractive or asymptotically
stable. Three qualitatively different behaviors near steady state are illustrated by the
solutions of the linear ODEs in Figs. 2.2A-C. The matrix for the ODEs in panel A has
positive eigenvalues and the trajectory is repelled, not attracted by the steady state.
So the steady state in panel A is asymptotically unstable. In panel B the trajectory is
circular and periodically returns to the initial condition, (0.5,0.5). In this case the steady
state is neither attractive nor repulsive and is said to be marginally stable. Finally, in
panel C the trajectory spirals into the steady state, which is stable and attractive.
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Figure A.3 Graphical representation of the sta-
bility properties of 2 × 2 matrices. The trace is
plotted on the x-axis and the determinant on the
y-axis. The eigenvalues in the cross hatched re-
gion are complex and real elsewhere. These two
regions are separated by the parabola det �A =
tr �A2/4 on which disc �A = 0. Seven egions with
various stability are indicated by the sign of the
eigenvalues.

The attentive reader may have noticed a correlation between the eigenvalues of the
three matrices represented in Fig. 2.2A-C and the stability of the steady states. Indeed,
unstable states of linear equations are characterized by at least one eigenvalue with a
positive real part. If, in addition, both eigenvalues are positive, as in Fig. 2.2A, then the
state is called a unstable node. An asymptotically stable state like that in Fig. 2.2C, on
the other hand, has negative real parts for all of its eigenvalues. Marginal (or neutral)
stability occurs when the real part of a pair of eigenvalues vanish, as is the case in Fig.
2.2B. A 2-variable linear equation has only two eigenvalues and a marginally stable
steady state implies sinusoidal solutions, as we have seen in Section 2.1.1. Another
name for a marginal state for a two variable system is a center.

Because we have at our disposal the analytical form of the solutions for 2×2 linear
equations, it is possible to give a complete description of the stability of their steady
states. Fig. 2.3 gives a graphical representation of the stability behavior of a matrix �A
as a function of the trace (plotted on the x-axis) and the determinant (plotted on the y-
axis). The tr �A,det�A-plane in Fig. 2.3 is divided into seven distinct regions separated by
the two axes and the parabola det�A = tr �A2/4, which is the curve on which disc�A = 0.
According to the expression for the characteristic values in Eqn. (A.14), λ+ = λ− on
the parabola, and in the quadrant with tr�A > 0 the eigenvalues are both positive,
whereas for tr �A < 0, both eigenvalues are negative. Marginal stability occurs when the
real part of both eigenvalues is zero, i.e., when tr �A = 0 and det�A > 0, which occurs
on the positive y-axis. Using Eqn. (A.14) it is easy to verify that complex eigenvalues
occur only in the cross-hatched region above the parabola (since disc�A < 0 there).
In that region to the right of the y-axis, tr�A > 0, the eigenvalues have positive real
parts, and the steady states are unstable spirals (region 5), whereas in region 7 the
spirals are stable. When tr �A and det�A have values in regions 1 and 4, the steady state
is a stable or unstable node node, respectively. Below the x-axis (where det�A < 0) the
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Figure A.4 Schematic representation of phase space trajectories near the steady states in the seven
regions shown in Fig. 2.3. Unstable states have trajectories that diverge from the steady state, whereas
stable steady states have converging trajectories, and neutrally stable states are surrounded by closed
trajectories. The states shown in 2 and 3 are saddle points, with both converging and diverging trajectories
in the directions of the eigenvectors of the matrix.

steady states are unstable with the property that they have two real eigenvalues, one
positive and one negative. Unstables states like this are called saddle points, because
trajectories that start in the direction of the positive eigenvector recede from the steady
state exponentially. Trajectories along the direction of the negative eigenvector move
toward the steady state, also exponentially (see Exercise 2.12).

Using Fig. 2.3 we can classify the qualitative behavior of phase plane trajectories
for 2×2 linear ODEs based on the value of their trace and determinant. Representative
trajectories are illustrated in Fig. 2.4 for each of the seven regions in Fig. 2.3. Region 1
is a stable node and the two trajectories correspond to the directions of the two stable
eigenvectors, which have velocity vectors directed at the steady state. Regions 2 and 3
are saddle points, with eigenvectors that move towards or away from the steady state,
whereas the unstable node in Region 4 has both eigenvectors moving away. Regions 5
and 7 have trajectories that spiral away from or towards the steady state. In region 6
the trajectories are circles, corresponding to sinusoidal oscillations.

A.4 Stability of a Nonlinear Steady State

What we�ve learned about stability of steady states for linear systems can be transfered
partially to nonlinear ODEs. To be speciÞc, let�s consider a biological membrane with a
gated ion channel. To do this we combine the model of ion gating in Section 1.3.4 with
Eqn. (A.38) that governs the membrane potential. If n represents the gating variable
and V the voltage, then the two are coupled by the differential equations

CdV/dt = −gn(V − Vrev) + Iapp (A.36)

dn/dt = −(n− n∞(V ))/τ, (A.37)
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where Vrev is the reversal potential. For deÞniteness, we assume that n∞ has the the
following voltage dependence

n∞(V ) =
1

1 + exp(−(V + V0.5)/S) (A.38)

with V0.5 and S positive constants, which is typical of an activation gate (see Chapter
3). Equations (Eqn. (A.36)) and (Eqn. (A.37)) are both nonlinear due to the factor
n(V − Vrev) in Eqn. (A.36) and the voltage dependence of n∞ in Eqn. (A.37).

To analyze the stability of the steady states of these equations we Þrst must Þnd
the steady states by setting the right hand sides of the equations equal to zero. This
gives:

gnss(V ss − Vrev) = Iapp (A.39)

nss = n∞(V
ss), (A.40)

which can be written as a single nonlinear equation to solve for V ss:

Iapp
g
=

V ss − Vrev
1 + exp(−(V ss + V0.5)/S)

. (A.41)

This equation cannot be solved in closed form, and a much simpler way to locate the
steady state is graphically in the (V, n) phase plane using the nullclines. Setting the
left hand sides of Eqs. (Eqn. (A.36)) and (Eqn. (A.37)) separately equal to zero and
solving for n as a function of V gives:

n(V ) =
Iapp

g(V − Vrev) V-nullcline (A.42)

n(V ) = n∞(V ) =
1

1 + exp(−(V + V0.5)/S) n-nullcline. (A.43)

The V- and n-nullclines are plotted in Fig. 2.5A, along with representative tra-
jectories obtained using XppAut (see Exercise 2.13). Due to the nonlinearities in Eqs.
(Eqn. (A.36)) and (Eqn. (A.37)) the nullclines are curved rather than straight lines.
This curvature inßuences the shape of the trajectories, which must cross the nullcline
perpendicular to the axis of the variable. Close to the steady state, however, both null-
clines become approximately straight lines, as is seen in Fig. 2.5B, which is the same
phase plane as in Fig. 2.5A, but zoomed-in around the steady state.

If we restrict the initial conditions for trajectories to be close to the steady state,
then the nonlinear equations are well-approximately by a 2× 2 linear system. This can
be seen in detail if we deÞne as new variables x1 = V − V ss and x2 = n − nss, the
deviations of the voltage and gating variable from their steady state values. Since the
steady state values are constants, it follows that dx1/dt = dV/dt and dx2/dt = dn/dt so
that we can use Eqs. (Eqn. (A.36)) and (Eqn. (A.37)) to obtain differential equations
for x1 and x2. In particular, if the initial conditions are close to the steady state, then we
can substitute V = V ss+x1 and n = n

ss+x2 into the right hand sides of (Eqn. (A.36))
and (Eqn. (A.37)) and then use a Taylor series expansion in the small deviations x1
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Figure A.5 Phase plane plots for Eqs. (()) showing typical trajectories (full lines), the V-nullcline (dashed
line), and the n-nullcline (broken dashed line). Panel B is zoomed-in around the steady state, illustrating
that the nullclines are approximately straight lines near the steady state.

and x2. Explicitly:

dx1/dt = (g(n
ss + x2)(V

ss + x1 − Vrev) + Iapp) /C
= [gnss(V ss − Vrev) + Iapp]/C + (gnssx1 + g(V ss − Vrev)x2)/C
+ gx1x2/C (A.44)

dx2/dt = − (nss + x2 − n∞(V ss + x1)) /τ

= −[nss − n∞(V ss)]/τ + (dn∞/dV )
ssx1/τ − x2/τ

+ higher order terms in x1 (A.45)

In the second equality in both Eqs. (Eqn. (A.44)) and (Eqn. (A.45)) the terms in square
brackets vanish because of the steady state conditions in Eqs. (Eqn. (A.39)) and (Eqn.
(A.39)); the second terms are linear in x1 and x2; and the third terms are quadratic
or higher order in x1 and x2. Thus keeping the lowest order terms gives the linear
equations:

dx1/dt = (gn
ss/C)x1 + (g(V

ss − Vrev)/C)x2 (A.46)

dx2/dt = (dn∞/dV )
ssx1/τ − x2/τ. (A.47)

Once the elements of the matrix of this 2 × 2 linear equation have been evaluated,
the behavior of the solution in a neighborhood of the steady state can be evaluated.
This type of linear analysis, which gives information only about trajectories nearby the
steady state, is called linear stability analysis.

The trajectories in Fig. 2.5B make it clear that the steady state is asymptotically
stable, and according to the catalogue of possibilities in Fig. 2.4, the steady state is
a stable spiral. However, XppAut provides an alternative way of assessing stability
that circumvents the need to linearize the ODEs. XppAut contains an option, called
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Figure A.6 Bifurcations of new Þxed points: (A) saddle-node bifurcation, (B) transcritcial bifurcation,
(C) supercritical pitchfork bifurcation, (D) subcritical pitchfork bifurcation. Stable Þxed points are solid
and unstable are dashed.

Sing pts, that Þnds the steady states numerically and, in addition, determines the
stability of the steady state by numerical evaluation of the eigenvalues (see Exercise
2.13). Combining the analytical tools developed in this chapter with the numerical tools
available in XppAut, we are ready to explore the dynamics of a variety of cellular and
neural dynamical system in the remaining chapters.

A.5 Bifurcation theory

In many systems of differential equations, there are parameters that we would like to
vary. As these parameters vary, we want to know if the solutions to the equations re-
main similar in nature. For example, as current is injected into a cell, we want to know
if the cell will remain at rest or whether some other phenomena that are qualitatively
different will take place. The changes in the qualitative nature of solutions to differential
equations as a parameter varies is called bifurcation theory. In this section, we will re-
view simple bifurcations from equilibrium of ordinary differential equations. Bifurcation
from equilibrium solutions is intimately related to the stability of equilibria, a subject
described earlier in this chapter. Suppose that we have found an equilibrium solution
to a system of differential equations and study it�s stability as some relevant param-
eter varies. The stability is determined from the eigenvalues of the linearized system.
There are two simple ways that stability can change as a parameter varies: (i) a real
negative eigenvalue can cross through zero and becomes positive; (ii) A pair of complex
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Figure A.7 Numerically computed bifurcation diagram for the autocatalytic chemical model. Stable Þxed
points are solid and unstable are dashed.

conjugate eigenvalues with negative real parts crosses through the imaginary axi and
becomes a pair of complex eigenvalues with positive real parts. In a fully nonlinear
system these changes in stability will often lead to the appearance of new solutions to
the differential equations. Because these are new baranches of solutions that were not
there, the system has undergone a qualitative change in behavior.

A.5.1 Bifurcation at a zero eigenvalue.

Consider the differential equation

dx

dt
= λ− x2 (A.48)

where λ is a parameter. For λ < 0 there are no real equilibria. However if λ > 0
then there are two equililibrium solutions, x = ±√λ. Consider the case λ > 0. The
linearization about the positive Þxed point is −2√λ. Thus, it is a stable Þxed point.
Note that as λ tends to zero the eigenvalue of this 1 × 1 matrix goes to zero. Any
time an eigenvalue of the linearization around an equilibrium point crosses zero, we
can expect to see more than one Þxed point in the neighborhood of the parameter.
The graph of the equilibrium solution agains the parameter along with the stability
inforamtion is called a bifurcation diagram. Fig. (A.6A) shows the bifurcation diagram
for Eqn. (A.48). This type of bifurcation is called a saddle-node. The auto-catalytic
chemical model:

dx

dt
= λ− 6x+ 10x2

1 + x2
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Figure A.8 Numerically computed bifurcation diagram for the example transcritical bifurcation. Stable
Þxed points are solid and unstable are dashed.

has a two saddle-node bifurcations as the input λ increases from 0. For 0 < λ < 0.9
there is a single equilibrium point. At λ ≈ 0.9 a new pair of equilibria appear at x ≈ 0.8.
As λ continues to increase these new equilibria drift apart and at λ ≈ 1.02 the leftmost
equilibrium merges with the middle one and disappears at x ≈ 0.4. We can use XPP
to draw a complete bifurcation diagram of this. Fig. (A.7) illustrates the complete
bifurcation diagram. Note the two saddle-node bifurcations; for λ between these two
values, there are three equilibria (two stable and one unstable) while for λ outside
the two values, there is a unique stable equilibrium point. technoiques from nonlinear
analysis can be used to show that every saddle-node bifurcation (no matter what the
dimension of the system) is equivalent and can be transformed into Eqn. (A.48).

Consider next the differential equation:

dx

dt
= λx− x2. (A.49)

In some model systems there is always a �trivial� equilibrium point, no matter what
the parameter is. (In this case, 0, is always a solution.) For λ < 0 x = 0 is a stable
equilibrium and for λ > 0 it is unstable. The equilbrium point x = λ is unstable (stable)
for λ < 0 (λ > 0). Thus as λ crosses zero the two Þxed points �exchange stability.�
This is called a transcritical or exchange of stability bifurcation. Fig. (A.6B) illustrates
this bifurcation. For example, consider the system:

dx

dt
= x(1− λy) dy

dt
= e−x − y.
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Clearly, one Þxed point is (0, 1) and the Jacobian matrix for the linearization about
this point is

J =

Ã
1− λ 0

−1 −1

!
.

The eigenvalues are −1 and −1 + λ. Thus at λ = 1 we expect that there could be a
bifurcation. It is not a saddle-node since there always exists the trivial equilibrium,
(0, 1). Since there are no additional symmetries in the problem (see below), it is likely a
transcritical bifurcation. The diagram is shown in Fig. (A.8). As with the saddle-node
bifurcation, all transcritical bifurcations can be transformed into Eqn. (A.49) near the
bifurcation.

Many biological and chemical systems are characterized by symmetries. In this case,
the behavior as parameters vary is analogous to:

dx

dt
= x(λ± x2). (A.50)

As with the transcritical bifurcation, x = 0 is always a solution to this problem. For
λ < 0, the Þxed point 0 is stable and for λ > 0 this trivial Þxed point loses stability. At
λ = 0 the linearized system has a zero eigenvalue. There can be two additional solutions
depending on λ. Unlike the two bifurcations we previously described, the sign of the
nonlinearity is important in this one. If we take the negative sign in Eqn. (A.50), then
the diagram in Þgure Fig. (A.6C) is obtained. The new solutions are x = ±√λ, they
are both stable, and they occur for λ > 0. The branches open in the same direction as
the trivial Þxed point loses stability. This bifurcation is called a supercritical pitchfork
bifurcation. If we take instead the positive sign for the nonlinearity in Eqn. (A.50),
then there are two solutions x = ±√−λ and they occur for λ < 0. As can easily be
shown, they are both unstable. This is called a subcritical pitchfork bifurcation since
the branches open in the direction opposite from the change of stability of the trivial
equilibrium point.

For example consider the simple coupled system:

dx

dt
= −x+ λ y

1 + y2
dy

dt
= −y + λ x

1 + x2
.

It is easy to see that x = y = 0 is always a Þxed point and that it is stable as
long as λ < 1. At λ = 1 the Jacobian matrix has a zero eigenvalue, so we expect a
bifurcation to occur. Fig. (A.9) shows that it is a supercritical pitchfork bifurcation.
Every system that has a pitchfork bifurcation can be transformed into Eqn. (A.50)
near the bifurcation point. Unlike the saddle-node and the transcritical bifurcation, the
details of the nonlinearity are crucial for determing the stability of the new branches
of solutions.
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Figure A.9 Numerically computed bifurcation diagram for the coupled system showing a pitchfork
bifurcation. Stable Þxed points are solid and unstable are dashed.

A.5.2 Bifurcation at a pair of imaginary eigenvalues.

Limit cycles and periodic solutions are extremely important in physiology. Thus, one
is often interested in whether or not they occur in a given system. Unlike Þxed points
which can be found exactly or graphically, it is much more difficult to determine whether
or not there are limit cycles in a system. There is one method that is arguably the best
and perhaps only systematic method of Þnding parameters where there may be periodic
solutions in any system of differential equations. The existence of periodic solutiuons
emanating from a Þxed point is established from the Hopf bifurcation theorem which
we now state.

Hopf bifurcation theorem. Suppose that X 0 = F (X,λ) has an isolated Þxed point,
X0(λ). Let A(λ) be the linearized matrix about this Þxed point. Suppose that the matrix
A has a pair of complex conjugate eigenvalues, α(λ) ± iω(λ). Suppose the following
conditions hold for some λ0.

1. α(λ0) = 0;
2. ω(λ0) = ω0 > 0;
3. ν ≡ dα(λ)/dλ|λ=λ0 6= 0;
4. A(λ0) has no other eigenvalues with zero real part.

Then, the system contains an isolated limit cycle for |λ − λ0| small for either λ > λ0
or for λ < λ0. The magnitude of the limit-cycle is proportional to

p|λ− λ0| and the
frequency is close to ω0. If ν > 0 and the limit cycle exists for λ > λ0 or if ν < 0 and
the limit cycle exists for λ < λ0 then it is stable. Otherwise it is unstable.



330 A: Qualitative Analysis of Differential Equations

x

x

l

l

Figure A.10 Illustration of the Hopf
bifurcation of limit cycles. As the pa-
rameter changes, a branch of periodic
solutions emerges from the Þxed point.
Top Þgure shows super-critical emer-
gence of stable limit cycles and bottom
show sub-critical emergence of unstable
periodic orbits.

Thus, the best way to try to Þnd periodic solutions in a system of differential
equations is to look for parameter values where the stability of an equilibrium is lost as a
complex conjugate pair of eigenvalues crosses the imaginary axis. For a two-dimensional
system, this situation occurs when the seterminant of A is positive and the trace of A
changes from negative to positive. The following system illustrates the theorem:

dx

dt
= λx− y ± x(x2 + y2) (A.51)

dy

dt
= λy + x± y(x2 + y2)

Clearly, (0, 0) is always a Þxed point. The eigenvalues of the linearization are λ ± i so
that as λ goes from negative to positive, there is a pair of eigenvalues with imaginary
real part at λ = 0. If we convert Eqn. (A.52) to polar coordinates, x = r cos θ, y = r sin θ
then we obtain:

dr

dt
= r(λ± r2) dθ

dt
= 1.

The equation for r is just like Eqn. (A.50) and thus the direction of bifurcation depends
on the sign of the nonlinearity. We see that r =

√∓λ. Clearly the solution to the θ
equation is θ = t + C where C is an arbitrary constant. We conclude that if the
nonlinearity has a positive sign, then there is an unstable periodic solution for λ < 0
given by (x(t), y(t)) =

√−λ(cos(t + C), sin(t+ C)). If the nonlinearity has a negative
sign, then the limit cycle exists for λ > 0 and it is stable. Fig. (A.10) illustrates the
behavior for both cases. We remark that every system that undergoes a Hopf bifurcation
can be transformed to Eqn. (A.52).
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Figure A.11 Numerically computed
bifurcation diagram for the Brussela-
tor as the parameter b varies. Stable
Þxed points are solid and unstable are
dashed. Stable periodic orbits are Þlled
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As an example, we consider the Brusselator, a classic model for chemical oscillations:

dx

dt
= a− (b+ 1)x+ x2y, dy

dt
= bx− x2y.

The Þxed points for this are (x, y) = (a, b/a) and the linearization about the Þxed point
is

A =

Ã
b− 1 a2

−b −a2
!
.

The determinant of A is a2 > 0. The trace is b − 1 − a2. Thus, if b is the parameter,
then as b increases past 1 + a2 there will be a Hopf bifurcation. The full bifurcation
diagram is shown in Fig. (A.11).

A.6 Perturbation theory

As we have noted, nonlinear differential equations are not readily solved. In fact, even
linear equations cannot be solved in closed form if the coefficients are nonconstant in
time. For this reason, one of the most powerful tools in applied math is perturbation
theory. In perturbation theory, some parameter in the equation is assumed to be small.
Then it is set to zero and this results in a simpler system of equations which can be
solved. The idea is to assume that when the parameter is not zero, then we can use the
simple case as a starting solution and expand the full solution in a power series in the
small parameter. Typically, we only need to expand the series to one otr two terms to
see the effects on the solution.
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A.6.1 Regular perturbation.

Let us Þrst consider the general solution and then work some examples. Consider

dx

dt
= f(x, ²) (A.52)

where ² is a small parameter. Suppose that we can solve the equation with ² = 0, that
is, we can Þnd a solution, x0(t) to

dx

dt
= f(x, 0).

Formally, lets look for a solution of the form:

x(t, ²) = x0(t) + ²x1(t) + ²
2x2(t) + . . . (A.53)

and substitute this into Eqn. (A.52). This leads to a sequence of equations:

dx0
dt

= f(x0, 0)

dx1
dt

= Dxf(x0, 0)x1 +D²f(x0, 0)

dx2
dt

= Dxf(x0, 0)x2 +Dx²f(x0, 0)x1 +
1

2
(Dxxf(x0, 0)x

2
1 +D²²f(x0, 0)

where Da is the derivative of f with respect to a evaluated at x = x0, ² = 0. Note that
all but the Þrst equation are linear. If the linear equation

dx

dt
−Dxf(x0, 0)x = g

is invertible, then we can continue this series method forever. As we will see later,
when the equation is not invertible, then we run into problems and other techniques
are required. Another situation that can arise is when the small parameter multiplies
dxk/dt for one of the variables xk.We will also consider this type of perturbation below.

Let�s look at a simple example. Consider the differential equation for population
growth subject to periodic forcing:

dx

dt
= x(1 + ² sin(ωt)− x).

We are interested in the steady state behavior; thus we want to Þnd solutions which
are periodic or constant. Obviously, x = 0 is a solution for any ² but this solution is of
no interest as it is unstable. When ² = 0, another solution is x = 1. We will perturb
from this solution:

x(t, ²) = 1 + ²x1 + ²
2x2 + . . . .

Substituting this into the equation, we get

dx1
dt

= −x1 + sin(ωt)
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Figure A.12 The true solution (solid lines) and the Þrst two terms in the perturbation series for the
linear time-dependent logistic equation.

dx2
dt

= −x2 +−x21 + x1 sin(ωt)
and so on. The x1 equation has a periodic solution:

x1(t) =
sin(ωt)− ω cos(ωt)

1 + ω2
.

Thus, to order ²

x(t) = 1 + ²
sin(ωt)− ω cos(ωt)

1 + ω2

To do even better, we can go to the next order. A simple bit of calculus shows that

x2(t) =
2ω4 cos(2ωt)− 5ω3 sin(2ωt)− 4ω2 cos(2ωt) + ω sin(2ωt)

/
2 + 12ω2 + 18ω4 + 8ω6

Fig. (A.12) shows the numerical solution to the sample problem as well as the approx-
imations, y1(t) = 1 + ²x1(t) and y2(t) = y1(t) + ²

2x2(t) for ² = 1 and ω = 0.5. (For
smaller values of ² and larger values of ω the approximation is much better.)

A.6.2 Resonances.

In many applied problems, the general perturbation scheme describes above breaks
down. Typically, this arises when there is a family of solutions to the lowest order
perturbation and the linear equations that arise from higher order perturbations are
not invertible.

A typical example of this would be perturbation of eigenvalues of a matrix. For
example, suppose that the matrix A0 is simple and we can Þnd the eigenvalues easily.
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We now ask what the eigenvalues of the matrix B = A0 + ²A1 are. Suppose that λ0 is
an eigenvalue and v0 is the corresponding eigenvector. That is

A0v0 = λ0v0.

To Þnd the eigenvalue of B near λ0 we suppose that both the eigenvalue and the
eigenvector depend on ² :

v(²) = v0 + ²v1 + . . .

λ(²) = λ0 + ²λ1 + . . .

Making the substitutions we get

(A0 − λ0I)v1 = λ1v0 −A1v0 ≡ w. (A.54)

There are two unknowns, v1 and λ1. However, the matrix C = A0−λ0I is not invertible,
so we cannot expect to solve this unless λ1 is chosen so that w is in the range of the
matrix C. This condition uniquely determines the parameter λ1. Then we can solve for
v1.

How do we know when a vector w is in the range of a matrix M? The following
theorem tells us precisely the conditions:
Fredholm Alternative Theorem. The matrix equation

My = w

has a solution y if and only if w · q = 0 for every solution q to the equation M ∗q = 0.
The matrix M∗ is the transpose complex conjugate of the matrix M.

An analogous theorem holds for many other linear operators. Returning to Eqn.
(A.54), let q0 be the solution to

CT q0 = 0 q0 · v0 = 1.
Then the Fredholm Alternative Theorem implies that we must have

q0 · (λ1v0 −A1v0) = 0

or

λ1 = q0 ·A1v0.

Another classic example is to Þnd a periodic solution to a weakly nonlinear
differential equation. The van der Pol oscillator is the standard example:

ẍ+ x = ² úx(1− x2). (A.55)

We seek periodic solutions to this problem. Expanding x(t) in epsilon:

x(t) = x0(t) + ²x1(t) + . . .

and substituting into Eqn. (A.55) we get

ẍ0 + x0 = 0

ẍ1 + x1 = úx0(1− x20).
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The solution to the Þrst equation is

x0(t) = A cos t+B sin t.

Note that we can rewrite this as x0(t) = C cos(t+φ) where φ is a phase shift. Since the
equation is autononmous, there is always an arbitrary phase shift, so we can set this to
zero. In other words, we can assume x0(t) = A cos t where A is an arbitrary amplitude
as yet unknown. The second equation is:

ẍ1 + x1 = −A sin t(1−A2 cos t).

This does not generally have a periodic solution. In fact, it is easy to solve explicitly
(using a symbolic algebra program, like Maple). The key point is that the solution will
be of the form:

x1(t) = P (t) + tQ(t)

where P (t),Q(t) are periodic. Unless Q(t) = 0, the perturbed solutions x1(t) will not
be periodic so, we must make Q(t) = 0. A simple calculation reveals that

Q(t) = A
4−A2

8
cos t

thus, we choose A = 2 and to lowest order

x(t) = 2 cos t.

Exercises

1. Find the periodic solution to the perturbed differential equation:

ẍ+ x = ² úx(a+ bx2 − x4)

A.6.3 Singular Perturbation Theory

In many physiological systems there are vast differences in the time scales involved in
the phenomena. For example in a bursting neuron, there is the period between bursts
compared with the interspike interval of the action potential within a burst. Some
variables may act much more slowly than other variables while others act much more
rapidly. Consider for example the simple linear differential equation:

²
dx

dt
= y − x dy

dt
= −x,

along with initial conditions y = 1, x = 0. We can easily solve this exactly using the
methods of the previous section for any value of ². However, typically, in a real problem,
the solutions are not so readily obtained. Let�s suppose that we can set ² = 0. Then we
must have 0 = y − x or x = y. Thus our problem is now:

dy

dt
= −y y(0) = 1
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Figure A.13 x-nullclines for the relaxation oscillator example.

which has a solution y(t) = exp(−t). Furthermore, since x = y, we also have x(t) =
exp(−t). Unfortunately, our �solution� does not satisfy the initial conditions x(0) = 0.
Because we have reduced the order of the differential equation from 2 to 1, we cant
expect to generally Þnd a solution for all initial conditions. This is why the problem is
said to be singular.

The way that we can Þx this is to use a technique called matching. A complete
description of matching goes well beyond this book, so we will just sketch this and
another example. There are more examples throughout the text. The idea is to rescale
time. Since the problems we are having occur at t = t0 = 0, we introduce a new variable
τ = (t− t0)/². Under this change of variables our equation is

dX

dτ
= Y −X dY

dτ
= −²X.

(I have used capitalized letters to differentiate these solutions from the t−dependent
solutions.) Now, we see that Y is �slow� in the new time scale. Set ² = 0. This means
that dY/dτ = 0 so that Y is constant. The obvious constant to use it the initial value
of Y , so we substitute Y = 1 into the X equation:

dX

dτ
= 1−X X(0) = 0.

The solution to this is X(τ) = 1 − exp(−τ). Thus we have two sets of solutions,
(x(t), y(t)) and (X(τ), Y (τ)). The (X,Y ) solutions are valid for times near zero and
the (x, y) are valid for larger times. Thus, to obtain the full solution, we add these two
together and subtract the �common� part. To see what the common part is, we replace
τ by t/² in the (X,Y ) system and t by ²τ in the (x, y) system. We take the limit as
² → 0 and obtain (1, 1) for both sets of limits. This is the common part. Thus, our
approximate solution is (X(τ)+x(t)− 1, Y (τ)+ y(t)− 1). Putting everything in terms
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of the original time, t, we obtain

xc(t) = e
−t − e−t/² yc(t) = e

−t

I close this section with another example that produces a singular nonlinear
oscillator. The equations are

²
dx

dt
= −x+ sgn(x)− y dy

dt
= y + x.

sgn(x) is the signum function, it is +1 for x > 0 and -1 for x < 0. The nullclines are
depicted in Fig. (A.13). For ² small, we expect that the solution will hug the x−nullcline
since we must have −x+sgn(x)−y nearly zero; the equation for the x-nullcline. Setting
² = 0 we must solve

−x+ sgn(x)− y
for x in terms of y. Unfortunately, for y between -1 and 1 there are two roots x = −y±1.
For the moment, lets pick x = −y + 1. We must have −y + 1 > 0 since our choice of
+1 for sgn(x) assumes that x > 0. Substituting this into the y equation yields

dy

dt
= 1

so that y(t) = y(0)+ t. Notice that as long as y(t) < 1 then this is a valid solution since
x > 0. However, eventually y(t) will exceed 1 and our root x = −y + 1 is no longer
valid. So, what happens? Let t0 be the time at which y(t) = 1. To see what happens,
we must once again, introduce a scaled time, τ = (t− t0)/². Then our equations are

dX

dτ
= −X + sgn(X)− Y dY

dτ
= ²(Y +X).

Setting ² = 0, this means that Y must be constant. Since y(t0) = 1 we will take Y = 1
as the constant. We must solve

dX

dτ
= −X + sgn(X)− Y X(0) = 0.

Note that for any τ > 0, X(τ) is negative, so that sgn(X) = −1 and
X(τ) = −2(1− exp(−τ)).

This says that in the expanded time scale, X(τ) will drop from 0 down to -2. All the
while, Y is essentially constant at 1. Once X has made the jump from 0 to -2, we can
set y = 1, x = −2 and solve the y(t) equation again. In this case, x + y = −1 since
sgn(x) = −1 and we must solve

dy

dt
= −1 y(0) = 1.

The solution to this is y(t) = 1 − t. As above this is only valid as long as x = −y +
sgn(x) = −y − 1 is negative. That is, as long as y(t) > −1. Once y(t) crosses -1, then
x will be positive and we will have to jump back across to x = +2 keeping y = −1
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constant again using the rescaled time. In retrospect, we see now that in the calculation
on the right hand branch (when x > 0), the correct initial condition for y is y(0) = −1.

This completes the calculation of the singular trajectory. Fig. (A.13) illustrates this.
We have the following:

y(t) = −1 + t x(t) = 2− t for 0 < t < 2
y(t) = 1− (t− 2) x(t) = −2 + (t− 2) for 2 < t < 4

in the normal time coordinates. In the scaled time coordinates, x(t) jumps from 0 to
-2 while y = 1 satisfying:

x(t) = −2(1− exp((t− 2)/²))
and from 0 to 2 while y = −1

x(t) = 2(1− exp(−(t− 4)/²)).
The period of the oscillation is 4 to lowest order. y(t) is continuous along the trajectory.
The complete solution for x(t) over one period is

x(t) = 2− t− 2 exp(−t/²) for 0 ≤ t < 2
x(t) = t− 4 + 2 exp((2− t))/²)] for 2 ≤ t < 4.

A.7 Appendix

A.7.1 Matrix and Vector Manipulation

Matrices can be multiplied, added, multiplied by scalar numbers, and differentiated
according to the rules of linear algebra. Here we summarize these results for the 2× 2
matrices and two-component column vectors that appear in Section (??). The matrix �A
multiplying the vector x acts a linear operator that produces a new vector, z, according
to the formula:

z = �Ax =

Ã
a11 a12

a21 a22

!Ã
x1

x2

!
=

Ã
a11x1 + a12x2

a21x1 + a22x2

!
(A.56)

It can be veriÞed using Eqn. (A.56) that the identity matrix, �I =

Ã
1 0

0 1

!
, leaves

vectors unchanged, i.e., z = �Ix = x. Matrices can be added together, as can vectors,
using the rules:

�A+ �B =

Ã
a11 + b11 a12 + b12

a21 + b21 a22 + b22

!
and x+ y =

Ã
x1 + y1

x2 + y2

!
. (A.57)
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To multiply either a matrix or a vector by a number, c, each component is multiplied
by c, e.g.

c�A = c

Ã
a11 a12

a21 a22

!
=

Ã
ca11 ca12

ca21 ca22

!
(A.58)

Differentiation of matrices and vectors is also carried out on each component separately.
Thus

dx/dt =

Ã
dx1/dt

dx2/dt

!
(A.59)

The trace, determinant, and descriminant are important scalars that characterize
matrices and that appear in the solution to Eqn. (A.2). We use the short hand notation
tr �A for the trace of �A, det�A for its determinant, and disc�A for the descriminant. In
terms of matrix elements they are deÞned as:

tr �A = a11 + a22 (A.60)

det�A = a11a22 − a21a12 (A.61)

disc�A = (tr �A)2 − 4det�A (A.62)

For example, for the matrix

�A =

Ã
1 −1
3 6

!
, (A.63)

tr �A = 7, det �A = 9, and disc�A = 13.
The inverse of a matrix is the generalization of division by a number. The inverse

of �A is written as �A−1 and is a matrix with the property that

�A−1 �A = �I (A.64)

with �I the identity matrix. The inverse of a matrix is useful in solving linear algebraic
equations. For example, the solution of the linear equation

�Ax = y, (A.65)

has the solution

x = �A−1y, (A.66)

which can be veriÞed by multiplying both sides of Eqn. (A.65) by �A−1 and using Eqn.
(A.64). For a 2× 2 matrix it is easy to verify by carrying out the matrix multiplication
in Eqn. (A.64) that if �A is not singular, i.e., as long as det�A 6= 0, then

�A−1 =
1

det�A

Ã
a22 −a12

−a21 a11

!
. (A.67)
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A.7.2 A brief review of power series.

One of the most useful tehniques in all of applied mathematics is the method of power
series expansion. The basic idea is that many functions can be expressed a series in one
or more variables. For example, the familiar exponential function can be written as

et = 1 +
t

1!
+
t2

2!
+ . . .+

tn

n!
+ . . .

or more compactly as

et =
∞X
n=0

tn

n!

where we deÞne 0! = 1. The series converges for all t both real and complex. Given a
function f(t) and a point t = t0, suppose that all the derivatives of f at the point t0 are
deÞned. Then we can formally develop a power series approximation of the function f
around the point t0. The formal power series is

f(t) =
∞X
n=0

f (n)(t0)
(t− t0)n
n!

. (A.68)

Here f (k)(t0) is the kth derivative of the function f evaluated at the point t0. That is,
given the derivatives of a function at a point, we can approximate the function over
some interval containing that point by using a series approximation. This series is called
a Taylor series of f about the point t0.When the point, t0 = 0, the series is often called
a Maclauren series.

If all of the derivatives of the given function exist at the point t0, then the Þnite
approximation to the taylor series:

SN(t) =
NX
n=0

f (n)(t0)
(t− t0)n
n!

is also deÞned for all t since it is just a Þnite sum of polynomials. We say that the series
converges for t in some interval, I, containing t0 if the limit of SN(t) exists as N →∞
for all t in I. The interval, I for which convergence is obtained is called the interval
of convergence for the series. For the exponential series given above, the interval of
convergence is the whole real line. InÞnite series do not always converge on the whole
line. For example the geometric series

S(t) = 1 + t+ t2 + t3 + . . .+ tn + . . .

converges for |t| < 1. A useful test for the convergence of a series of the form

S =
∞X
n=0

an

is the ratio test. Let Rn = |an+1/an|. If
lim
n→∞

Rn < 1
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then the series converges. Let�s apply this to the exponentia series above. an = tn/n!
so |an+1/an = t/(n+ 1)| and the limit of this as n goes to inÞnity is zero for any Þnite
t so that the series converges for all t.

Here are some examples. Let�s Þnd a series approximation for f(0) = sin(t) about
t = 0. Note that f(0) = 0, f 0(0) = 1, f 00(0) = 0, f 000(0) = −1 and the higher derivatives
just cycle arount these numbers. That is derivatives of order 1,5,9, etc are equal to 1,
those of order 3,7,11, etc are equal to -1, and all others are zero. Thus

sin(t) = t− t
3

3!
+
t5

5!
+ . . .+ (−1)m t2m+1

(2m+ 1)!
+ . . . .

The ratio |am+1/am| = t2/(2m + 2)(2m + 3) which tends to 0 as m goes to inÞnity so
the sine series converges for all t.

You can similarly verify the

cos(t) =
∞X
m=0

(−1)m t2m

(2m)!
.

As a Þnal example, consider the series for the square root function evaluated at t = 1.
We have the following Þrst few derivatives:

f(1) = 1 f 0(1) =
1

2
f 00(1) =

−1
2

1

2
f 000(1) =

−3
2

−1
2

1

2

Thus the nth derivative (n > 1) is

cn = (−1)n+1 (2n− 3)(2n− 5) . . . 1
2n

.

Thus, q
(t) = 1 +

1

2
(t− 1) +

∞X
n=2

(−1)n+1 cn(t− 1)
n

n!
.

We can apply the ratio test to this, noting that |cn+1/cn| = n− 1

2
so that

Rn = |t− 1|(n− 1
2
)/(n+ 1).

As n→∞ this ratio goes to |t− 1|. The interval of convergence satisÞes |t− 1| < 1 or
0 < t < 2.

Exercises

1. Using manipulations comparable to those used to obtain Eqn. (A.10) show that x2
in Eqn. (A.5) also satisÞes the second order equation (Eqn. (A.10)).

2. Show by substitution that if x0 and x are two different solutions to Eqn. (A.6), then
c0x0 + cx is also a solution.
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3. Show by substition into Eqn. (A.22) that c0t exp(λt) is a second solution to Eqn.
(A.10) when disc�A = 0. [Hint: Recall that ú(t exp(λt)) = (1 + λt) exp(λt); use this
to show that ¨(t exp(λt)) = λ(2 + t) exp(λt).]

4. Show that any 2 × 2 matrix of the following form �A =

Ã
a b

0 a

!
with a and b

arbitrary real numbers has disc�A = 0 and λ = a.
5. Use the solution to the characteristic equation for �A, Eqn. (A.14), to show that
tr �A = λ+ + λ− and that det�A = λ+λ−.

6. Verify that the expression for the eigenvector of �A given in Eqn. (A.32) is correct
by multiplying that expression by �A. [Hint: You will need to use the fact that
det�A = λ2 − (a11 + a22)λ as follows from (Eqn. (A.14)).]

7. The following XppAut Þle can be used to solve the general two-variable linear
equations (Eqn. (A.4))-(Eqn. (A.5)):

x1(0)=1

x2(0)=1

param a11=1,a12=0,a21=0,a22=1

param y1=0,y2=0

dx1/dt=a11*x1+a12*x2+y1

dx2/dt=a21*x1+a22*x2+y2

done

Use this Þle to Þnd x1(t) and x2(t) for the following matrices: �A =

Ã
0 −1
1 0

!
,

�A =

Ã
1 −1
1 1

!
, and �A =

Ã −2 1

−3 1

!
and y1 = y2 = 0. Determine the character-

istic values of all three matrices and compare your solutions using XppAut to the
solutions that you would expect based on the characteristic values. Explore how
the solutions change when you change the values of y1 and y2.

8. Use XppAut (cf. previous problem) to solve Eqs. (Eqn. (A.4))-(Eqn. (A.5)) for the

matrix �A =

Ã
1 −1
3 6

!
and y1 = 1 and y2 = 2. Compare your result to that it

Eqn. (A.28).
9. Use XppAut to make a phase plane plot of the solutions to the linear ODEs plotted
as time series in Figs. 2.1A-C. [Hint: Use the ViewAxes option and choose a 2D plot
with x1 for the X-axis and x2 for the Y-axis.] Use the Addco option in the Data
Viewer window to add a new column representing úx1 and experiment with various
possible combinations of variables to plot.

10. Show that the velocity vector for a point in phase space is parallel to the trajectory
at the point. [Hint: Calculate the slope of the trajectory, dx2/dx1, using the ODEs.]

11. Show that the nullclines for the general 2 × 2 linear equations (Eqn. (A.4)) and
(Eqn. (A.5)) are linear.
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12. Using the result in Eqn. (A.34) verify the statement in Section 2.3 that for a saddle
point trajectories that start in the direction of the positive eigenvector grow away
from the steady state exponentially, while those in the direction of the negative
eigenvector approach the steady state exponentially.

13. Write an XppAut Þle to solve the ODEs for the voltage gated membrane in Eqs.
(Eqn. (A.36)) and (Eqn. (A.37)) using the parameters in the legend of Fig. 2.5. Use
the Nullcline option to draw the nullclines and the Sing pt option to Þnd the steady
states and eigenvalues. [Note: The eigenvalues will appear in the window that you
used to start XppAut, whereas the values of V and n at the steady state will ap-
pear in window titled equilibria. The equilibria window also gives information about
the number of complex eigenvalues with negative real parts, etc.] Use the Initial-
conds/(M)ouse option to check how the trajectories depend on initial conditions.
Check that the trajectories cross the nullclines properly. Alter the values of V0.5,
Vrev, and Iapp to see how the nullclines change. How do these parameter changes
inßuence the stability of the steady state?

14. Construct the solution to the initial value problem that arises in enzyme kinetics

x0 = 1− xy ²y0 = −xy + 1− y
with the initial conditions x(0) = 0, y(0) = 0.

15. Find the periodic solution to

²x0 = f(x)− y y0 = x

where

f(x) =


−x− 2 for x < −1
x for −1 ≤ x ≤ 1
−x+ 2 for x > 1

16. Develop Taylor series for the following functions

� cos(t) around t = 0
� ln(t) around t = 1.
� exp(t2) around t = 0. (Hint, use the exponential series we have already
determined.)


