
Predator-prey delay example

Suppose that you have a general system with one delay of the form:

X ′ = F (X, U)

where U(t) = X(t − τ) and F : R2n → Rn. Fixed points of this satisfy

0 = F (X∗, X∗).

Such a fixed point is asymptotically stable if it is linearly stable, so lets try this.
Form two n × n matrices

A = (aij) ≡
∂Fi

∂xj

B = (bij) ≡
∂Fi

∂uj

all evaluated at the fixed point. Then, the linearized system satisfies

dY

dt
= AY (t) + BY (t − τ).

Let Y (t) = V eλt where V is a constant vector. If the real part of λ is negative,
then this solution decays and if it is positive, it grows. Substitution of Y into
the previous equation leads to

(

λI − A − Be−λτ
)

V = 0,

a linear equation for V. This has a solution if and only if

H(λ) ≡ det
(

λI − A − Be−λτ
)

= 0.

Thus, we must solve this nasty transcendental equation. If there is only one
delayed variable, then

H(λ) = P (λ) + Q(λ)e−λτ

which is exactly the form of Brauers theorem in the other notes. Note that
there are many theorems guaranteeing roots of polynomials have negative real
parts. We will discuss these later in class. In the meantime, lets apply this to
an example:

dx

dt
= x(t)(2 − x(t) − y(t − τ)),

dy

dt
= y(t)(−1 + x(t))

which is a predator-prey model in which the predation is delayed. (x is the prey
and y is the predator.) The fixed points satisfy

x(2 − x − y) = 0 = y(−1 + x)

which has solutions, (0, 0), (2, 0), and (1, 1). We will look at the coexistent state
when both populations are nonzero. For this model,

[F1, F2] = [x1(2 − x1 − u2), x2(−1 + x1)]
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where we identify x(t) = x1, y(t) = x2, x(t − τ) = u2, y(t − τ) = u2. Thus, we
get

A =

[

2 − 2x1 − u2 0
x2 (−1 + x1)

]

and

B =

[

0 −x1

0 0

]

We evaluate these at x1 = x2 = u2 = 1 to get

A =

[

−1 0
1 0

]

B =

[

0 −1
0 0

]

The function W (λ) is thus

H(λ) = det

[

λ + 1 e−λτ

−1 λ

]

= λ2 + λ + e−λτ

In this case, P (λ) = λ2 +λ and Q(λ) = 1. Since P (0) = 0 and |Q(iω)| > |P (iω)|
for small values of ω, the theorem is violated and we cannot conclude that there
is no delay-induced instability. So, this suggests that there might be imaginary
roots for some values of τ . Plug λ = iω into H and we get after rearrangement:

e−iωτ = ω2 − iω.

For τ fixed, as ω varies, the LHS traces the unit circle and the RHS traces a
parabola x = y2 in the complex plane (x, y). Clearly as ω increases, the parabola
and the circle intersect. Indeed, the paravola intersects the unit circle when

|ω2 − iω| =
√

ω4 + ω2 = 1

which has real roots

ω = ±
√

−1/2 +
√

5/2 = ±ω∗.

For a fixed nonzero value of ω∗, we can vary τ so that the intersection on the
unit circle occurs for the same values of ω∗ for both curves. Thus, we can find
a τ so that there are imaginary roots. A bit more effort is required to actually
prove that as τ changes past this critical value, an eigenvalue actually crosses
the imaginary axis, but, we expect this to generally be the case and so will
ignore it. (It doesnt occur for certain exceptional cases.)

I will now give you a numerical analysis of this system using XPP. I will first
compute the stability of the fixed point as a function of τ and then simulate the
equations past the point of instability. Here is the ODE file

# delayed predator prey

# delay(z,tau) returns the value of z at t-tau

x’=x*(2-x-delay(y,tau))
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y’=y*(-1+x)

# delay is zero to start

par tau=0

# I tell XPP that the biggest delay I will want is 10

@ delay=10,total=100

# I give it initial data near the fixed point

init x=1,y=.95

# and change the viewing window

@ ylo=0,yhi=1.5,xhi=100

done

Type this in and then run XPP. Do the following

1. Click on [Initialconds Go] to see a solution. Click on [Graphic stuff Add
curve] and change the Y-axis to Y and the color to 1 and click OK to see
the predator as well.

2. Click on the blue Param button to get the parameter window. Change
tau from 0 to 0.5 and click on the little Go button.There is a little more
oscillation.

3. Change tau to 1 and repeat. - More damped oscillations

4. Change tau to 1.2 and repeat. The oscillations grow!

5. Somewhere between 1 and 1.2, the fixed point becomes unstable. Lets
find out where! Click on [Sing Pts Range] and

• Range over: tau

• Steps: 20

• Start:1

• End:1.2

• Stability col: 2

and click OK. Notice a new window has popped up. It says UNSTABLE
and says there are 2 complex roots with positive real parts at the last
value of tau computed (1.2). So as the simulation showed, the fixed point
is unstable.

6. Click on the blue button that says Data. This has three columns in it.
Ignore the labels. The first column is the parameter value (tau), the
second if the real part of the maximal eigenvalue. Not that it becomes
positive at about 1.15. So that is the critical value for instability!

7. Set tau=1.2 again and click on Go in the parameter window. Now in
the main window, click on [Erase] and then [Initialconds Last] and repeat
these two commands one more time. The system has settled into a nice
periodic solution! Prey rises then predators turn on killing them. The
prey fall below 1 so the predators die out. Then the prey return and the
cycle begins anew.
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8. Click on [File Quit] to exit XPP.

Try this analysis with the SIR model:

S(t)′ = −I(t)S(t) + (1 − S(t) − I(t − τ)), I ′(t) = I(t)S(t) − I(t)/2

with the fixed points (S, I) = (1/2, 1/3). Here is the ODE file

s’=-s*i+1-s-delay(i,tau)

i’=s*i-i/2

par tau=0

init s=.5,i=.33

@ total=100,delay=10,xhi=100,ylo=0

done

Note that you should let the parameter tau range up to, say 9 or so to find
the critical value.
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