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Abstract. We consider a simple two strategy game in which each pure strategy is 
an evolutionarily stable strategy (ESS). Under the usual dynamical equations, 

• the large-time behaviour of the system will depend upon the initial conditions 
and the pay-off matrix. If  spatial effects are included to give a reaction-diffusion 
system, we prove that travelling wavefronts can occur which in effect replace one 
ESS by another. The 'strength' or 'dominance' of each ESS which decides the 
'winner' in a precisely defined sense is determined by its pay-off and by its 
diffusion rate. Good strategies have large pay-offs and small diffusion rates. 
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1 Introduction 

The notion of an evolutionarily stable strategy (ESS) has proved to be very 
fruitful for the study of contests, especially pair-wise ones, between individuals of 
a population. The original formulation is to be found in Maynard Smith and 
Price (1973) and Maynard Smith (1974). The theory develops from a pay-off 
matrix A = (a;j) where aij is the pay-off (that is increase in fitness) to an 
individual who plays strategy i against an opponent who playsj. The ESS (if one 
exists) is then a strategy (usually mixed) which cannot be invaded by any small 
group of individuals who play a different strategy. The ESS is a static concept. 
However, the very nature of an ESS implies that there are both temporal and 
spatial variations. 

If  p is a probability vector and Pi is the proportion of individuals who play 
strategy i then Taylor and Jonker (1978) have suggested the time evolution 
equations 

dpi/dt =pi[(Ap)i -prAp] (1 ~< i <~ r), (1.1) 

where r is the number of strategies. These equations have been widely accepted 
and the relationship between ESS's and stable equilibrium points of Eqs. (1.1) 
has been investigated by Zeeman (1980). The inclusion of spatial effects is not so 
straightforward. There is no difficulty for an ecological model which is formu- 
lated in terms of number density, see Hastings (1978), Kishimoto (1982) and 



458 V.C.L. Hutson and G. T. Vickers 

Dunbar (1983). Also if all individuals disperse at the same rate then we are again 
on a well-worn trial, see Fisher (1937) or Hadeler (1981). But it is quite 
reasonable to expect that the dispersal rate is affected by, or is indeed part of, the 
strategy chosen. In this we shall follow Vickers (1989) and adopt the equations 

where 

Oni ~(An)i n rAn ] D 
O--~ = niL -~ ~-f J .-~ i V2ni ( l ~ < i ~ < r ) ,  (1.2) 

N =  ~ n i. 
i = 1  

In these equations n i(x, t) is the number density of the/-strategists at position x 
and time t. Also N(x, t) is the total number density. If  the spatial domain is 
bounded, zero Neumann boundary conditions are imposed. Then the total 
number of individuals within some finite region can only change by migration 
across the boundary of the region. So it is being assumed that the carrying 
capacity for that region has been attained but the strategy-mix may change. 

If  the matrix A has an interior ESS, that is one in which every strategy is 
represented, then it is shown in Vickers (1989) that it is stable for all choices of  
the diffusion coefficients Di. The situation is more complicated if there is no such 
ESS, and we consider here the case when there are only two strategies and each 
pure strategy is an ESS. In the absence of spatial effects each ESS is stable. The 
inclusion of diffusion creates the possibility of a travelling wave which can 
replace one ESS by the other. Since any number may be added to any column 
of A without changing the dynamics, without loss of  generality we may take with 
a, f l > 0 ,  

so that each pure strategy is an ESS. With an obvious notation, the system (1.2) 
then becomes 

0U .. ( ~ U -  flV) U U  

a t  = U V   -6Z 2 '  

UV (O~U - 02V (1.3) Ov flV) + v 
0t ( u  + V) 2 oX 2 '  

where the spatial domain has been taken to be the whole of the x-axis. Our 
objective is to consider a class of travelling wave (front) solutions of  these 
equations which throws light on the asymptotic (that is large time) behaviour 
and so on the eventual relative success of the strategies. 

To put the investigation into context, consider first the corresponding 
reaction system, that is (1.3) with /~ = v = 0  and U, V spatially independent. 
There are two asymptotically stable equilibria (1, 0) and (0, 1) and one unstable 
equilibrium (fl, ~)/(a + fl). If  U < fl/(a + r) then the strategy "play option 1 
always" will become fixed in the population, but if U > fl/(a + r) then the other 
ESS will become fixed. 

Of course for a given reaction system the asymptotic behaviour depends only 
on the initial values of the number densities U and V. However, for the system 
(1.3) matters are not nearly so simple as the initial spatial distributions enter into 
consideration and the diffusion rates #, v play an important role. To investigate 
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this situation we consider the invasion of a region dominated by one strategy by 
another, and suppose that for x > 0 strategy 1 is being played by almost 
everybody and for x < 0 strategy 2 is prevalent. We then look for a travelling 
wave solution of (1.3), that is a solution of the form 

f ( x ,  t) = u ( x  - c t) ,  V ( x ,  t) = v ( x  - c t) .  (1.4) 

Substitution into (1.3) leads to a pair of nonlinear second-order ordinary 
differential equations involving an unknown parameter c, and hence to a 
first-order system of 4 equations in phase space. An equilibrium (tT, f) of the 
reaction system corresponds to an equilibrium (tT, 0, g, 0) in phase space, and we 
look for two types of  heteroclinic connections of such equilibria. The first is a 
connection of (the equilibrium corresponding to) (0, 1) to (//, ~)/(~ + ~) which is 
monotone, that is with fi > 0, 13 < 0; this will be called a Fisher wave. The second 
is a connection of (1, 0) to (0, 1) where one of u, ~3 but not the other may change 
sign once, and following the standard terminology this is called a bistable wave 
since the corresponding equilibria of the reaction system are both asymptotically 
stable. 

Our initial aim is to prove the existence of such travelling waves. Of course 
a great deal is known about travelling wave problems for one species, see Fife 
(1979) for example. However, two species problems are much more difficult, and 
it is only relatively recently that there has been much progress with these. In fact 
the Fisher wave is a saddle-node connection which exists for a range of  values of 
c, and is relatively easy to handle. The bistable wave is a saddle-saddle connec- 
tion which exists for just one value of c and is a great deal more difficult to 
tackle. For  the bistable case two methods have mainly been used. The first is 
based on a topological index, see for example Conley and Gardner (1984), 
Gardner (1984) and Mischaikow and Hutson (1990) where a number of further 
references are given; this method is potentially extremely powerful but rests on a 
relatively sophisticated theory. The second method is basically a shooting 
technique used in conjunction with Wazewski's Theorem, see Dunbar  (1984). 
Our method is related to the second of these but is simpler in conception, and is 
applicable perhaps because of the simpler sign structure of our solution. The 
system considered nevertheless presents some possibly unusual difficulties be- 
cause of the dependence of the critical sets on c, which is reflected in the singular 
dependence of the travelling wave on the parameters, see Sect. 3 for further 
comment. In previous examples which have been tackled, where as in the present 
case the reaction system is neither cooperative nor competitive, it has been found 
necessary to impose a technical condition, see Gardner (1984), which is probably 
not intrinsically essential. It has also been found necessary to assume such a 
condition in the present case, see Theorem 3.2, but we note that the numerical 
evidence supports the view that a bistable wave exists even when this condition 
is not satisfied, see Sect. 5 for further details. 

Our second main aim is to examine the question of the relative success of the 
two strategies. As we have seen this is a simple matter for the reaction system. 
For  the reaction-diffusion system, this question has led to the idea of 'domi- 
nance' of the equilibria, see Fife (1979), Conley and Gardner (1984) and Hutson 
(1986). In Fife (1979) dominance is defined for one species by considering 
circumstances in which a localised population can expand to fill up the whole 
space. A reasonable alternative definition might be based on the direction of the 
bistable travelling wave, and for one species these definitions coincide. For  the 
present problem we base the definition of dominance on the direction of the 
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travelling wave, that is on the sign of  c; for the model above if c > 0 strategy 2 
will replace strategy 1 and so will be dominant. There is strong numerical 
evidence to support the assertion that there is a close relationship between 
dominance and the growth of  a localised strategist in the presence of  an 
established strategist. However, this assertion is probably very difficult to prove. 
We are able to find an explicit criterion for the sign of  c for a bistable wave, and 
so for the dominance of  an ESS. 

The plan of  the paper is as follows. The terminology and notation are 
introduced in Sect. 2. In Sect. 3 an outline of  the broad picture concerning 
travelling wave solutions is given, and the main results are stated. Section 4 
consists of  proofs. Finally, in Sect. 5 we present some numerical results, and 
comment on the interesting question of  the relationship of  the sign of  c and the 
diffusion constants, and on their connection with the shape of  the travelling 
wave. 

2 Prefiminaries 

The substitutions (1.4) lead to the following pair of  equations for u, v: 

Itii + eft + f ( u ,  v) = O, (2.1) 

vi5 + cb - - f ( u ,  v) = 0, (2.2) 

where f ( u ,  v) = uv(~zu - f lv) / (u + v) 2. Here 'dot '  denotes differentiation with re- 
spect to the travelling-wave variable (x  - c O, and we shall denote this variable by 
' t '  to fit with standard differential equation notation; as this will be used from 
here on there is little possibility of  confusion. 

Rewrite (2.1) and (2.2) as a first-order system: 

~ = p ,  

= - c p  - f , 

l) = q, 

vgt = - cq + f  

Adding (2.3b) and (2.3d) and integrating we obtain the equation 

#p + vq + c(u + v - 6) = O, 

(2.3a) 
(2.3b) 

(2.3c) 

(2.3d) 

(2.4) 
where 6 is a constant. Now for any a, b points of  the form (a, 0, 0, 0) and 
(0, 0, b, 0) are equilibria which we seek to connect by a heteroclinic orbit. 
However, taking limits as t --* _ oo in (2.4), we see that necessarily a = b for 
such a connection if c ~ 0. Without loss of  generality we may choose 6 = 1 (as 
it is easy to check that rescaling of  solutions yields solutions). Our primary aim 
then is to search for a connection of  (0, 0, 1, 0) to ( 1, 0, 0, 0) in R 4 with c # 0. 
Note though that if c = 0 orbits must lie in the manifold #u + vv = const, and if 
# ~ v will not be of  the above form. This singular behaviour is further com- 
mented on in Sect. 3. We remark also that i f / t  = v, from (2.4) the orbit must lie 
in the manifold u + v = I. The basic equations reduce then to those for the 
well-known one species case with cubic nonlinearity discussed in detail in Fife 
(1979). 

The next step is to use (2.4) to reduce the dimension of  the problem from one 
in ~4 to one in R3. Two essentially equivalent systems are obtained, and we shall 
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henceforth use (2.5) as the system governing the problem (and occasionally for 
technical convenience utilise (2.6)); 

u ~ . p ~  

= - c p  - f ,  

vv  = - # p  - c (u  + v - 1), 

# u  = - vq  - c (u  + v - 1), 

v = - q ,  

vq  = - cq  + f .  

(2.5a) 

(2.5b) 

(2.5c) 

(2.6a) 

(2.6b) 

(2.6c) 

The system (2.5) has an additional equilibrium at (/3, 0, ~)/(~ +/3), and we shall 
also show that there is a connection of (0, 0, 1) to this. Since (0, 1) and (1, 0) are 
stable equilibria of the reaction system, we shall follow the standard scalar 
equation terminology in making the following definitions. 

Definition. A connection of A(0, 0, 1) to D(1, 0, 0) where one but not both of 
p, q may change sign once will be called a b i s t a b l e  w a v e .  A connection of  
A(0, 0, 1) to B(/3, 0, ~)/(~ + 13) which is monotone (that is p > 0, q < 0) will be 
called a F i s h e r  wave .  

We shall use the term travelling wave to indicate either the heteroclinic 
connection in the phase plane or the corresponding solution of  the reaction-diffu- 
sion system. Strictly these connections should perhaps be referred to as travelling 
wave fronts as they connect different equilibria, but we follow the standard 
terminology and drop the 'front'. 

The following useful relations are obtained by easy manipulations of  the 
systems (2.5) and (2.6). First, (2.4) may be rewritten in the form 

Also 

( l t~ + v~3) = - c ( u  + v - 1). (2.7) 

and 

f? f: -~ [p2(u2) --pZ(Ul)] = - - e  p ( s )  as  - V ( s )  as.  (2.11) 
1 1 

The first lemma below (whose proof  is routine and is omitted) discusses the local 
behaviour, and the second gives an a priori bound from which existence of orbits 
follows in the appropriate region of the u - v  plane. 

Lemma 2.1 A s s u m e  t h a t  c > O. T h e n  the  f o l l o w i n g  h o l d  f o r  (2.5). 
(i) A h a s  a o n e - d i m e n s i o n a l  u n s t a b l e  m a n i f o l d .  T h e  t a n g e n t  v e c t o r  a t  A to  th i s  l ies  
in D A E  a n d  so  is a b o v e  A D  i f  I~ < v a n d  b e l o w  A D  i f  I~ > v ( see  F ig .  1). 

v(fi + b) = (v - I~)p - c (u  + v - 1), (2.8) 

#(f i  + v) = (l~ - v )q  - c (u  + v - 1). (2.9) 

On a section of an orbit where v is monotone in u, we can write v = V ( u )  and 
F ( u )  = f ( u ,  V(u ) ) .  Then 

dp 
#-~u  = - - c  - F / p  (2.10) 
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A 

o D E E D 

a b 

Fig. la,b. Projection in u-v plane of phase space, (a) for/t < v and (b) for # > v. The line AE is 
pu+vv=v, AD is u + v = l  and OC is ~u=flv. Also f < 0  ( f>0)  above (below) the line OC 
respectively 

(ii) B is an asymptotically stable hyperbolic equilibrium. Suppose cl, c= satisfy 
0 < Cl < c2 < ~ .  Then there is a 6 > 0 such that the ball centre B and radius 6 lies 
in the basin o f  attraction o f  B for all c ~ [Cl, c2]. 

It  turns out that D has a two-dimensional stable manifold. The tactics we use 
are based on shooting along the unstable manifold of  A with c as shooting 
parameter.  It  is convenient to use T(c) for the projection of  this orbit on the u - v  
plane until its first exit f rom the region u > 0, v/> 0. As the system is au- 
tonomous,  we shall assume without loss of  generality that T(c) cuts a given small 
ball centre A at t = 0. 

Lemma 2.2 Let (u, p, v) denote any point on the orbit corresponding to the unstable 
manifold o f  A. Let A denote an e-neighbourhood o f  the triangle A D E  in ~2. Then 
p is bounded until the first exit o f  (u, v) from A. This ensures existence of  T(c). 

Proof. Set 

We first show that on a section of  the orbit starting at A with p > 0 ,  
p < 2[c + (c 2 + 2#re)m]~# =p l ,  say. For  if  not, there is a ul with p(u) <p~ for 
O<~u<ul  and p(u~)=p~. Then from (2.11), since u ~ < l + ~  if / ~ > v  and 
ul <<. v/# + ~ if/~ < v ,  

I 2 $#Pa <~ cpl + m, 

whence Pl ~< [c + (c 2 + 2pm) w2]/p < p~, a contradiction. Of  course p may change 
sign on the orbit, but an obvious modification of  the above argument yields a 
similar conclusion. 

3 Existence o f  travelling waves 

The broad situation exhibits considerable differences from several of  the prob- 
lems for the scalar equation and for higher dimensional problems which have 
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previously been tackled, so we start with some general remarks with the aim of 
clarification. 

Note first that if c = 0, the system (2.5) has three lines of equilibria OA, O C  
and OE. Furthermore, T(0) always lies in AE,  and will be a heteroclinic 
connection of A to E if and only if/~/0t = F(l~/v) - see Lemma AI. This will yield 
a pattern, that is a stationary solution of the reaction-diffusion system (1.3). We 
might expect this case to form a division between the situations for/~/ct < F(l~/v) 
and/~/ot > F(#/v) in that the corresponding travelling waves would proceed in 
opposite directions. However, this is only true if we interpret the travelling waves 
as connections of A to D and not of A to E. This singular jump of an A to E 
Connection to an A to D connection is an interesting if complicating mathemat- 
ical feature of  the problem. 

One may thus speculate that connections of A to D (since these are both stable 
equilibria of  the reaction systems) will be analogues of the bistable waves for the 
scalar equation. Suppose then that there is a bistable wave for some c > 0 for some 
fixed value of the parameters. As/~/~ increases we expect that T(c) for larger c 
will form a spiral into B, and that for yet larger c, a monotone connection of  A 
to B analogous to a Fisher wave will develop (since the reaction term is of one 
sign in ABC) .  All these speculations are strongly supported by numerical evidence, 
and we would wish to be able to prove the existence of the Fisher and bistable 
waves. However, as discussed in the introduction, for technical reasons we have 
had to introduce a certain restriction on the parameters (which is probably not 
a necessary condition) in order to prove the existence of bistable waves. 

The theorems are as follows, the proofs being given, in Sect. 4. They are 
stated for fl/ct > F(~/v) ,  but this imposes no restriction since the pairs ~, p and 
/~, v can be interchanged without changing the biological problem. 

Theorem 3.1 Set 

K = sup uv/(u + v) 2, 
(u, v) ~ in t  A B C  

so that K <<. 1/4, and assume that fl/o~ > F(l~/v). Then for  c > 0 with 

c 2 > 4K(fl# + cry) max , , 

there is a monotone (with ft > O, f~ < O) connection o f  A to B, and hence a Fisher 
wave. 

Theorem 3.2 Assume that fl/~ > F(# /v )  and suppose the following inequality is 
satisfied: 

~ + 2 - > l . v  

Then fo r  some c > 0 there is a connection o f  A to D (and hence a bistable wave) 
such that the following holds. I f  ~ < v, then i~ < 0, il > 0 initially on this, and there 
is at most  one point where ~ = O; this lies in int B C E D  and is a strict maximum.  
I f  # >1 v, the connection is monotone with ft > O, b < O. 

4 Existence proofs 

The broad strategy for treating (2.3) is to shoot from A with c as the shooting 
parameter. The behaviour for small c is approximately known as the system (2.3) 
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may  be solved explicitly for  c = 0 (see Lemma A1); we can thus assert that  T(c) 
cuts DE transversally for  small enough c. For  large c, we shall show that  T(c) 
never reaches the boundary  o f  ABC; this incidentally establishes the existence o f  
a Fisher wave. In  order  for  T(c) to ' jump '  between these two types o f  behaviour  
we shall show that  a bistable travelling wave must  exist for an intermediate value 
o f  c. We are going to assume th roughou t  mos t  o f  this section that  # < v; this is 
the mos t  difficult case to tackle, and at the end o f  the section we make  some 
remarks on why the case # > v is easier. 

We start the p r o o f  by establishing a series o f  technical lemmas describing the 
possible qualitative behaviour  o f  orbits. The first concerns the turning points  
defined as follows. 

Definition. A turning point (TP) is a point  where at least one o f  fi(t0) = 0 or  
z)(t0) = 0 for  some to ~ •; if bo th  hold it is counted as 2 TP's .  A strict maximum 
(say o f  u) is a point  where ~(to) = O, ~~(to) < 0, with a similar definition for  a 
strict minimum. A strict point o f  inflexion is a point  where fi(to) =/ / ( to)  = 0 and 
//(to) ~ O. 

Lemma 4.1 Take c > O, # < v and consider any solution in cl ADE. The existence 
o f  a TP at A, B or D implies that the orbit is the equilibrium of  (2.3) itself, that 
is (0, 0, 1), (fl, O, ~)/(~ + t )  or (1, 0, 0) respectively. I f  f~ = 0 on DE the solution 
lies in the vertical plane whose projection is DE. Figure 2 shows all the possible 
turning points (apart from those described above) in cl ADE, and all o f  these are 
strict. 

Proof. At A, B, D, since u + v = 1, f rom (2.5c) ~3 = 0 if and only if p = ~} = 0. 
The first s tatement follows as f = 0 at these points. N o w  suppose ~) = 0 on DE. 
Then the system (2.6) has the solution u(t), v ( t )=  q( t )=  0 where u(t) satisfies 
#~ = - c ( u -  1). The assertion follows by uniqueness. 

Consider  next the region int ABC  where f <  0. I f  ~ = p  = 0, f rom (2.5b) 
# / / = - f >  0, so this is a strict min imum as indicated in Fig. 2. A similar 
a rgument  applies for ~3 and also in int BCED. 

I f  ~ = 0 on BC, f rom (2.5c), fi < 0. F r o m  (2.5b), p = 0 implies/) = 0 and then 
i~i7 = ~i5 = BuviJ/(u + v) 2 < O. 

A similar calculation holds when ~ = 0, and also when ~ = 0 on DE. These 
arguments  yield the points o f  inflexion as marked.  

For  int AB, f rom (2.5c), fi = 0 if  and only if ~3 = 0. So a turning point  there 

A(O,1) 

B C 

0 , E 

Fig. 2. The case # < v, c > 0. Possible 
turning points are shown - see Lemma 4.1 
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must  be a double turning point. F rom (2.7) the orbit is tangent to 
# u + v v = c o n s t .  Also from (2.8), v ( i i + b ) = ( v - # ) i i = ' ( v - # ) f / # > O .  On 
BD, the opposite inequality holds, so the orbit does not lie in ADE. 

Lemma 4.2 Take c > 0 and # < v. Then the following hold: 
(i) T(c) cannot intersect cl AE. 
(ii) Consider T(e) until its first exit from cl ABC. Then 

(a) p > 0 ,  q < 0  
(b) T(c) c~ cl AB = ~ .  

(iii) I f  T(c) c~cl BD ~ f~, then T(c) intersects {el BD }\{D } with p < O, q > O. 

Proof (i) An obvious consequence of (2.7). 
(ii) (a) I f  fi = 0 first at to, f rom the allowed behaviour (Fig. 2), u(t) > U(to) for 
t < to. Hence the orbit cannot have come from A. Similarly for ~ = 0. This 
argument includes B, for if fi = 0 or 15 = 0, by the lemma the orbit is an 
equilibrium. 
(b) Suppose the first intersection takes place at to. By (2.8), 
v(fi + v)(t0) --- (v - #)p(to) > 0 by (iia). But at first intersection, the orbit must 
arrive from the right, that is with (fi + ~)(t0) ~< 0. This is a contradiction. 
(iii) Neither p = 0 nor q - - 0  on cl BD by Lemma 4.1. Now on cl BD, from 
(2.5c), vb = - U P  and from (2.8), v(fi + 13) = (v - #)p. Thus p < 0 implies b > 0 
and p > 0 implies (ti + b) > 0. The last possibility is ruled out as the orbit arrives 
from the right. Thus p < 0 and q > 0. Obviously on T(c) this cannot happen at 
D. 

Proof of  Theorem 3.1 (Fisher wave). We give this for the case # < v. I f  # > v, a 
similar argument is employed, except that the basic equation used is that for u 
rather than for v. 

We shall show that T(c) cannot cut int BC, that is there is no to e ~ such that 
(U(to), V(to)) ~ int BC. The result will then follow. For  the orbit must remain in 
int ABC for all t by Lemma 4.2(i) and (iib), and as it is monotone (by Lemma 
4.2(iia)) it must tend to a limit which must be an equilibrium from the standard 
theory. As this cannot be A it must be B, and the existence of  a connection 
follows. 

To prove that T(¢) cannot cut int BC we argue by contradiction. Suppose 
then that T(c) first cuts BC at (u*, v*). As T(c) is monotone we may suppose 
that on T(c), u = u(v) and we may set H(v )=f (u (v ) ,  v). Equation (2.2) then 
becomes 

vii + c~ - H(v) = O, 

and we have H(v*) = 0. The idea in outline is to show by using Lemma A2 that 
with c as in Theorem 3.1, an orbit in the v - ~  phase plane cannot reach v = v*. 
To do this we make the changes of  variable w = ( v - v * ) / ( 1 - v * ) ,  t = t/x/~, 
obtaining the following with w' denoting dw/dt': 

,, c w '  H(v )  
w . . . .  0. (4.1) 

x/~ 1 - -v*  

The substitution changes v* to 0 and leaves 1 at 1, so we can apply Lemma A2. 
We thus need an estimate for the following: 

G(w) H(v) 
sup - sup . 

0 < w ~ < l  W v*<<.v<~l V - - V *  
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Now in ABC, #fi + vt3 < 0, whence #(u* - u) < v(v - v*), and so 

- - ~ f l + - -  
v - v *  # 

From the expression for f ,  

H(v) 
sup _ _ _  ~< K (fl# + av). 

v - -v*  # 

We now set w ' =  r and rewrite (4.1) in the form given in Lemma A2 with 
Q = - c / ~ / ~ .  A short calculation shows that under the assumed condition on c, 
by Lemma A2, v(t) < v* for t ~ •. This yields the required contradiction and 
completes the p roof  of  the theorem. 

Following the tactics described in the first paragraph of  this section, we 
proceed to establish the existence of  a bistable wave. We shall show that this 
exists for c = c + with c + as in the definition below. Recall in the following that 
T(c) is the part  of  an orbit lying in cl A O E  and fl/a > F(#/v).  

Definition. Let ~2 be the set of  c ~> 0 such that T(c) has both the following 
properties 
(i) T(c) intersects {cl DE}k{D} transversally. 
(ii) T(c) has at most  one TP. 
Put c + = sup{#: c ~ f2 for 0 ~< c ~< c'}, and let £2 + = [0, c +). 

We shall use the term 'continuity'  several times in the p roof  to mean continuity 
of  the (one dimensional) unstable manifold T(c) with respect to c on compact  
t-sets, recalling that f rom the definition T(c) cuts a small ball with centre A at 
t = 0 .  

From continuity and Lemma A1, for small enough c, T(c) is close to AE, is 
monotone,  and cuts DE transversally near E. Thus certainly c + > 0. 

Lemma 4.3 l f  e ~ O, then f~ < 0 on T(c), t~ > 0 on T(c) c~cl ABC, and precisely one 
o f  the following hoM on T(c): 
(i) ~ > 0  
(ii) u has a strict maximum in int BCED and no other TP 
(iii) u has a strict inflexion with u > 0 on int ED and no other TP. 

Proof. I t  is clear f rom Fig. 2 that the first TP must be a maximum in u in 
int BCED or an inflexion in u on DE. As there is only one TP by the definition 
of f2, the possibility that ~) = 0 is ruled out. 

Lemma 4.4 g2 is non-empty, bounded above, and open in ~+. 

Proof. Since fl/a > F(It/v) it follows f rom Lemma A1 that O ~ ~ .  £2 is bounded 
above by Theorem 3.1. To prove that f2 is open, take some fixed Co ~ f2. 
Continuity yields transversality of  intersection on a small enough neighbourhood 
of  Co. In the following we prove that there is only one TP for c in such a 
neighbourhood. Suppose the result is false. Then there is a sequence {cn } with 
lim cn = Co such that  T(cn) has two or more TP's. 

We first prove that for large enough n, T(c,) cannot have a TP in cl ABC. 
For  otherwise there is a subsequence, which we still denote by {c, }, such that 
each T(cn) has a TP in cl ABC. From continuity in c and compactness, T(co) has 
a TP in cl ABC. This is impossible by Lemma 4.3. We may thus assume without 
loss of  generality that T(cn) has no TP in cl ABC. 
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The next step is to prove that b < 0 on T(cn). In view of the result of the 
previous paragraph it is enough to establish this in cl BCED.  Now by Lemma 
4.3, 15 < 0 on T(co) n el BCED.  Continuity (of  q in c) establishes the claim. 

From Fig. 2 the remaining possibility that must be ruled out is that T(¢,)  has 
at least one maximum in u in B C E D  together with an inflexion on ED. However, 
from the figure the combination of these two is impossible, as u may not have a 
minimum. We finally conclude that T(c, )  cannot have more than one TP. This 
yields a contradiction and completes the proof  of the lemma. 

Lemma 4.5 I f  a/fl + 21x/v > 1, no orbit T(c) with c ~ f2 can touch B C  at t = to and 
then exit  f rom int B C E D  by crossing int DE. 

Proof. We argue by contradiction. Suppose that there is such an orbit, and let it 
touch int B C  at P and cut int D E  at R. Then, at P, 

a u = f l v ,  aft=fliJ and # ~ + v ~ + c ( u + v - 1 ) = : O  

which give 

= c[~ - v(~ +/7) ] / (~v  + /7~) .  

In BCED,  f > 0 and so 

(4.2) 

vf + c~) > 0 

which implies that vf~ + cv is increasing. But at R, vfJ + cv < 0, and so at P 

vb + cv <0 .  

The results (4.2) and (4.3) give that at P 

v > ~ v / ( ~ ( v  - ~)). 

But at C we see that 

(4.3) 

and so 

au = flv and Ixu + vv = v, 

v = ~v / (~v  + / 7 ~ ) .  

Clearly v at P has to be less than this and so 

or ~/fl + 2p/v < 1, which provides the required contradiction. 
The following lemmas give the behaviour of orbits for c ~ t2 + and for the 

limiting orbit T(c +) respectively under the condition of Lemma 4.5. 

Proposition 4.6 Suppose that c ~ f2 + and a/fl + 2p/v > 1. Let  T(c) have its f irst  
exit  f rom c lABC at to. Then fi >O for  t <~to, i~ <O for  t ~ R, and T(c)n  
cl A B C  = (25 for  t > to. 

Proof. The first assertions are simply Lemma 4.3. To prove the last assertion, let 
Pc denote the first intersection of T(c) with BC, and set 

ci --- sup{e' : T(c) n B C  = Pc for 0 ~< c ~< c'}. 

Note that Pc varies with c, so we are assuming that if c < cl, there is exactly 
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one intersection of  T(c) with BC. Now it is given that c ~ t2 +, so c < c +. Thus 
to prove the result it is enough to show that c~ ~> c +. 

Observe first that T(cl) must intersect BC again, say at tl > to. For  if not, 
by continuity there is an open neighbourhood N of  Cl such that for c e N, 
T(cl) does not intersect BC for any tl > to, which contradicts the definition of  
cl as a sup. 

We complete the p roof  by using a contradiction argument. Suppose that 
c 1 < c + and consider T(cl). By Lemma 4.5, since ci ~ f2 +, T(cm) cannot touch 
BC at t I . So suppose there is a point Q ~ i n t A B C  on T(c~). Since T(cl) is 
approximated by orbits T(c) with c < cl, these orbits must reenter int ABC. 
However, by the definition of  Cl, orbits T(c) with c < Cl may not intersect BC 
for t > to, and so may not reenter int ABC. This contradiction completes the 
proof. 

Lemma 4.7 I f  ~/fl + 2#/v > 1 then T(c +) does not reenter int ABC after its first 
exit. Also, on T(c+), ~ < 0 and there is one TP at most, which can only be a 
strict maximum in int BCED or a strict inflexion on int DE. 

Proof The first assertion follows from continuity and Proposition 4.6. For  
c e O +, ~3 < 0, again by Proposition 4.6. Thus 1) ~< 0 on T(c +) by continuity in 
c, and so if i) = 0 it must happen at an inflexion, which by Lemma 4.1 must lie 
on int BC. But this is impossible as then T(c +) would have to reenter int ABC, 
which is ruled out above. 

Suppose that ~ = 0 twice on T(c +), and let the first two TP's  (with respect 
to increasing t) occur at tm, t2 with t~ < t 2. Note that no TP can lie in int ABC 
(by Proposition 4.6 and continuity in c). By Lemma 4.1 the first TP must be a 
maximum (for it cannot be a minimum, and if it is an inflexion this must lie on 
DE, and so the orbit exits f rom BCED for t > t l ,  which rules out the existence 
of  a TP at t2 with t2 > h). Consider next the TP at t2 which obviously cannot 
be another maximum. Neither can it be a minimum as no TP may lie in 
int ABC, and a minimum in cl BCDE is not allowed (by Lemma 4.1). I f  it is an 
inflexion it cannot  lie on BC ( f rom Lemma 4.1 and Fig. 2). Neither can it lie 
on DE (by Lemma 4.1 as an inflexion on DE cannot follow a maximum). This 
proves that a second turning point cannot exist. 

Proof of Theorem 3.2 Clearly c + ~ Q + as t-2 + is open. Lemma 4.7 rules out the 
possibility that there are two TP's  on T(c+), so from the definition of  O +, 
T(c ÷) cannot intersect {clED}\{D} transversally, and so not at all as a 
tangency is ruled out by Lemma 4.1. Neither can T(c +) intersect clAB (by 
Lemma 4.2(iib)) nor cl BD (by Lemma 4.2(iii)) as it has only one TP. Hence 
T(c +) must remain in int ADE for all t. 

As T(c +) is eventually monotone,  it must tend to an equilibrium, either B 
or D, as t ~ oo. Suppose it is B. Then a sequence of  approximating orbits T(cn) 
with cn ~ t2 + must pass closer and closer to B as n ~ oo. But this is ruled out 
as B is 'uniformly'  a hyperbolic sink (see Lemma 2.1(ii)). Thus the orbit tends 
to D, yielding the required bistable wave. 

A final comment  on the p roof  for V > v is needed. Note that then the line 
AC, that is #u + vv = v, is to the left of  AD, and we look at orbits lying in 
ADE. A repetition of  the argument of  Lemma 4.1 shows that an orbit T(c) 
cannot have an inflexion on OD at first exit. Thus using continuity in c, we 
readily deduce that all orbits T(c) for c ~ I2 + are monotone.  Lemma 4.5 is thus 
unnecessary, and the p roof  is as before. 
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5 Numerical results and discussions 

It  is a straightforward matter  to use a shooting technique (with parameter  c) to 
find numerically a solution of Eq. (2.5) which starts near (0, 0, 1) and ap- 
proaches (1, 0, 0). Figure 3 illustrates a typical solution. For  these parameters 
e/fl + 2#/v = 7/6 and so Theorem 3.2 does guarantee the existence of such a 
solution. Clearly the solution is monotone in v but not u. The reaction-diffusion 
system (1.3) was solved with the same parameter  set to check that the wave is 
stable and will naturally develop from suitable initial conditions such as those 
mentioned in the introduction. The agreement between the two approaches was 
very satisfactory and confirmed that the wave is indeed stable. Other parameter  
sets were used which had ~/fl + 2#/v < 1. Such experiments support  the con- 
tention that a stable wave exists in all cases. 

For  other parameters, the connection may be monotone in both u and v. For  
example, when/~ = v the standard one species case is recovered and it is easy to 
show that the required solution is 

u(t) = 1/(1 + e x p ( - k t ) ) ,  

v(t) = 1/(1 + exp(kt)), 

where k 2 = (~ + fl)/(2#) and the wave speed is c with 

c 2 = ~(~ - / ~ ) 2 / ( 2 ( ~  +/~)) .  

We have seen that in a 2-strategy game with 

[ a + ~ b  1 A =  , ~ > O ,  f l > O  
a b + f l  

0 
a O 

v 
1 

0 0 
b 

i 
10 20 30 

Fig. 3a,b. The travelling wave 
when ~ = 1,/3 =2 ,  p = 1, v =3 .  a 
shows the projection of the orbit in 
the u - v  plane, and b the functions 
u(x  - cO and v(x  - cO 
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and diffusion rates # and v for the two strategies, the second one can displace the 
first if 

fl/~ > F(I.t/v), 

where F(x)  is well-approximated by x-°61 for 0.05 < x < 20. Thus good strate- 
gies have large pay-offs and small diffusion rates (suggesting a new interpretation 
of  Sussex University's mot to  "Be still and know").  

In interpreting the result, one must note that the model (1.2) is not 
appropriate  to the spread of  a population, that is the combination of  individual 
strategists, into unoccupied territory. In this case mobility seems clearly to be an 
asset at least initially, but it may well be that an inferior strategy does very well 
at first and only later is replaced by the better one. Our model on the other hand 
is concerned with a population which has reached its carrying capacity and is 
being threatened (by invasion or mutation) with a new strategy. Even if a new 
strategy spreads through the population, there is a rather small, temporary 
change in population density, so the model will still be valid. 

A notable feature of  the travelling-wave solutions is that they are not always 
monotonic.  Figure 3 illustrates such a case. The strategy that is being replaced 
(strategy 1 with density u) initially increases when the new strategy 2 (with 
density v) enters its territory. At a later time, however, the number  of  1-strate- 
gists decreases rather sharply and the 2-strategists are left in control. Short-term 
observations do not always indicate the eventual winner. 

Acknowledgement. The first author is grateful to the Leverhulme Trust for a fellowship enabling him 
to visit the Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology, 
where the research reported here was partly carried out. 

Appendix 

We collect together here some technical results. The first notes some conse- 
quences of  the crucial fact that the system (2.3) may be solved explicitly if e = 0. 
In the following ~7 = v /#  is the coordinate of  the intersection of  the line 
#u + vv = v with v = 0. Also 2 = #Iv. 

Lemma A1 When e = 0 the orbit T(O) lies in the plane #u + vv = v. Le t  

I(u) = (u + v)2 (fly - ctu) du, 

where v = 1 - 2 u .  Then I*p2/2 = I(U). Also 

I(tT) = ~G(2)[/3/~ -- r(2)], 

where 

G(2) = [2(2 - 1)(2 + 5) - 22(22 + 1) log 2]/[2(1 - -  , ~ , ) 4 ] ,  

22(2 + 2) log 2 - (2 - 1)(52 + 1) 
F(2) = 

2(2 - 1)(2 + 5) - 22(22 + 1) log 2" 

For all 2, G(2) > 0. Also F(1)  = 1 and F is strictly decreasing with F(2) --* ~ ,  0 
as 2--*0, ~ respectively. For given ~, fl, let #c/Vc = 2c(fl/~) be the (obviously 
unique) solution o f  I(K) = O. Then I(~) > 0 i f  either fl/~ > F(2) or equivalently i f  
,~ > ,~(~1~).  
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I f  either of  these conditions holds, p > 0 on T(O) (and so T(O) cuts the plane 
v = 0 transversally). 

Proof. the  first  s t a t e m e n t  is an  o b v i o u s  c o n s e q u e n c e  o f  (2.7). I t  fo l lows  t h a t  
v = 1 - 2u o n  T(0) ,  a n d  (2.10) m a y  be  i n t eg ra t ed  explici t ly .  T h e  r e m a i n d e r  o f  the  
p r o o f  is m e r e l y  a ( s o m e w h a t  ted ious)  a lgebra ic  exercise.  

T h e  nex t  resul t  is i nc luded  fo r  c o n v e n i e n c e  o f  reference;  i t  is a m i n o r  
a m e n d m e n t  o f  a resul t  due  to  F i fe  (1979,  p. 109). 

L e m m a  A2 Assume that G : [ 0 ,  1] ~ is smooth, and suppose that 
G(0)  = G ( I )  = 0 and G(w) > 0 (0 < w < 1). Define G1 = sup G(w)/w, andsup- 

pose that Q <<, -2x/rG1 . Consider the pair of  differential °< w<.l equations 

w = r  

= - ~ w  - G ( w ) .  

Let T be an orbit with tlim (w(t), r(t)) = (1, O) with w(t) < 1, r(t) > 0 for large t. 

Then for all t, r(t) > O, 0 < w(t) < 1, and l im (w(t), r(t)) = (0, 0), that is the orbit 
is a connection of (0, O) to (1, 0). ,-~-oo 
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