
1. Please prove the following statements from the Press et al paper

(a) Since the classical adjoint, A satisfies AM ′ = det(M ′)I = 0 where
M ′ = M−I, show that this means that each row of A is proportional
to the left eigenvector, vTM = vT .

(b) Prove the statement that v · f = CD(p, q, f) where C is some con-
stant (that comes from not normalizing the rows of the adjoint).This
requires a little bit of work.

(c) Prove equations (8,9) in the paper

(d) Prove equations (12-14)

2. Use simulation to compare the payoff of the extortion strategy (with a
small epsilon chance of cooperating when DD) , (11/13, 1/2.7/26, .01)
against TFT (1, 0, 1, 0), ALLD (0, 0, 0, 0), ALLC (1, 1, 1, 1), WSLS (1, 0, 0, 1),
ZDGTFT-2 (1, 1/8, 1, 1/4), EXTORT-2 (8/9, 1/2, 1/3, 0), TFT with er-
ror (.9, .1, .9, .1), and, say, four randomly chosen strategies , (q1, q2, q3, q4)
(that is, pick each qi using a random number from your calculator or some-
thing). You should simulate for 2000 rounds and except for ALLD, play
C first as each player. Make a table showing the expected payoff of X and
Y. If you are Y, which is the best strategy for you? Here is my version in
XPP:

# simulate payoff from two players

par p1=.846,p2=.5,p3=.269,p4=0.01

# for x xy cc cd dc dd

# for y yx cc cd dc dd

# play 1 to cooperate and 0 to defect

par q1=.5,q2=.5,q3=.5,q4=.5

init x=1,y=1

par rr=3,tt=5,ss=0,pp=1

# choose which probability to use based on last move

px=p1*x*y+p2*x*(1-y)+p3*(1-x)*y+p4*(1-x)*(1-y)

py=q1*x*y+q2*(1-x)*y+q3*(1-y)*x+q4*(1-x)*(1-y)

# choose new strategy

xp=ran(1)<px

yp=ran(1)<py

# reward (cc)

co=xp*yp

# punishment (dd)

de=(1-xp)*(1-yp)

# sucker - from y’s pt of view

su=(1-xp)*yp

# temptation from y’s pt of view

te=(1-yp)*xp

# update

x’=xp
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y’=yp

# compute running total

sxt’=sxt+rr*co+de*pp+su*tt+te*ss

syt’=syt+rr*co+de*pp+su*ss+te*tt

# and running average

aux sx=sxt/max(t,1)

aux sy=syt/max(t,1)

@ meth=discrete,total=2000,bound=10000000

@ xp=t,yp=sx

@ nplot=2,xp2=t,yp2=sy

@ xhi=2000,ylo=-0.5,yhi=5.5

done

3. In class, I proposed an alternative to replicator dynamics based on the
following idea. Given a payoff matrix, A for N strategies, and a distribu-
tion, ~u of players (so that ui is the fraction playing strategy i), the fitness
fi = (A~u)i. Given a function H(x) that is nonnegative and increasing,
then my model has the following equations:

u′i =
∑
j

H(fi − fj)uj −H(fj − fi)ui (∗)

In the remainder of this exercise, let H(u) = 1/(1 + exp(−10u)).

• Take N = 2 and A = [0 − c;−d, 0] where c, d are positive. Write a
single ODE for u1, say, u′1 = g(u1). Fix c = 1 and plot g(u1) as you
vary d between 0 and 3. At what point d does there appear a new
stable equilibrium? Suppose we take H(u) to be the step function:
H(u) = 0, u < 0, H(u) = 1, u > 0, H(0) = 1/2. For a two player
game, show that if a pure strategy is a strict nash equilibrium, then
it is also an equilibrium of (*) and that it is stable,

• Now consider the three strategy game with matrix

A =

 0 1 −b
−b 0 1
1 −b 0


When b = 1 this is a rock-paper-scissors model and we know that it
creates heteroclinic cycles in replicator dynamics. For dynamics of
the form (*) with H(u) as specified, it is easy to show that uj = 1/3
is an equilibrium point. Either analytically or numerically, study the
stability and behavior as b increases from 0 to 5, Here is an XPP file
if you want:

# three player game that is kind of RPS

h(u)=1/(1+exp(-gamma*u))

par gamma=10
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par a=1,b=1

init u1=.6,u2=.1

u3=1-u1-u2

f1=a*u2-b*u3

f2=-b*u1+a*u3

f3=a*u1-b*u2

u1’=h(f1-f2)*u2+h(f1-f3)*u3-(h(f2-f1)+h(f3-f1))*u1

u2’=h(f2-f1)*u1+h(f2-f3)*u3-(h(f3-f2)+h(f1-f2))*u2

aux u3=u3

@ xp=u1,yp=u2,xlo=0,ylo=0,xhi=1,yhi=1

@ nmesh=80,total=40

done

4. Prove that if

z(x) =
1

2

∫ ∞
−∞

e−|x−y|u(y) dy

then
d2z

dx2
= z(x) − u(x)
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