
This is a long HW problem that involves a combination of simulations and
also of analysis. We will look a model of all-to-all coupled quadratic integrate-
and-fire neurons:

V ′j = V 2
j + µ+ ∆Lj + ks, j = 1, . . . , N

with the rule that when Vj = +∞, it is reset to −∞. We call the time at
which Vj hits +∞, tj . The random numbers, Lj are taken from the Lorenz
distribution (which we generate as)

Lj = tan(π(Rj − 1/2))

where Rj are uniform random numbers on (0, 1). The synaptic coupling obeys
the ODE:

s′ = −s/τ + (1/N)

N∑
j=1

δ(t− tj)/τ.

Note that the sum in this equation is the average firing rate of the network.
So, the first thing I want you to do is simulate the equations for
N = 400 and “infinity” (the reset value) set to, say, 100. Set τ = 0.5,
µ = 5, ∆ = 0.25. Use Euler to integrate with dt=0.005 and run for
40000 iterations (200 time units) with a variety of values of g, say
k = −3,−2,−1, 0, 1, 2, 3 and plot s vs time; maybe zoom in to see if
there is a rhythm at all. For k in the right range you should see some
regular oscillations. I will post some XPP code if you don’t want to
try this using MatLab, Python, or something else (like Julia).

So now we need to analyze this. Proceeding as we did in class with the
Kuramoto, we will let Ij = µ + ∆Lj and N → ∞. We let f(V, I, t) be the
density of V, I at any point t and find that

∂tf + ∂V [(V 2 + I + ks)f ] = 0. (1)

The firing rate is the flux at V = +∞, that is

r(I, t) = lim
V→∞

(V 2 + I + ks)f(V, I, t)

Let g(I) be the density for the applied currents. Then the average firing rate,
ra(t) is

ra(t) =

∫ ∞
−∞

g(I)r(I, t) dI.

We also see that by this definition that s satisfies

τs′ = −s+ ra(t)

which now closes the system.
Now it is time for an ansatz. We suppose that

f(V, I, t) =
1

π

β(I, t)

(V − α(V, t)) + β2(V, t)
.
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Using this ansatz derive equations for α, β. Plug the ansatz into Eq
(1) and you will get something that looks like:

(AV 2 +BV + C)/M(V ) = 0

This must be true for all V , so A,B,C must vanish. M is complicated,
but we don’t care since it is in the denominator and get rid of it.
Solve A for βt and you will get

βt = 2βα

and plug this into, say, C and you will find

αt = I + ks+ α2 − β2.

Finally, plug these into B to make sure it vanishes! (It will). Now we
are cooking. Let’s do one more thing. Let w = α+ iβ. Show that

∂w

∂t
= w2 + I + ks

Now, lets close this sucker up. We note that r(I, t) = β/π so that

πra(t) =

∫ ∞
−∞

g(I)β(I, t) dI

so that we can now get an ODE for s. Also note that the average voltage is

Va(t) =

∫ ∞
−∞

g(I)α(I, t) dI.

As with the Kuramoto done in class, we still have an infinite dimensional system.
I will write it as

∂w

∂t
= w2 + µ+ ∆L+ ks

and parametrize it by L instead which is just taken from the Lorenzian in our
simulations. That is, instead of w(I, t), I have w(L, t). We now see that

Va(t) + iπra(t) =

∫ ∞
−∞

g(L)w(L, t).

So, let’s suppose that g(L) = 1/(π[1 + L2]) and as in class use the residue
theorem to evaluate the integral. We write

g(L) =
1

2πi

(
1

L− i
− 1

L+ i

)
,

so that
Va(t) + iπra(t) = w(±i, t)
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depending on which of the two possible contours you take. (Note the 2πi from
the residue theorem cancels with the 2πi in the denominator.) This yields:

dw(±i, t)
dt

= w(±i, t)2 + µ+ ks± i∆.

Justify why you must take the +i root, recalling that β must be pos-
itive. This leads to the following ODEs that constitute the system to analyze:

a′ = µ+ ks+ a2 − b2 (2)

b′ = 2ab+ ∆

τs′ = −s+ b/π.

Here, a = α(+i, t), b = β(+i, t) as required. Notice that a is the average poten-
tial and b/π is the firing rate. Do the following:

1. Show that is b(0) > 0, then b(t) > 0 for all time as long as ∆ > 0.

2. Show that equilibria require that a < 0 since b > 0. Conclude that the
average potential must be negative.

3. The uncoupled system has k = 0. Find the firing rate F (µ)b/π as a
function of µ and sketch it for ∆ = 0.1 and µ ∈ (−2, 2). Show that F (µ)
approaches

√
µ/π which is the single cell QIF firing rate curve.

4. For k 6= 0 explore the equilibria by setting s = b/π and then exploring the
(a, b) phase plane. Try to prove that there are at most 3 equilibria with
b > 0 and always at least 1. Hint: Note the b nullcline asymptotes at the
axes and that the a nullcline can be written as a hyperbola:

(b−K/2)2 − a2 = µ+K2/4

where K = k/π. Recall from Calc I how to sketch hyperbolas!

5. Now, back to the full model (that is including s) This might be hard. Can
you show that there are no Hopf bifurcations if k > 0? Show that there is
only one b > 0 fixed point when k < 0

6. Sketch the bifurcation diagram for k = 4, τ = 0.5,∆ = 0.1 as the drive, µ
to the network increases between −0.5 to 0.5.

7. Set k = −3, τ = 0.5,∆ = 0.1 and compute the bifurcation diagram as µ
increases from -1 to 5. If there is a Hopf bifurcation, follow the periodic
orbit. For µ = 5, k = −3 does the behavior of the simple system appear
to agree with the full blown coupled QIF you solved above?
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