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Pair approximation has frequently proved e!ective for deriving qualitative information about
lattice-based stochastic spatial models for population, epidemic and evolutionary dynamics.
Pair approximation is a moment closure method in which the mean-"eld description is
supplemented by approximate equations for the frequencies of neighbor-site pairs of each
possible type. A limitation of pair approximation relative to moment closure for continuous
space models is that all modes of interaction between individuals (e.g., dispersal of o!spring,
competition, or disease transmission) are assumed to operate over a single spatial scale
determined by the size of the interaction neighborhood. In this paper I present a multiscale
pair approximation which allows di!erent sized neighborhoods for each type of interaction.
To illustrate and test the approximation I consider a spatial single-species logistic model in
which o!spring are dispersed across a birth neighborhood and established individuals have
a death rate depending on the population density in a competition neighborhood, with one of
these neighborhoods nested inside the other. Analysis of the steady-state equations yields
several qualitative predictions that are con"rmed by simulations of the model, and numerical
solutions of the dynamic equations provide a close approximation to the transient behavior of
the stochastic model on a large lattice. The multiscale pair approximation thus provides
a useful intermediate between the standard pair approximation for a single interaction
neighborhood, and a complete set of moment equations for more spatially detailed models.
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1. Introduction

Stochastic spatial models, which explicitly rep-
resent discrete individuals and their locations in
space (Durrett, 1999) have become increasingly
important in theoretical ecology over the last
decade (e.g., Dieckmann et al., 2000; Tilman
& Kareiva, 1997). It is now widely appreciated
that spatial patterns resulting from the small-
scale randomness of individual births, deaths
and movement can have signi"cant impacts on
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larger-scale aspects of the dynamics such as
species coexistence, persistence of a disease, and
spatiotemporal patterns such as patchiness,
waves, spirals or cycles. Consequently, according
to Law et al. (2000) &&this is the age of the indi-
vidual-based, spatially explicit, computer-based
model''. These models are especially appealing to
experimental ecologists because they can be de-
rived, parameterized, and simulated by translat-
ing directly into computer code the assumed rules
at the level of an individual, without any need for
advanced mathematics (Wissel, 2000).

A disadvantage of stochastic spatial models
is their analytic intractability relative to
( 2001 Academic Press
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metapopulation or reaction}di!usion models for
spatial dynamics. Although more is known each
year (Durrett, 1999), rigorous analytic results are
typically limited to qualitative information such
as existence of stationary distributions and per-
sistence vs. extinction, or to limiting cases such as
long-range interactions or rapid mixing (Durrett
& Levin, 2000; Neuhauser, 1998). More detailed
information can only be derived by simulation or
through approximations. As Sato et al. (1994)
note, a tractable approximation can make it pos-
sible to identify aspects of model behavior that
would have been di$cult to obtain from simula-
tions alone. Interesting predictions from the ap-
proximation can then be veri"ed by simulations
in the appropriate parts of parameter space.

The pair approximation (PA), introduced for
ecological models by Matsuda et al. (1992), has
emerged as a useful approximation method for
lattice models. Lattice models (also called
stochastic cellular automata or &&arti"cial ecolo-
gies'') represent space as a discrete lattice of sites
that, at any given time, are in one of a few
possible states. In most ecological applications
a site is either empty (state"0) or occupied by
a single individual of species i (state" i ); lattice
epidemic models (e.g. Filipe & Gibson, 1998;
Kleczkowski et al., 1997; Levin & Durrett, 1996;
Rhodes & Anderson, 1996; Sato et al., 1994) typi-
cally have one individual per site, classi"ed by
disease state. Each individual interacts with
a limited number of neighbors, such that
transition rates at a site are a function of the
states of the site and its neighbors (Durrett, 1999).
Most applications have used a rectangular lattice
with a site's neighborhood being either the eight
surrounding sites or the four sites directly above,
below and to the side,

but other geometries and randomly linked latti-
ces have also been considered (van Baalen, 2000).
PA is a moment closure method which pro-
duces a system of ordinary di!erential equations
for the frequency of each type of neighboring site
pairs, e.g., the fraction of neighboring sites in
which both are empty. Higher-order frequencies
(e.g. for triplets) are approximated by pair fre-
quencies in order to obtain a closed system of
equations (Rand, 1999). The equations are non-
linear but fairly low dimensional. As a result PA
has been applied successfully to models for a wide
range of phenomena, including host}pathogen
dynamics, multiple modes of reproduction in
plants, forest gap dynamics, evolution of altru-
ism, bacterial allelopathy, and cell sorting (see
Iwasa (2000) for a review), and similar methods
have been developed for epidemic models with
&&neighbors'' de"ned by social interactions (Keel-
ing, 1999a, b; Keeling et al., 1997).

Related moment-closure methods have re-
cently been developed for models in continuous
space where the exact location of each individual
is tracked. Interaction strengths are assumed to
decrease as a function of the distance between
individuals and are modeled by continuous ker-
nel functions (e.g. Bolker, B. & Pacala, 1997;
Bolker, 1999; Bolker, B. M. & Pacala, 1999; Law
& Dieckmann, 2000a; Mollison, 1997). For
example, a dispersal kernel m(x, y) can be used to
de"ne the probability density of the landing point
y for seeds produced by a parent at location x,
and a competition kernel w(x, y) to de"ne the
amount by which an individual at location y in-
creases the mortality rate of an individual at
location x. Each type of interaction has its own
kernel and consequently its own spatial scale; for
example, individuals too far apart to compete for
resources may still be close enough for disease
transmission via an animal vector. This repre-
sentation of spatial e!ects is more realistic than
a lattice model, but the resulting moment equa-
tions are partial- or integro-di!erential equa-
tions, which are less tractable than the ODE
moment equations in PA.

Models of virulence evolution in host}patho-
gen interactions illustrate the need for extending
PA to consider multiple spatial scales of inter-
action. Boots & Sasaki (1999, 2000) analysed
lattice models with a combination of local and
global interactions for host reproduction and in-
fection, local referring to interaction with nearest
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neighbors, global referring to interaction with all
individuals regardless of location. Scaling be-
tween local and global interactions was modeled
by a weighted averaging of the two options, so
that (for example) a fraction P of o!spring are
dispersed to neighboring sites while the remain-
ing 1}P are dispersed randomly over the entire
lattice. Depending on the relative importance of
local vs. global interactions in reproduction and
infection, the level of virulence could evolve to
levels very di!erent from those in either the com-
pletely local or completely global models. Mul-
tiple interaction scales can also become impor-
tant in multispecies ecological models, where an
advantage in long-range dispersal can allow
a competitively inferior species to persist
(Neuhauser, 1998), or where short-range dis-
persal can allow a species to persist by quickly
exploiting the available resources in a newly
colonized area (Bolker & Pacala, 1999).

In this paper I explain how PA can be ex-
tended so that di!erent interactions can occur
over di!erent "nite spatial scales, by using a dif-
ferent neighborhood de"nition for each type of
interaction. The method is to apply the PA mo-
ment closure simultaneously on the two di!erent
scales, so I refer to it as the &&multiscale pair
approximation'' (MPA). The moment equations
are very similar to standard PA, but there are
more of them because each neighborhood type
requires its own equations.

To show that the resulting moment equations
remain tractable, I apply MPA to a lattice logis-
tic model corresponding to the continuous-space
model in (Bolker & Pacala, 1997; Law & Dieck-
mann, 2000b). Nearly identical models are con-
sidered in these two papers*henceforth called
BP97 and LD00*and all statements here about
the continuous space logistic model are taken
from either or both of those papers. Numerical
solutions of the moment equations for the con-
tinuous-space model showed that the steady-
state population density could be higher or lower
than in the non-spatial case (mean-"eld approxi-
mation), depending on the relative sizes of the
competition and o!spring dispersal neighbor-
hoods. In the MPA for the lattice model this
result can be derived analytically, and it is also
possible to determine how the magnitude of the
e!ect (fractional increase or decrease relative to
mean "eld) depends on other model parameters.
These qualitative predictions are all con"rmed by
simulations.

2. Pair Approximation for a Lattice
Logistic Model

I consider a lattice model analogous to the
continuous-space logistic model in BP97 and
LD00, in which adults are sessile and have a mor-
tality rate a!ected by local crowding. Bolker et al.
(2000) considered a slightly di!erent situation
where local crowding a!ects the establishment
success of o!spring, while Law & Dieckmann
(2000a) allowed movement by established indi-
viduals. These features could be incorporated
here, under assumptions of linear density e!ects
similar to those in the continuous-space models,
but are omitted to simplify the presentation. I as-
sume a rectangular lattice, but allow any neigh-
borhood shape such that neighborhood relations
are symmetric: if site y is in the neighborhood of
site x, then site x must be in the neighborhood of
site y, so that any pair of sites is either neighbor-
ing or non-neighboring.

Each site in the lattice model is either empty
(state"0), or else occupied by one individual of
the focal species (state"1). Thus, all non-spatial
aspects of population structure are ignored, as in
the continuous-space model. Each occupied site
produces o!spring at rate b, meaning that in
a small time interval dt the probability that an
o!spring is produced is b dt#o(dt). Each new
o!spring is dispersed into one of z sites in the
birth neighborhood of the parent's site, chosen at
random and independent of the state of the lat-
tice; if that site is empty it becomes occupied, and
if it is already occupied it remains occupied. An
occupied site dies (becomes empty) at rate

1#d]Md occupied sites in the

competition neighborhoodN. (1)

Note that time has implicitly been scaled so that
the instantaneous mortality rate of an isolated
individual is 1. The number of sites in the com-
petition neighborhood of a focal site is denoted
by zJ . Let b denote the birth rate per site (b"b/z,
the rate at which an empty site receives o!spring
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from an occupied neighbor), and let d denote the
maximum possible density-dependent increase in
an individual's death rate (d"dzJ ). The time-
rescaled model is, therefore, de"ned by four para-
meters: b and d giving the total interaction e!ects
over the relevant neighborhood, and z and zJ giv-
ing the spatial range of the interactions.

Consider "rst pair approximation for the stan-
dard case where the birth and competition neigh-
borhoods are the same (so zJ"z); for a complete
account of pair approximation theory see (Rand,
1999; van Baalen, 2000). Let oi denote the fre-
quency of type-i sites, and oij the frequency of
neighboring pair sites in which the "rst is type
i and the second is type j, i, j3M0, 1N. For readers
new to PA it may be useful to give the following
heuristic de"nition of pair frequencies. Choose
a site at random, and then choose a random
neighbor of that "rst site. The probability that
the "rst site chosen is type i, and that the random
neighboring site is type j, is oij . The conditional
probability that the neighbor is of type j, given
that the "rst-chosen site is type i, is denoted qj@i ;
therefore qj@i"oij/oi"oji/oi .

A site in state 1 changes to state 0 at the rate
given in eqn (1). The average rate over all such
sites is, therefore, 1#d]Mexpected number of
occupied neighbor sitesN"1#dzq1@1"1#dq1@1 ,
and the total rate over all such sites is
(1#dq1@1 )o1 . Similarly, the total rate of
transitions between state 0 and state 1 is
bzq

1@0
o
0
"bq

1@0
(1!o

1
), and therefore

do
1

dt
"bq

1@0
(1!o

1
)!(1#dq

1@1
)o

1
. (2)

Note that the derivation of eqn (2) did not in-
volve any approximations*it is exactly true, but
it is not closed because it involves the pair fre-
quencies q

1@0
(1!o

1
)"o

10
and q

1@1
o
1
"o

11
. The

non-spatial (mean-"eld) approximation to the
lattice model is obtained by ignoring all correla-
tions between neighboring sites, and replacing
q
1@i

in eqn (2) by the unconditional probability
of a site being in state 1, namely o

1
. This yields

do
1

dt
G (b!1)o

1
!(b#d)o2

1
(3)

which is a single-species logistic equation.
In pair approximation we stick with eqn (2)
and add equations for the dynamics of pair
frequencies. There are four pair frequencies
o
ij
, i, j3M0, 1N, but the constraints + o

ij
"1,

o
01

"o
10

mean that only two of these are inde-
pendent. It is convenient to keep o

1
"o

11
#o

10
as one of the state variables and take o

11
as the

second. A pair of sites in state 11 can change to
either 10 or 01. The rate for each of these
transitions is the death rate for an occupied site
with an occupied neighbor, which we approxim-
ate as

1#d[1#(z!1)q
1@1

]. (4)

The &&1'' inside the square braces is the contribu-
tion from the occupied neighbor. The second
term is approximately the expected number of
occupied sites in the other (z!1) neighboring
sites. The approximation is that q

1@1
is used as the

probability that another neighbor of the focal site
is occupied, ignoring the additional information
that the focal site is known to have at least one
occupied neighbor. This is the pair approxima-
tion: we ignore all spatial correlations except
between neighboring site pairs. Similarly, new
pairs of type 11 result from births into the unoc-
cupied site of 01 and 10 pairs. Those rates are
approximated as

b[1#(z!1)q
1@0

] (5)

which yields the (approximate) equation for the
frequency of 11 pairs,

1
2

do
11

dt
"b[1#(z!1)q

1@0
]o

10

!(1#d[1#(z!1)q
1@1

])o
11

. (6)

Using the relationship o
10

"o
1
!o

11
and re-

calling the de"nition of the conditional probabil-
ities (q

i@j
"o

ij
/o

j
) it is seen that eqns (2) and (6)

are a closed system, which comprise the pair
approximation for the case z"zJ .

3. Multiscale Pair Approximation

If the birth and competition neighborhoods
are di!erent, PA has to be extended by deriving
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separate equations for the two neighborhood
types. In this section I derive this multiscale pair
approximation for a single-species lattice model
with two types of interaction neighborhoods, and
Section 4 returns to the lattice logistic model with
nested birth and death neighborhoods. Three or
more neighborhoods can be handled in exactly
the same way, so this generalization is omitted.
For simplicity I consider linear interaction ef-
fects; methods for nonlinear e!ects are discussed
by van Baalen (2000).

Each site is assumed to have two disjoint
neighborhoods, which will be called &&near'' and
&&far'' neighbors although the neighborhood def-
initions need not be based on a distance function.
The use of disjoint neighborhoods as a device for
handling nested interaction neighborhoods is the
one essential new idea in MPA, which makes it
possible to apply PA simultaneously on two
scales. The sizes of the near and far neighbor-
hoods are denoted z

n
and z

f
, respectively. The

de"nitions of pair frequencies and conditional
probabilities used in pair approximation are ap-
plied to each type of neighborhood, with oJ

ij
and

qJ
j@i

for far-neighbor pairs and o
ij
, q

j@i
referring to

near-neighbor pairs. There are now eight di!er-
ent pair frequencies, but the following "ve con-
straints hold:

+ o
ij
"+ oJ

ij
"1,

o
10

"o
01

, o8
10

"oJ
01

, (7)

o
00

#o
01

"o8
00

#o8
01

.

In the last line, the common value of the two
sums is o

0
. The corresponding constraint for

o
1

is also true, but it is not an additional con-
straint because it can be derived from eqn (7).
Consequently, there are three independent pair
frequencies, and to parallel the single-neighbor-
hood case I choose o

1
, o

11
, oJ

11
as the state

variables.
Generalizing the lattice logistic model de-

scribed above, the death rate of an occupied site
is assumed to be

1#d
n
]Md occupied near-neighbor sitesN

#d
f
]Md occupied far-neighbor sitesN. (8)
In a similar way, an occupied site disperses o!-
spring at di!erent rates b

n
, b

f
onto its near and

far neighborhoods, respectively. The total birth
rate for an unoccupied site is, therefore, given by

b
n
]Md occupied near-neighbor sitesN

#b
f
]Md occupied far-neighbor sitesN. (9)

For comparison with the single-neighborhood
case, de"ne b"b

n
z
n
#b

f
z
f

(the total birth rate
by an occupied site onto all neighbors) and
d"d

n
z
n
#d

f
z
f

(the maximum possible density-
dependent death rate increment).

The equation for o
1

is derived exactly as in the
single-neighborhood case, except that the birth
and death rates involve contributions from near
and far neighbors. Equation (2) is consequently
generalized to

do
1

dt
"(b

n
z
n
q
1@0

#b
f
z
f
qJ
1@0

) (1!o
1
)

!(1#d
n
z
n
q
1@1

#d
f
z
f
qJ
1@1

)o
1
. (10)

The corresponding mean-"eld approximation is
again obtained by replacing q

1@0
and qJ

1@1
by the

unconditional frequency of occupied sites o
1
,

which gives

do
1

dt
"(b!1)o

1
!(b#d)o2

1
. (11)

Thus, the mean-"eld approximation is the same
as in the single-neighborhood case [eqn (3)] with
the same steady-state population density oN

1
"

(b!1)/(b#d).
To derive the approximate pair frequency

equations, consider "rst the rate at which a death
converts a 11 near-neighbor pair into a 10 or 01
pair. Each member of the pair is known to have
one near neighbor, but nothing is known directly
about the number of far neighbors. The death
rate (for either one of the occupied sites in the
pair) is therefore approximated as

1#d
n
(1#(z

n
!1)q

1@1
)#d

f
z
f
qJ
1@1

. (12)

Similarly for births converting a 10 or 01 near-
neighbor pair to a 11 pair, the approximate birth
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rate for the unoccupied site is

b
n
(1#(z

n
!1)q

1@0
)#b

f
z
f
qJ
1@0

. (13)

In these rate equations for near-neighbor pair
frequencies, PA is applied as usual for the contri-
butions for near neighbors: the state of the focal
site's known near neighbor is ignored in comput-
ing the conditional probability (conditioned on
the state of the focal site) for other near-neighbor
sites. For the contributions from far neighbors,
the state of the known near neighbor is ignored
for computing the conditional probability for all
far-neighbor sites. Because the near and far
neighborhoods are disjoint, this is just a second
application of the PA moment closure. Combin-
ing eqns (12) and (13) we have

1
2

do
11

dt
"[b

n
(1#(z

n
!1)q

1@0
)#b

f
z
f
qJ
1@0

]o
10

![1#d
n
(1#(z

n
!1)q

1@1
)

#d
f
z
f
qJ
1@1

]o
11

. (14)

By identical arguments the equation for 11 far-
neighbor pairs is derived as

1
2

do8
11

dt
"[b

f
(1#(z

f
!1)qJ

1@0
)#b

n
z
n
q
1@0

]o8
10

![1#d
f
(1#(z

f
!1)qJ

1@1
)

#d
n
z
n
q
1@1

]o8
11

. (15)

Using the relationships o
0
"1!o

1
, o

10
"o

1
!o

11
and the parallel ones for far-neighbor pairs,
eqns (10), (14), and (15) are seen to be a closed sys-
tem of equations.

It is useful to express the system in terms of
total interaction e!ects over the neighborhood.
De"ne

e
n
"1/z

n
, b

n
"b

n
z
n
, d

n
"d

n
z
n
,

e
f
"1/z

f
, b

f
"b

f
z
f
, d

f
"d

f
z
f
. (16)

The e's can generally be thought of as small
parameters, since e;1 already for z"8. The
moment equations can then be written as

do
1

dt
"(b!1)o

1
!(b

n
#d

n
)o

11
!(b

f
#d

f
)oJ

11
,

(17a)

1
2

do
11

dt
"CbnAen#(1!e

n
)
o
1
!o

11
1!o

1
B

#b
f

o
1
!o8

11
1!o

1
D (o

1
!o

11
)

!C1#d
nAen#(1!e

n
)
o
11

o
1
B

#d
f

o8
11

o
1
D o

11
, (17b)

1
2

do8
11

dt
"CbfAef#(1!e

f
)
o
1
!o8

11
1!o

1
B

#b
n

o
1
!o

11
1!o

1
D (o

1
!o8

11
)

!C1#d
f Aef#(1!e

f
)
o8
11

o
1
B

#d
n

o
11
o
1
Do8

11
. (17c)

In this form, the spatial scale and the intensity of
interspeci"c interactions are controlled by separ-
ate sets of parameters (the e's vs. the b's and d's,
respectively).

Figure 1(a) shows two comparisons between
simulations results and numerical solutions of
the MPA equations (17). The "rst case (circles)
had relatively small neighborhoods (near"3]3
square, far"5]5 square minus the near neigh-
bors); the second (squares) had relatively large
neighborhoods (near"5]5, far"9]9 minus
the near neighbors). In these cases the di!erences
between the simulated and approximate trajecto-
ries are trivial. However, these cases both had
fairly high values of the total birth rate (b"6 and
3, respectively), and it is known that the relative
error of the ordinary PA increases when the birth



FIG. 1. Comparison between numerical solutions of the MPA di!erential equations (17) [solid lines] and simulations of the
model [symbols]. The model was simulated in discrete time with time step dt"0.001, starting from a spatially random initial
state, on a 150]150 lattice with wrap-around boundary conditions. Initial lattice states were generated by independently
assigning each site as empty or occupied, with probability equal to either 25% of the mean-"eld steady-state value (open
symbols) or to halfway between 1 and the mean-"eld steady-state value (solid symbols). Initial conditions for the MPA
equations were o

1
(0) set equal to the fraction of occupied sites in the initial state of the simulation, and

o
11

(0)"o8
11

(0)"o
1
(0)2, corresponding to a spatially uncorrelated lattice. The neighborhoods used in the simulations were

nested squares, as described in the text. (a) Parameter values were (b
n
, b

f
, d

n
, d

f
)"(3,3,2,2) and (2,1,4,1) for the simulations

plotted with circles and squares, respectively, with neighborhood sizes (z
n
, z

f
)"(8,16) and (24,56), respectively. (b) As in panel

(a) but with birth rates scaled down proportionately to give b"2 in both cases: (b
n
, b

f
)"(1,1) and (4/3,2/3) for the

simulations plotted with circles and squares, respectively.
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rate is close to the critical value for persistence.
MPA inevitably inherits this limitation. Figure
1(b) repeats the simulations in Fig. 1(a) but with
the b's scaled down proportionally so that b"2
in both cases, and the di!erences are more sub-
stantial. The approach to steady state is slower,
and as expected the MPA equations over-predict
the steady-state value and therefore diverge
eventually from the simulated trajectories.
However, the absolute error in MPA predictions
is still not very large, and MPA correctly iden-
ti"es which parameter set has the larger steady-
state density.

4. Large Neighborhood Limits

In the limit of both interaction scales becoming
in"nitely large (e

n
, e

f
P0), MPA reduces to the
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mean-"eld approximation. The two equations for
pair frequencies become identical, so if we start
with a spatially random lattice (i.e. o

11
"

o8
11

"o2
1
) it remains true for all time that

o
11

"o8
11

and the system reduces to

do
1

dt
"(b!1)o

1
!(b#d)o

11
,

1
2

do
11

dt
"b

(o
1
!o

11
)2

1!o
1

!A1#d
o
11

o
1
B o

11
.

(18)

Moreover, direct substitution shows that a solu-
tion of eqn (18) is obtained by solving the mean-
"eld equation (11) for o

1
and setting o

11
"o2

1
. If

the initial state of the lattice is spatially non-
random (e.g. if all occupied sites are near neigh-
bors), the initial spatial correlations will persist
transiently but eqn (18) asymptotically converges
to the spatially random steady state with the
mean-"eld steady-state density o6

1
"(b!1)/

(b#d) and o
11

"o2
1
. Thus, a general prediction

of MPA for this model is that the steady-state
departures from mean "eld will be of order
(e
n
#e

f
).

A more interesting case is to let e
f
P0 but

retain e
n
'0. Then direct substitution shows that

eqn (17) is satis"ed by setting oJ
11

"o2
1

and solv-
ing the "rst two equations with this substitution.
With e

f
"0 and oJ

11
"o2

1
, the "rst two equa-

tions can be expressed as

do
1

dt
"o

1
[b!1!(b

n
#d

n
)q

1@1
!(b

f
#d

f
)o

1
],

1
2

do
11

dt
"o

01
[b

n
(e
n
#(1!e

n
)q

1@0
)

#b
f
o
1
](o

1
!o

11
)

!o
11

[1#d
n
(e
n
#(1!e

n
)q

1@1
)#d

f
o
1
].

(19)

The near-neighbor e!ects (b
n
, d

n
) are still deter-

mined by the local crowding (q
1@i

) as in ordinary
PA, but the far-neighbor e!ects (b

f
, d

f
) are
proportional to the global density of occupied
sites. Thus, if the longer interaction scale becomes
in"nite (e

f
P0), MPA reduces to ordinary PA for

a model with a weighted mixture of local and
global interactions. For 0(e

f
;1, the di!erence

between MPA and eqn (19) is of order e
f
.

5. Multiscale Lattice Logistic Model

I now specialize these results to the lattice
logistic model with birth and competition neigh-
borhoods of di!erent size, for comparison
with the corresponding continuous-space model
(BP97, LD00). Recall that the lattice logistic
model has birth and competition neighborhoods
of sizes z and zJ , respectively, with constant per-
site rates across these neighborhoods. In terms of
the more general MPA in Sections 3 and 4, we
therefore have either

z(zJ : b
f
"0, d

n
"d

f
, (20)

z'zJ : d
f
"0, b

n
"b

f
(21)

or

z"zJ : d
f
"b

f
"0. (22)

In cases (20) and (21) the near- and far-neighbor-
hood sizes are z

n
"min(z, zJ ), z

f
"Dz!zJ D.

In case (22) MPA reduces to ordinary PA.
A standard result for this case is that local
crowding reduces the steady-state density below
the mean-"eld value o6

1
"(b!1)/(b#d), and

therefore increases the critical birth rate for per-
sistence (b'1 is therefore always necessary for
persistence, and we assume this to be true). For
the continuous-space model, the e!ect of spatial
pattern on steady-state density depends on the
relative spatial scales of o!spring dispersal and
competition (see Fig. 6 of BP97). If births are
more localized than competition [corresponding
to case (20)], then the e!ect of local crowding on
birth rate continues to depress the steady-state
density below the mean-"eld value. However, if
competition is localized but o!spring are widely
dispersed [corresponding to case (21)], then indi-
viduals are more widely separated than under
a spatially random distribution and as a result
the steady-state density is higher than the mean-
"eld value.
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These results for the continuous-space model
were inferred from numerical solution of steady-
state moment equations. For the lattice model we
can derive some predictions by treating the e's as
small parameters in eqn (17) and perturbing o!
the mean-"eld steady state which holds at e"0.
The full expansion for eqn (17) is complicated but
can be interpreted by considering some speci"c
cases (see the appendix). The most interesting
case is eqn (21) with widely dispersed o!spring
but localized competition (z<zJ , hence e

f
;

e
n
"1/zJ;1). Neglecting O(e

f
) terms, the approx-

imate steady-state fraction of occupied sites is

oN
1
GoN

1
(0)A1#zJ ~1C

d2(1#d )
b(b#d)2DB , (23)

where o6
1
(0) is the mean-"eld steady-state density.

In contrast, for equal neighborhood sizes [case
(22)], e

f
disappears from the equations and the

"rst-order expansion is

o6
1
Go6

1
(0)A1!zJ ~1C

(1#d )
b(b!1)DB. (24)

Similarly, for the case (21) of localized o!spring
dispersal but long-range competitive interactions
(z;zJ , hence e

f
;e

n
"1/z;1), the leading

order expansion is

o6
1
Go6

1
(0) A1!z~1C

(1#d )2b
(b#d)2 (b!1)DB. (25)

The steady-state density is depressed below the
mean-"eld level, with the relative decrease being
larger as the range of o!spring dispersal shrinks.

Comparing the three expansions above for
o6
1

we obtain several predictions for how the
steady-state density is a!ected by the spatial
range of interactions:

(1) As the size of the birth neighborhood in-
creases to become larger than the competi-
tion neighborhood
(a) The steady-state density crosses from

below to above the mean-"eld value.
(b) The relative departures from mean "eld,

both above and below, should be larger at
higher values of the death rate increment
d, and smaller at higher birth rate b.
(2) With a large birth neighborhood of "xed size
z<1, as the size of the competition neighbor-
hood zJ is increased from zJ;z to zJ+z, the
steady state should decrease from above to
slightly below the mean-"eld value.

Prediction (1) also holds in the moment equa-
tions for the continuous space model (BP97,
Fig. 6), but prediction (2) does not because the
continuous-space moment equations break down
due to in"nite clustering in the limit of large
competition range (BP97, p. 188). In the lattice
model clustering is limited by the "nite size
of cells imposing a minimum distance between
individuals.

To test these predictions I simulated the lattice
model using square birth and competition neigh-
borhoods centered on the focal site. Formally,
the neighborhood of radius r"1, 2, 3,2
for a site (i, j ) consists of all sites (k, l) such
that 0(maxMDi!kD, D j!lDN)r, and contains
(2r#1)2!1 cells. The simulation results shown
in Fig. 2 are all in agreement with prediction (1)
as b, d, and the size of the birth neighborhood are
varied. Prediction (2) is also con"rmed in simula-
tions. For example in a series of simulations (not
graphed) starting with b"2, d"5 and a birth
neighborhood of radius 6 (i.e. the farthest-right
square in the top panel of Fig. 2), as the radius of
the competition neighborhood was increased
from r"1 to 6, the steady-state density went
from 11% above, to 7% below, the mean-"eld
density.

The e!ects of neighborhood size (with b and
d held constant) can be summarized as follows. If
the birth and competition neighborhoods are
both large [eqn (24) with zJPR], the steady-
state population density will be at the mean-"eld
value. Decreasing the size of the competition
neighborhood increases the steady-state density
[eqn (23)] while decreasing the size of the birth
neighborhood decreases the population size
[eqn (25)]. As in the continuous space model, the
e!ects of neighborhood size are due to changes in
the spacing pattern of individuals (Fig. 3). When
the birth and competition neighborhoods are
both large (r"6, 138 sites) the density is at
the mean-"eld level, o6

1
(0)"0.25. Decreasing the

size of the competition neighborhood to r"1
increases the density slightly to o6

1
"0.27 (by



FIG. 2. Results from simulations testing the qualitative predictions of MPA about steady-state population density as
a function of birth neighborhood size in the lattice logistic model. Values plotted are the ratio between the steady-state density
estimated by simulation and the mean-"eld steady-state density o6

1
"(b!1)/(b#d); the solid line is at ratio"1. All

simulations used a competition neighborhood of radius r"1 (eight neighbors). The steady-state density was estimated by
initializing the lattice to the mean-"eld steady state as described in the Fig. 1 legend, allowing the model to run for 10 time
units (time is scaled so that 1 time unit is the mean lifetime for isolated individual), and then averaging the fraction of occupied
sites at each 0.1 time units between times 10 and 15. (s) d"1; (n) d"3; (h) d"5.
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slightly increasing the average spacing between
individuals), while shrinking the birth neighbor-
hood to radius r"1 promotes clustering of indi-
viduals and consequently the overall density is
reduced (o6

1
"0.19). For these parameter values,

comparison of eqns (24) and (25) predicts that the
population density will be lowered further if both
neighborhoods are reduced to r"1, as is
observed (o6

1
"0.17).

The overall conclusion is that the qualitative
e!ects of interaction scales and endogenously
generated spatial pattern are very similar in the
lattice and continuous space versions of the
model, and are successfully predicted by MPA
for the lattice model.

6. Discussion

Numerically accurate results for stochastic
spatial models can always be obtained by simula-
tion, and if accurate numbers are needed (e.g. for
rates of population growth or spread) the proper
approach is simulation rather than PA or other
approximations. The value of approximations is



FIG. 3. Snapshots of the lattice logistic model at steady state, to show how the spatial pattern of occupied sites (black
squares) is a!ected by the size of the birth and competition neighborhoods. The plots show a 90]90 square at time t"10
from a lattice of size 150]150, initialized and simulated as in Fig. 1, with b"3 and d"5. The steady-state density in the
mean-"eld approximation is 0.25.
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not that they replace simulations, but that they
can help us to understand the important qualitat-
ive properties of a model that are seen in simula-
tions (van Baalen, 2000), and to predict the range
of possible qualitative behaviors (Sato et al.,
1994). The fact that MPA is reasonably accurate
for the lattice logistic model provides some sup-
port for the general approach, but it is more
important that the approximation makes the cor-
rect qualitative predictions about the e!ects of
interaction scales on the steady-state density, and
about how the magnitude of the e!ects depends
on model parameters. In other words, MPA pre-
dictions of parameter e!ects are useful because
they consistently get the sign right, and they are
accurate enough to guide the choice of parameter
values for simulations.

From that perspective, the main contribution
of this paper may be the large-neighborhood
limits (Section 4), because they provide a rationale
and rough error estimates for the simpler
approach of mixing local and global interactions.
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According to those results, the di!erence at
steady state between a longer-range interaction
across a neighborhood of size z and a global
interaction across the entire population is of
order 1/z. Consequently, it may be accurate
enough to approximate all but the shortest-range
interactions by a global interaction, eliminating
the extra moment equations for a longer-range
interaction neighborhood. In a single-species
model this only eliminates one moment equation,
but in multispecies models it will eliminate
several. Evolutionary models are unavoidably
&&multispecies'' (competing genotypes, or invading
and resident strategies), so a reduction in
the number of moment equations will make the
analysis considerably easier.

That such a drastic simpli"cation of the inter-
action &&kernels'' has only minor e!ects on the
dynamics of the PA moment equations is an
indication that the properties captured by PA are
not sensitive to the tails of the kernels. PA-type
approximations are, therefore, not going to be
useful when the properties of interest are sensitive
to the tails, for example the expansion rate and
shape of a wave or the focus of invasion by
a species with long-range o!spring dispersal.
Continuous-space models, where the dispersal
and competition kernels can be modeled in full
detail, would then be more appropriate. How-
ever, our results suggest that steady-state proper-
ties can be analysed, at least qualitatively but
with a great increase in tractability, by PA-type
approaches to lattice models. As Hiebeler (1997)
has argued, it is useful to have a continuum of
approximations to "ll in the gap between a non-
spatial, deterministic mean-"eld approximation,
and simulations of a spatially explicit, indi-
vidual-based stochastic model. MPA allows
much of the #exibility of the continuous-space
approach to be incorporated into a lattice model
without greatly increasing the complexity of the
moment equations. As such, it may be a useful
intermediate between the single interaction scale
allowed in PA and a complete (but less tractable)
set of moment equations for interactions and
correlations at all spatial scales.

As one possible application, the problem moti-
vating this paper was regional-scale modeling of
Aspergillus sydowii, a fungal pathogen a!ecting
sea fan corals (Gorgonia spp.) in the Caribbean.
First identi"ed on corals in the mid-1990s,
Aspergillus is now widespread throughout the
Caribbean, causing up to 90% mortality on indi-
vidual reefs (Kim & Harvell, 2001). There are three
modes of infection with very di!erent spatial
scales: direct contact with a neighboring infected
fan, local water-borne transmission, and fungus of
terrestrial origin in runo! water or wind-borne
dust. At the within-reef scale there is pronounced
local clustering of infection (C. D. Harvell & K.
Kim, unpublished data), indicating a need for spa-
tial models incorporating local transmission, but it
is not feasible to simulate such a model at the scale
of the Caribbean basin. Using MPA moment
equations as a reduced description of individual
reefs, and coupling these into a regional-scale
model, will facilitate computational studies of the
factors a!ecting disease spread and severity, and
comparisons of potential approaches for disease
management in sessile marine species.
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APPENDIX A
Large Neighborhood Expansions for

the Lattice Logistic Model

The "rst-order expansion for the steady-state
solutions to eqn (17) is obtained by "rst solving
eqn (17) for o8

11
in terms of the other variables.

Substituting this into eqn (17b,c) gives a pair of
nonlinear equations for o

1
and o

11
, and the lead-

ing order terms in e
n
, e

f
then follow from the

Implicit Function Theorem:
o6
1
G

o6
1
(0)#

(b
n
#d

n
) (1#d)(b

f
d
n
!d

n
!b

n
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n
d
f
)

b(b#d)3
e
n

#

(b!1)(b
f
#d

f
) (b

f
(1!b)#d

f
(1#d))

b(b#d)3
e
f
,

(A.1)

where o6
1
(0) is the mean-"eld steady-state density

(b!1)/(b#d). In the case of widespread o!-
spring dispersal and localized competition we
have d

f
"0 by eqn (21) and hence d

n
"d. More-

over, with the total birth rate b held "xed eqn (21)
implies that b

n
"O(z

n
/z

f
)"O(e

f
/e

n
) and there-

fore b
f
"b!O(e

f
/e

n
). Then dropping terms of

O(e
f
) from (A.1) we have

o6
1
Go6

1
(0)#

d2(b!1)(1#d)
b(b#d)3

e
n
, (A.2)

which rearranges to eqn (23); recall e
n
"1/zJ in

this case. Similarly, if o!spring dispersal is local-
ized but there is long-range competition [case
(20)], we have b

f
"0, b

n
"b and d

n
"O(e

f
/e

n
),

d
f
"d!O(e

f
/e

n
). Substituting these into eqn

(A.1), dropping O(e
f
) terms, and recalling that

e
n
"1/z in this case gives eqn (25). In case (22) we

have b
f
"d

f
"0, b

n
"b, d

n
"d and e

n
"1/z,

which gives eqn (24).
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