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The Evolution of Cooperation in a Lattice-Structured Population
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The evolution of cooperation among unrelated individuals is studied in a lattice-structured habitat,
where individuals interact locally only with their neighbors. The initial population includes Tit-for-Tat
(abbreviated as TFT, indicating a cooperative strategy) and All Defect (AD, a selfish strategy)
distributed randomly over the lattice points. Each individual plays the iterated Prisoner’s Dilemma game
with its nearest neighbors, and its total pay-off determines its instantaneous mortality. After the death
of an individual, the site is replaced immediately by a copy of a randomly chosen neighbor.
Mathematical analyses based on mean-field approximation, pair approximation, and computer
simulation are applied. Models on one and two-dimensional regular square lattices are examined and
compared with the complete mixing model. Results are: (1) In the one-dimensional model, TFT players
come to form tight clusters. As the probability of iteration w increases, TFTs become more likely to
spread. The condition for TFT to increase is predicted accurately by pair approximation but not by
mean-field approximation. (2) If w is sufficiently large, TFT can invade and spread in an AD population,
which is impossible in the complete mixing model where AD is always ESS. This is also confirmed by
the invasion probability analysis. (3) The two-dimensional lattice model behaves somewhat in between
the one-dimensional model and the complete mixing model. (4) The spatial structure modifies the
condition for the evolution of cooperation in two different ways: it facilitates the evolution of
cooperation due to spontaneously formed positive correlation between neighbors, but it also inhibits
cooperation because of the advantage of being spiteful by killing neighbors and then replacing them.
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Introduction

Human society includes many forms of cooperation
between unrelated individuals: some are explicitly
institutional such as social welfare but many others
are less formal. A key to the success of a person in
human societies is the ability to make trustful
cooperative relationships with many other people. In
the modern society especially, cooperation is not
restricted to relatives, although the role of co-
operation amongst kin is often more important in
traditional societies (Alexander, 1979).

Non-human animals also cooperate, but the
cooperation among relatives is used, as exemplified by
sterile workers of social insects (Hamilton, 1964).
Cooperation among non-relatives can also evolve,

however, through ‘‘reciprocal altruism’’ (Trivers,
1971). For instance, vampire bats share food with
individuals who in turn also share food (Wilkinson,
1984). Cooperation among relatives and non-relatives
in common and pigmy chimpanzees (Pan troglodytes
and P. paniscus) is even more elaborate (de Waal,
1982).

A Prisoner’s Dilemma game clearly illustrates the
difficulty of maintaining cooperation between players
in spite of its advantage. The game is played by a
pair of individuals, who have two options: either
to cooperate (C) or to defect (D). If both players
cooperate, both get pay-off R, standing for ‘‘reward’’.
If one defects while the other cooperates, the one who
plays C gets a pay-off S, standing for ‘‘sucker’’, while
the one who plays D gets a pay-off of T, standing for
‘‘temptation to defect’’. If both defect, both get
pay-off P, standing for ‘‘punishment’’ (see Table 1 for
pay-offs). The order of the magnitude of pay-offs
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T 1
The pay-offs of the Prisoner’s Dilemma game for

player A to obtain by interacting with player B
Player B

Cooperate Defect

Player A Cooperate R=3 S=0
Defect T=5 P=1

These values are used in computer simulations. See text for
explanation of each element.

Neighbors tend to become occupied by players of the
same strategies if migration is limited in spatial range
or if players tend to imitate their neighbors. To study
the effect of spatial structure, Axelrod (1984) used a
lattice model in which each lattice point is occupied
by a single individual which plays the game only with
its nearest neighbors. He carried out a computer
simulation of the spatial patterns when one TFT
(a cooperative strategy) mutated to an All-Defect
(abbreviated as AD, a strategy which defects on every
move) in a two-dimensional spatial lattice occupied
by TFT only. Each individual repeatedly played the
iterated Prisoner’s Dilemma game with its nearest
neighbors. The average pay-offs gained by these
interactions were calculated, and then each individual
player changed its strategy to the one adopted by the
most successful nearest neighbor who had achieved
the highest score.

Nowak & May (1992) studied a Prisoner’s
Dilemma game on a similar lattice structured
population. To concentrate on the effect of spatial
structure, rather than the effect of iteration in
enhancing the evolution of cooperation, they
simplified the game’s structure. For example, they
used the strategy of all cooperate, AC, instead of
TFT, which implies that the game is played once only
in each time we evaluate the score (w=0). They also
assumed specific values for the pay-offs: R=1,
T= bq 1, S=P=0. They observed that, for a
limited range of b, AC and AD can coexist and
produce a complex and constantly changing spatial
patterns.

There are theoretical studies of the evolution of
altruistic social behavior which do not mention the
Prisoner’s Dilemma game. For example, Matsuda
(1987) and Matsuda et al. (1987) studied the evolution
of cooperation on a lattice structured model, in which
two types differing in their social interaction compete
with each other. Assuming that some sites are vacant
and that reproduction occurs only to nearest neighbor
vacant sites, each lattice site takes one of the three
alternative states. The model is a continuous time
Markov chain, in which the state transition is not
synchronized as in Axelrod (1984) or in Nowak &
May (1992). Matsuda (1987) and Matsuda et al.
(1987) discovered that the effect of the spatial
clumping to the relative advantage of cooperation
changes with the density. A similar conclusion
was derived by Taylor (1992) and Wilson et al.
(1992), who concluded that population viscosity
(low mobility and a locally limited interaction) is
not very effective in promoting the evolution of
altruism. The major reason for this result is that
the advantage of an enhanced probability for altruists

is SQPQRQT. In addition, we assume that the
pay-offs satisfy 2RqT+S, which prevents a
strategy of ‘‘Alternation of D and C’’ from invading
in a cooperative population. Although both players
receive a higher pay-off if they cooperate than if they
defect (RqP), cooperation is difficult to maintain
because each player would have a higher pay-off by
defection than by cooperation irrespective of the
partner’s action (TqR, and PqS). This causes a
dilemma—each player’s attempt to increase its own
pay-off results in a smaller pay-off (P) because of the
failure to cooperate.

One way to resolve the dilemma is the possibility
that the same pair of contestants may play more than
once and that the total number of times the game is
played between the same pair is unpredictable.
Axelrod & Hamilton (1981) and Axelrod (1984)
studied the evolution of cooperation using an iterated
Prisoner’s Dilemma game. They collected various
potential strategies from all over the world and then
let them play the Prisoner’s Dilemma game with each
other in a computer. The strategy with the highest
score in this computer tournament was Tit-for-Tat
(abbreviated as TFT), which cooperates on the first
move and then does whatever the other player did on
its previous move. The final population should be
evolutionarily stable, implying that no mutant
strategy can invade it. This result can be regarded as
supporting the evolution of cooperation under
iteration in which defection is the only evolutionarily
stable strategy without iteration. The cooperative
strategy TFT is more likely to be evolutionarily stable
if w, the probability of playing the same partner
again, is larger.

Axelrod (1984) studied the effect of spatial
structure in interaction and reproduction (he called it
‘‘territoriality’’) on the evolution of cooperation. If
interactions among individuals occur within an area
much smaller than the whole population, and if the
individuals of the same strategy tend to form tight
clusters, then a cooperative strategy would be more
likely to spread and be maintained in a spatially
structured than in a perfectly mixed population.
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to be surrounded by other altruists in a viscous
population is cancelled out by the disadvantage of
the lack of surrounding vacant sites needed for
reproduction.

Recently, lattice structured models have been used
in describing ecological processes of sessile organ-
isms, such as terrestrial plants or marine benthic
invertebrates. The models have been studied mostly
by computer simulation of the spatial stochastic
processes. Sometimes, the results are compared with
dynamics derived by the neglect of spatial corre-
lation, or by assuming perfect mixing (mean-field
approximation) (Caswell & Etter, 1992; Durrett &
Levin, 1994a, b). However, direct computer simu-
lation of a stochastic lattice model is very costly in
computation time, and in general it is often difficult
to gain insight into a model’s behavior only from
computer simulations. In addition, the effect of
spatial structure sometimes produces predictions
qualitatively different from non-structured popu-
lations (e.g. Harada & Iwasa, 1994; Sato et al.,
1994). Matsuda et al. (1992) developed a method
to construct a closed dynamical system of overall
densities and correlation between nearest neighbors,
by adopting pair approximation for lattice struc-
tured population dynamics. This approach con-
structs a system of ordinary differential equations
for the average population densities and the local
densities, the latter giving the nearest neighbor
correlation of states.

In this paper, we study both one-dimensional
and two-dimensional lattice models where individ-
uals using either TFT or AD play the iterated
Prisoner’s Dilemma game with its neighbors. The
accumulated pay-offs then determine the mortality.
After the death of an individual, the site is occupied
by a copy of a randomly chosen neighbor [the
nearest-neighbor migration model of Matsuda
(1987)]. The model is a continuous-time Markov
chain. Although we call the transition of state the
‘‘death’’ of an individual followed by ‘‘reproduc-
tion’’ throughout the paper, it may in fact also
represent an individual changing its strategy to
adopt a new one randomly sampled from its
neighbors, which would be more appropriate for
human societies.

In addition to direct computer simulations, we
derive dynamics based on mean-field approximation
and those based on pair approximation which
traces both the total frequency of the two
strategies and the nearest neighbor correlation. Based
on these results, we show that the spatially limited
interaction may facilitate or inhibit the evolution of
cooperation.

T 2
The expected total pay-offs obtained by a player on site

A through interacting with a player on site B
Site B

TFT AD

Site A TFT R/(1−w) S+wP/(1−w)
AD T+wP/(1−w) P/(1−w)

Iterated Prisoner’s Dilemma in a Completely Mixed

Population

First we consider an iterated Prisoner’s Dilemma
game. Two players interact repeatedly, and may
change their action depending on the partner’s
previous act. In most of the computations in this
paper, we used the following parameter values for the
pay-offs in a single interaction: R=3, T=5, S=0,
and P=1 (see Table 1). We consider two strategies
for each player to adopt: One strategy is Tit-for-Tat
(TFT), which first cooperates, then adopts the same
action as what the partner did previously. The second
strategy is All-Defect (AD), which always defects. Let
w be the probability that the same two players interact
in the following step as well, and wn−1(1−w) be the
probability that they interact exactly n times
(n=1, 2, 3, . . .). The expected number of times the
two players interact is 1/(1−w).

When a TFT plays with an AD, the TFT gets
pay-off S in the first round. In the second round TFT
gets P with the probability that they interact again, w.
In the third round TFT gets P with the probability
that they interact at least three times, w2 and so on.
Then the expected score of TFT whose partner is
AD is V(T/D)=S+Pw+Pw2 +Pw3 + · · · =S+
wP/(1−w). Let V(i/j ) be the expected score of a
player with strategy i obtained from the interaction
with a neighbor adopting strategy j (i, j=T or D,
indicating TFT and AD, respectively). Table 2 shows
the expected total pay-offs V(i/j ).

Before examining the game on a lattice, we first
study the complete mixing model, in which each
player interacts with another player randomly chosen
from the whole population and the reproductive rate
is dependent on the score but is independent of the
availability of vacant sites in the neighborhood.

If the total population size is sufficiently large, the
fitnesses of TFT and AD players, denoted by FT and
FD , are expressed by using rT and rD , the fractions of
TFT and AD players, respectively in the population
(note rT + rD =1, as there is no vacancy):

FT =F0 +
R

1−w
rT +0S+

wP
1−w1rD (1a)
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FD =F0 +0T+
wP

1−w1rT +
P

1−w
rD (1b)

where F0 is the baseline fitness that a player enjoys
without social interaction. Other terms are the
average pay-offs in Table 2 with the weight of the
fraction of two strategies in the population. Then the
density of TFT increases if FT qFD . This inequality
is rewritten as:

rT q (1−w)(P−S)
(S+T−2P)w+R−S−T+P

=
1−w
3w−1

.

(2)

The shadow area of Fig. 1 illustrates condition
(2). The horizontal axis is for w. The range of w for
TFT to be evolutionarily stable is given by eqn (2)
with rT =1. It is rewritten as wq (T−R)/
(T−P)=0.5. In contrast, eqn (2) always fails if
rT =0 and wQ 1, implying that TFT if rare cannot
invade a population dominated by AD. Hence AD is
evolutionarily stable when wQ 1 (see Axelrod &
Hamilton, 1981).

In addition, Axelrod & Hamilton proved that a
third strategy ‘‘Alternation of D and C’’ cannot
invade the TFT population if we (T−R)/(R−S).
Axelrod [1984; Proposition (ii) in Appendix B]
hence concluded that TFT is collectively stable if and
only if w is larger than both (T−R)/(T−P) and
(T−R)/(R−S) [however, see Boyd & Lorberbaum
(1987) and Boyd (1989)].

One-dimensional Lattice Model

Now, we study the iterated Prisoner’s Dilemma on
a lattice structured habitat. In the initial population,
each lattice site is filled either by TFT or AD
randomly with a given probability. Then each player
engages in the iterated Prisoner’s Dilemma game with
their neighbors. Let z be the number of neighbors
with whom a player interacts. In a one-dimensional
lattice, z=2. In the two-dimensional lattice, each
player has eight neighboring sites (z=8). The
mortality of the player is determined by its total score,
which is the sum of the scores obtained by interacting
with the z neighbors. After the death of an individual,
the empty lattice site is filled immediately by a copy
of a neighbor randomly chosen among z possible
sites. This is called the nearest neighbor migration
model by Matsuda (1987). The model is a continuous
time Markov chain, and in a sufficiently short time
interval only a single event of state transition occurs.

The total score B of an individual depends on the
strategy adopted (TFT or AD) and on the number of
TFT neighbors, denoted by n (0E nE z). Let BT,n and
BD,n be the scores of a TFT player and an AD player,
respectively, if surrounded by n TFT neighbors and
(z− n) AD players. They are:

BT,n = nV(T/T )+ (z− n)V(T/D) (3a)

and

BD,n = nV(D/T )+ (z− n)V(D/D). (3b)

The mortality of a player is a decreasing function of
the total score. Specifically we assume that the
instantaneous mortality of a TFT player surrounded
by n TFT and (z− n) AD decreases exponentially
with B:

MT,n =exp(−a×BT,n ) (4a)

and that of an AD player is:

MD,n =exp(−a×BD,n ). (4b)

In a short time interval of length Dt, a player dies with
probability MT,n Dt or MD,n Dt. Constant a was chosen
so that the mortality varies between sites of different
states and a different combination of neighbors. For
a reiteration probability w close to one, the total score
becomes very large, because the expected number of
iterations is proportional to 1/(1− w), and the
mortality of different types in eqn (4b) are all very
small. To prevent this situation, we chose a as a
decreasing function of w, specifically a=0.2(1−w)
in this paper.

F. 1. The phase plane of completely mixed model, the
evolutionary game with fitness given by eqn (1). Horizontal axis is
the probability of reiteration w, vertical axis is the density of TFT
rT . The region in which rT increases is indicated by shade, given
by eqn (2). For w less than 0.5, TFT should always decrease with
time and AD is the only evolutionarily stable strategy. In contrast,
for wq 0.5, TFT can be stable as it refuses the invasion of rare AD.
However, AD is always evolutionarily stable because rare TFT
cannot invade into a population dominated by AD.
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F. 2. Computer simulations of one-dimensional lattice model. (a) The spatial patterns generated by the model when w=0.8 and initial
rT is 0.5. There are 500 sites, and black and white points are for those occupied by TFT and those occupied by AD, respectively. Vertical
axis is for time. The initial population (t=0) is random (as shown by the top row), but a strongly clumped spatial distribution is quickly
formed, in which the lattice is composed of long runs of TFT and those of AD. Finally TFT won in this simulation. (b) The outcome
of simulation for different iteration probability w and initial density rT . For each pair of parameters, 100 runs were computed. Open circles
indicate sets of parameters for which all 100 runs end up with the extinction of TFT and the fixation of AD, while solid circles are parameter
values for which all the runs show the fixation of TFT. Shaded circles are those for which some runs end up with the fixation of TFT
(the fractions are indicated by numerals), but others with the fixation of AD. When w is less than 0.6, AD is an evolutionarily stable strategy.
When 0.6 is larger than 0.6, TFT is evolutionarily stable.

    - 



We carried out computer simulation of the model,
on a one-dimensional lattice (z=2). To remove the
effect of edges, we used a periodic boundary
condition: i.e. the lattice is circular (the rightmost site
is the nearest neighbor of the leftmost site), with a
lattice size of 500. In the initial pattern sites were filled
independently either by TFT or AD with a given
probability. We computed the model until a time in
which either one of the two types occupied the whole
population. We computed runs with the initial
population with different fractions of TFT: rT with
0.1, 0.3, 0.5, 0.7, and 0.9.

Examples of spatial patterns of the model are in
Fig. 2(a). Starting from a random spatial pattern,
clusters composed of the same type are quickly
formed. Let rT be the total fraction of TFT in the
whole lattice, called the global density of TFT,
and rD be the global density of AD. Figure 2(b)
illustrates the final outcome of the simulation for
different initial density rT and parameter w.
When w is less than 0.6, AD is finally fixed in the
population for any initial global density rT . When the
parameter w is larger than 0.6, TFT became fixed for
any initial density rT . No evolutionary bistability was
observed.

These results are quite different from the behavior
of the complete mixing model (Fig. 1). Next we apply
analytical calculations to confirm the computer
simulation in Fig. 2(b).

  

The time change of rT , the global density of TFT,
is given by:

drT

dt
=−MT,1[density of DTT]

−MT,0[density of DTD]

+MD,1[density of DDT]

+MD,2[density of TDT]. (5)

Here we call a site occupied by a TFT player as a
T-site, and a site occupied by an AD player as a D-site
for short. The first term on the r.h.s. of eqn (5)
indicates the rate at which a T-site located between a
D-site and a T-site changes to a D-site. It is a product
of the mortality of T, denoted by MT,1, and the density
of the triplet ‘‘DTT’’ in the lattice, i.e. the probability
of a randomly chosen triplet is ‘‘DTT’’. We need to
consider a factor 2 because there is another triplet
‘‘TTD’’ having the same contribution as ‘‘DTT’’.
However, this factor is canceled out by another factor
1/2, the probability for the middle T to be replaced by
D instead of T. Similarly the second term on the r.h.s.
is for the transition of T in a triplet ‘‘DTD’’ to D. The
third and the fourth terms are for the transition of D
to T in the middle of ‘‘DDT’’ and in the middle of
‘‘TDT’’, respectively.

The frequency of a triplet ‘‘DTT’’ cannot be
expressed by only using global densities, such as rT

and rD . We need to introduce a conditional
probability for a site to be T if it is chosen next to a



.  E T A L .70

T site. This is expressed as qT/T and called conditional
density or local density of T sites (Matsuda et al.,
1992; Harada & Iwasa, 1994). In a similar way,
qa/bc {a, b, c=T or D} indicates a conditional
density of a higher order. For example, qT/TD is the
probability that TFT is in the neighborhood of
TFT whose neighbor is AD. Using these notations,
the density of triplet DTT is rTqT/TqD/TT . We can
rewrite the frequencies of the various triplets in
eqn (5) as:

drT

dt
=−MT,1rTqT/TqD/TT −MT,0rTqD/TqD/TD

+MD,1rDqT/DqD/DT +MD,2rDqT/DqT/DT . (6)

Hence, to calculate the dynamics of the average
density of TFT, we need to know conditional
densities, such as qT/T and qT/TT , which include
information concerning the correlation of states
between close neighbors.

In the following sections, two methods of
constructing a closed dynamical system, based on
‘‘mean-field approximation’’ and ‘‘pair approxi-
mation’’ are developed.

- 

Mean-field approximation is to neglect spatial
structure or to assume a random spatial configur-
ation. Under this assumption, the local density and
other probability on the interaction between more
than two players are the same as the global density:
qT/ab = qT/c = rT{a, b, c=T or D}. Then the density
of triplet DTT is simply r2

TrD . If we adopt this
simplification and rD =1− rT , the dynamics of
global density given by eqn (6) become:

drT

dt
= rT (1− rT ){−MT,1rT −MT,0(1− rT )

+MD,1(1− rT )+MD,2rT}. (7)

These dynamics of a single variable have two trivial
equilibria: rT =0 and rT =1. In addition, there
may be an intermediate equilibrium with 0 Q rT Q 1,
such as:

rT =
MT,0 −MD,1

MT,0 −MD,1 −MT,1 +MD,2

=
ea/(T+P−2/s) − 1

ea/(T+P−2S) − 1− ea=0(T−S)−
R−P

1−w1+ e−a/(T−P)

. (8)

The intermediate equilibrium (8) is feasible only
when wqwa =(2T−S−(R/2T)−S−P), which is
wa = 7

9 =0.778 for pay-offs in Table 1.

By examining the sign of eqn (7), we know that, if
0EwEwa , rT =1 is unstable and rT =0 is globally
stable. The extinction of TFT is inevitable, and AD
is the unique evolutionarily stable strategy. In
contrast, if wa QwQ 1, both rT =1 and rT =0 are
locally stable, and the intermediate equilibrium given
by eqn (8) is unstable. The system is bistable and the
evolutionary end point depends on the initial density
of TFT. If the density of TFT players is higher than
the unstable point, TFT players tend to increase and
become fixed. If not, AD players occupy the whole
population instead. Hence TFT is evolutionarily
stable when reiteration probability w is larger than wa ,
and AD is always evolutionarily stable.

Figure 3(a) illustrates the change in rT for different
w. The phase plane is separated to two regions again,
and the pattern is unable to explain the results of
computer simulation [Fig. 2(b)]. First, the threshold
value of w for a TFT population to be locally stable
from computer simulation is about 0.6, clearly smaller
than 7

9(=0.778) predicted by the mean-field approxi-
mation. Second, the system does not show bistability
for any value of w—either a TFT population or an
AD population is globally stable depending on w.
Especially notable is that the shaded area in which
TFT is predicted to increase is much smaller in
Fig. 3(a) than in Fig. 1. This implies that cooperation
is much more unlikely to evolve in the dynamics of a
mean-field approximation of the model than in the
complete mixing model, in spite of the fact that the
spatial configuration of individuals are neglected in
both models. We will discuss the reason for this
difference later.

 

Pair approximation is a method of constructing
a system of ordinary differential equations for the
global and local densities. In some cases, it predicts
the population dynamics of lattice structured models
accurately, while the equations based on the
mean-field assumption, such as eqn (7), fail to do so
(Sato et al., 1994; Harada et al., 1995). Pair
approximation keeps the distinction between the
average density and the local density, but does not
consider the correlation beyond nearest neighbors.

Note that pair approximation does not assume
perfect independence between nonnearest neighbor
sites. It assumes that the correlation between
nonnearest neighbor sites can be approximated by the
product of the nearest neighbor correlation. For
example, consider a triplet, ABC, in which A and B
are correlated in state and B and C are correlated
because they are neighbors. Then A and C are also
correlated. Pair approximation assumes that the
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F. 3. Analyses of one-dimensional lattice model: (a) The phase plane of the dynamics based on mean-field approximation, eqn (7).
Horizontal axis is reiteration probability w, vertical axis is the density of TFT rT . The region in which rT increases is indicated by shade.
Note that this region is much smaller than that for the complete mixing case (Fig. 1), and the area indicated by computer simulation [circles
in Fig. 2(b)]. This implies that mean-field dynamics predict a much more stringent condition for the evolution of cooperation than observed
by simulation or predicted by the model without spatial structure. AD is always evolutionarily stable. The system shows bistability when
w is larger than wa . (b) Curves are the trajectories of the dynamics of pair approximation when w is 0.8. Dots are from computer simulation
where the time interval between points is 10. A broken line is for qT/T = rT implying a random spatial pattern. The horizontal axis is global
density rT and the vertical axis is local density qT/T . Arrows indicate the direction of movement along trajectories. qT/T keeps increasing
and hence TFT clusters become larger and larger. (c) The phase plane of the dynamics based on pair approximation, eqns (12). Horizontal
axis is the probability of reiteration w, vertical axis is the density of TFT rT . The region in which rT increases is indicated by shade. When
w is less than wb , AD is an evolutionarily stable strategy. When w is larger than wb , TFT is an evolutionarily stable strategy and the AD
is no longer evolutionarily stable. The predictions by the dynamics based on pair approximation are consistent with the results of computer
simulation of Fig. 2(b).

correlation between A and C is caused only by the
indirect effect via their common neighbor B. In
reality, A and C can be more or less strongly
correlated than the simple product of correlation
coefficients between the two nearest neighbors, and
hence the pair approximation may not be exact.

Let rTT be the doublet density, i.e. the probability
that a randomly chosen pair of nearest neighbors are
both TFT. Then the local density of TFT is the ratio,
qT/T = rTT /rT . Hence we have:

dqT/T

dt
=

1
rT

drTT

dt
−

qT/T

rT

drT

dt

which implies that the dynamics of doublet density
are needed to compute the dynamics of local density.
The time change is rTT is derived as follows:

drTT

dt
= −MT,1rTqT/TqD/TT

+MD,1rDqT/DqD/DT +2MD,2rDqT/DqT/DT . (9)

The first term of the r.h.s. of eqn (9) indicates the rate
of transition from a triplet TTD to another triplet
TDD. The second term is the rate of transition from
DDT to DTT, which produces a new TT pair. Then
the last term is the rate of transition from TDT to
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TTT, which creates two new ‘‘TT’’ pairs expressed by
factor 2.

To construct a closed dynamical system of global
density rT and local density qT/T , we neglect the
correlation of state beyond nearest neighbor pairs:

qa/bc = qa/b{a, b, c=T or D} (10)

which is called pair approximation, or doublet
decoupling approximation (Matsuda et al., 1992;
Sato et al., 1994). Note also rTD = rDT . In addition,
we have the following relations, coming from the
definition of conditional probabilities:

rD =1− rT (11a)

qD/T =1− qT/T (11b)

qD/D =
1−2rT + rTqT/T

1− rT
(11c)

qT/D =
rT (1− qT/T )

1− rT
. (11d)

Then a pair of ordinary differential equations for
global density and local density are derived:

drT

dt
= rT (1− qT/T )6qT/T0−MT,1

+MT,0 +
MD,1rT

1− rT
−

MD,2rT

1− rT1−MT,0

+MD,1
1−2rT

1− rT
+

MD,2

1− rT7 (12a)

dqT/T

dt
=(1− qT/T )26qT/T0−MT,1

+MT,0 +
MD,1rT

1− rT
−

MD,2rT

1− rT1
+MD,1

1−2rT

1− rT
+

2MD,2

1− rT7. (12b)

This system of autonomous equations can be
analysed by the standard technique for nonlinear
dynamics. All the points on line qT/T =1 are
equilibria. The asymptotic behavior of the system is
different depending on whether the reiteration
probability w is larger than a critical value
wb =(T−S−R+P)/(T−S)=0.6. The trajec-
tories converge to (rT , qT/T )= (0, 1) for wQwb ; they
converge to (rT , qT/T )= (1, 1) for wqwb . When

w=wb , different trajectories converge to different
points on the line of equilibria qT/T =1, which are
neutrally stable. Figure 3(b) shows the trajectories of
pair approximation dynamics, eqns (12), when
w=0.8.

Figure 3(c) is the phase plane for pair-approxi-
mation dynamics, eqn (12). Then when w is smaller
than wb , which is 0.6 for pay-offs in Table 1, AD is
evolutionarily stable, and when w is larger than wb

TFT is evolutionarily stable. No bistability is
predicted. These are consistent with the results of
computer simulation [Fig. 2(b)].

Invasion Success Probability

Although a cooperative behavior is evolutionarily
stable in the complete mixing model, it is quite
difficult for the cooperation to establish itself in a
population initially dominated by non-cooperative
behavior, because AD is always evolutionarily stable
and repels the invasion of rare TFT. However, in the
one-dimensional lattice model, both computer simu-
lation and pair-approximation dynamics show that
TFT can invade successfully a population dominated
by AD if the probability of iteration w is sufficiently
high.

Computer simulation shows that TFT and AD
quickly form clusters of the same strategy and that the
movement of their boundaries determines the fate of
the system [Fig. 2(a)]. Changes of spatial patterns
occurs if TFT in the edge of a TFT cluster becomes
AD or if AD in the edge of the AD cluster changes
to TFT. The location of the boundary between two
clusters follows a Random-Walk. Then the condition
for the successful invasion of TFT in the population
occupied by AD players can be derived by the
standard techniques for stochastic processes.

In Appendix A, we derive the probability
QT =1−Q1 that TFT survive ultimately starting
from a single TFT player as eqn (A.8). It is possible
for wqwb where wb =(T−S−R+P)/(T−S) is
the critical value, which is wb =0.6 if pay-offs in
Table 1 are used. In contrast, QT =0 for wEwb .

Similarly, the probability for a single AD player to
invade a population composed of TFT can be derived
by the equations based on birth-and-death processes.
The probability that AD survives in the lattice where
only one AD existed in the initial population, denoted
by RD =1−R1, is given by eqn (A.11). RD is positive
for wQwb , but zero for wewb .

The two lines in Fig. 4 illustrate the probabilities of
successful invasion for different w. We see that TFT
is evolutionarily stable for w larger than wb and that
AD is the evolutionarily stable strategy for w less than
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F. 4. The probability of invasion success. A solid and broken
lines are the predictions by eqns (A.8) and (A.11) derived by the
birth-and-death processes. Solid and open circles show the results
of the computer simulations, which are consistent with the
predictions. A single TFT invader in the population occupied by
AD can increase in number and becomes fixed with a positive
probability if wq 0.6 but must go extinct if wQ 0.6. In contrast,
a single AD invader in the population occupied by TFT can
increase and becomes fixed with a positive probability if wQ 0.6
but cannot increase if wq 0.6. These results are consistent with the
predictions by pair-approximation [Fig. 3(c)].

T-sites and (z− n) D-sites. With pair approximation,
it can be expressed as:

[density of {T, n}]1 rT (qT/T )n(qD/T )z− n. (13b)

The first term in eqn (13a) indicates the transition of
a TFT to an AD given that it interacts with n TFT
and (z− n) AD. The second term comes from the
transition of an AD to a TFT if it interacts with n
TFT and (z− n) TFT.

- 

If mean-field approximation is adopted, eqns (13)
are rewritten as eqn (B.2) in Appendix B. This
equation has two trivial equilibria: rT =0 and rT =1.
In addition, there may be an intermediate
equilibrium (0Q rT Q 1) if wqwd =(40−
S−7T)/(32−S+P), which is wd =19/33=0.576
for the pay-offs in Table 1.

The phase plane of w vs rT is given in Fig. 5(a). This
result suggests that AD is always the evolutionarily
stable strategy (when wQ 1). When wqwd TFT is
also evolutionarily stable, and the system is bistable.

 

By adopting pair approximation, we can construct
a closed dynamical system of rT and qT/T , as eqns (B.4)
in Appendix B. The system of autonomous equations
such as eqns (B.4) can be analysed by the standard
techniques of nonlinear dynamics. All the points on
line qT/T =1 are equilibria. The asymptotic behavior
of the system depends on the value of w.

According to numerical analysis, all the trajectories
starting from internal points converge to rT =0 for
0EwE 0.49, and all the trajectories converge to
(rT, qT/T )= (1, 1) for we 0.77. For w between 0.77 and
0.49, whether the trajectories converge to rT =0 or to
(rT , qT/T )= (1, 1) depends on the initial density of
TFT. The system is bistable. For example, w=0.6
two trajectories of pair approximation dynamics
given by eqns (B.4) in Appendix B are illustrated in
Fig. 5(b). Figure 5(c) shows the change in rT for
different w. This indicates that AD is evolutionarily
stable when w is less than 0.77 and that TFT is
evolutionarily stable when w is larger than 0.49.

The prediction of pair approximation dynamics for
a two-dimensional model in Fig. 5(c) is intermediate
between the complete mixing case (Fig. 1) and the
one-dimensional case [Fig. 3(c)]. This can be
understandable as the number of neighbors is two for
the one-dimensional lattice model, eight for the
two-dimensional lattice, and infinitely large for the
completely mixing model.

wb . Computer simulation results using a finite sized
lattice (500 sites) are indicated by solid and open
circles, and are consistent with the curves given by
eqns (A.8) and (A.11).

If the invasion of a single mutant is not a unique
event but occurs recurrently, then a small but positive
probability of establishment is sufficient for the
ultimate success of invasion. Figure 4 therefore
implies that TFT beats AD for wqwb and AD beats
TFT for wQwb . This is consistent with the results of
pair-approximation [Fig. 3(c)].

Two-dimensional Lattice

We also examined the model on a two-dimensional
square lattice. The number of nearest neighbors with
whom a single player interacts is z=8 (i.e. we assume
Moore neighborhood instead of Neumann neighbor-
hood of z=4).

Just as for eqn (6) for the one-dimensional model,
the time change of global density can be expressed as:

drT

dt
=− s

z−1

n=0 0zn1MT,n [density of{T, n}] z− n
z

+ s
z

n=1 0zn1MD,n [density of {D, n}]n
z

(13a)

where {T, n} indicates a T-site surrounded by n
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F. 5. Analyses of the two-dimensional lattice model. (a) The phase plane of the dynamics based on mean-field approximation, eqn
(B.2). Horizontal axis is the probability of reiteration w, vertical axis is the density of TFT rT . The region in which rT increases is indicated
by shade, given by eqn (B.2). This predicts that AD is always evolutionarily stable. The system shows bistability when w is larger than
wd . (b) Curves are the trajectories of the dynamics of pair approximation when w is 0.6. Dots are from computer simulation where the
time interval between points is 10. The horizontal axis is global density rT and the vertical axis is local density qT/T . A broken line is for
qT/T = rT implying a random spatial pattern. Arrows indicate the direction of movement along trajectories. The system is bistable. (c) The
phase plane of the dynamics based on pair approximation, eqns (B.4). Horizontal axis is the probability of reiteration w, vertical axis is
the density of TFT rT . The region in which rT increases is indicated by shade, given by eqns (B.4). When w is less than 0.77, AD is an
evolutionarily stable strategy. When w is larger than about 0.49, TFT is an evolutionarily stable strategy. When the range of w is between
0.49 and 0.77, whether TFT or AD will be fixed in the lattice depends on rT . The prediction is intermediate between the complete mixing
case (Fig. 1) and one-dimensional case [Fig. 3(c)]. Note that the rare TFT can invade the population composed of AD if probability of
iteration w is sufficiently high.

 

The method of computer simulation of a two-
dimensional square lattice model (z=8, with Moore
neighborhood) was the same as for the one-
dimensional model explained before. We assumed a
periodic boundary condition: i.e. the lattice was a
torus (the rightmost column is the nearest neighbor of
the leftmost column, and the top row is the nearest
neighbor of the bottom row). We have carried out
simulations both on a lattice of size 20×20 and on
a lattice of size 100×100. We normally computed the
model until a time at which one of the two types is
fixed in the population. If the system is bistable, the

outcome depends on the initial density. The initial
population is of a random spatial pattern with
different fractions of TFT: we computed rT with 0.1,
0.3, 0.5, 0.7 and 0.9.

Examples of spatial patterns of the model on the
lattice of 20×20 are illustrated in Fig. 6(a–c). The
phase plane on w− rT for the lattice of size 20×20
is given in Fig. 6(d). TFT is the evolutionarily stable
strategy for w larger than a critical value which lies
between 0.5 and 0.6. AD is the evolutionarily stable
strategy for w less than another threshold between 0.6
and 0.8. For w between these two critical values, this
system shows bistability and the evolutionary
outcome depends on the initial global density of TFT.
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F. 6. (a–c) The spatial patterns generated by the two-dimensional lattice model with w=0.8 and initial density rT =0.5 when lattice
size is 20×20. (a) Initial random distribution (t=0), (b) patchy distribution is quickly formed (t=100), and (c) TFT is fixed in the end
(t=700). (d) This illustrates change in initial rT with time for different w when lattice size is 20×20. Open circles, shaded circles and
solid circles in the graph show the computer simulations of AD fixed, either AD or TFT fixed and TFT fixed in the lattice, respectively.
The numbers below shaded circles are the fractions of runs in which TFT become fixed. When w is less than about 0.8, AD is an
evolutionarily stable strategy. When w is larger than about 0.4, TFT is an evolutionarily stable strategy. For w between 0.5 and 0.8, the
system shows bistability, i.e. whether or not TFT is fixed depends on the initial global density of TFT. The computer simulation results
are explained well by the dynamics based on pair approximation [Fig. 5(c)]. (e) This illustrates change in initial rT with time for different
w when lattice size is 100×100.

For several sets of parameters indicated by grey
circles, some runs end up with fixation of TFT but
other runs end up with fixation of AD. This is caused
by stochasticity due to the finiteness of the lattice size.

The phase plane on w− rT for a large lattice of
100×100 is in Fig. 6(e). The parameter region
showing fixation of TFT and fixation of AD are quite
similar, but grey circles are absent. Depending on the
parameter w and initial condition rT , the evolutionary
outcome is either fixation of TFT (solid circles) or
fixation of AD (open circles). Bistability was observed
for the case of w=0.6—TFT is fixed in all 50 runs
if the initial rT is 0.7 and 0.9, but AD is fixed if the
initial rT is 0.5 or smaller.

The results of the computer simulation, in Fig. 6(d)
and 6(e), are again consistent with the pair
approximation dynamics [as shown in Fig. 5(c)], but

not with the mean-field approximation [Fig. 5(a)].
The mean-field dynamics predict that AD always
repels the invasion by rare TFT. However, according
to the computer simulation, rare TFT can invade an
AD population if w is larger than 0.7, which is similar
to the 0.77 predicted by the pair-approximation
dynamics.

We must note, however, our results of computer
simulation on lattices of finite size (20×20 and
100×100) are different from behavior predicted for
an infinitely large lattice, as there is a general
mathematical argument that no bistability is possible
on an infinitely large lattice irrespective of the
dimensionality (Liggett, 1978; Durrett, 1980; Gray,
1982). The arguments can be explained intuitively as
follows: For bistability to occur in the system, we
must consider the situation where one type is
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dominating all the local areas in the system. However,
because the model is stochastic, and because the
lattice size is infinitely large, there will always appear
an area in which one of the two types dominates, and
another area in which the other type dominates.
Then, whether one type or the other wins, is
determined simply by the movement of the boundary
between two areas, in each of which one of the two
types dominates.

Hence, if we analyse an infinitely large lattice, the
phase plane should show no bistability, and the
prediction by pair approximation, such as in Fig. 5(c),
is not valid. It will look more like Fig. 3(c).
Pair approximation assumes that the correlation
between sites can be approximated considering
correlation between neighbors. It is quite plausible
that pair approximation fails if the whole system is
segregated into large subareas in which the relative
density of TFT and AD greatly differ and long range
spatial correlation of states is large.

The computer simulation of the model on a finite
size lattice showed bistability, which should disappear
if we examine an infinitely large lattice.

On the other hand, if in biological, social situations
there are a finite number of lattice sites, then the
model on a lattice of reasonably large but still finite
size, may be more suitable as a modeling tool. The
behavior of this lattice was closely described by
pair approximation dynamics.

Discussion

To evaluate the effect of spatial structure of
populations, we need to compare a lattice model and
models with randomized spatial configuration in
which the ecological interactions and fitness functions
are the same. From mortality, eqn (4), the fitness
corresponding to lattice models is given by an
exponential function of the total score as:

(fitness)=1−K exp[− a(total score)] (14)

where K and a are positive constants. The total score
is given by the interaction with z neighbors. The
evolutionary game using the fitness eqn (14) with a
spatially randomized configuration is comparable
to the other models in this paper, and we call this
as ‘‘the complete mixing’’ model in the following. In
Appendix B, we show that the complete mixing model
with eqn (14) is the same as a simpler model with a
linear fitness given by eqn (1) in the limit when a is
very small. Hence we can regard Fig. 1 as the phase
plane for the complete mixing model when a is small.
Importantly, the phase plane is independent of the
number of neighbors with which each player interacts,

z, or of the dimensionality of the lattice (see Appendix
B for derivation).

The mean-field approximation [Fig. 3(a)] for the
one-dimensional model fails to explain the result of
computer simulation, especially the absence of
bistability [Fig. 2(b)], but pair approximation
dynamics [Fig. 3(c)] are quite accurate, and are also
consistent with the invadability analysis. The same
conclusion holds for the two-dimensional model
[Fig. 5(c) is close to Fig. 6(d)]. This again confirms the
usefulness of pair-approximation for lattice struc-
tured models (Sato et al., 1992; Harada & Iwasa,
1994; Harada et al., 1995).

The problem of the difficulty in invasion and
establishment of the cooperative strategy in a
population dominated by a noncooperative one can
be resolved in the lattice structured population. Both
in the one-dimensional and in the two-dimensional
lattices, initially rare TFT can increase in an
AD-dominated population and replace AD if the
iteration probability w is sufficiently high [Fig. 3(c),
Fig. 5(c)]. In the lattice population, cooperation can
evolve from an initially noncooperative society.

However, TFT is evolutionarily stable only when w
is larger than 0.6 in the one-dimensional lattice model,
while it is so when w is larger than 0.5 in the complete
mixing model. Comparing the shaded area of the
w− rT phase plane for the increase of TFT given in
Fig. 1 for the complete mixing model and the
corresponding area in Fig. 3(c) for the one-dimen-
sional lattice model, we see that neither one contains
the other inside. Lattice structure facilitates the
evolution of cooperation when TFT, cooperative
strategy, is rare, but inhibits it when TFT is common.

The condition for the evolution of cooperation
predicted by mean-field dynamics is much more
stringent than the one observed in the computer
simulation or given by pair approximation. Es-
pecially notable is that in a one-dimensional lattice,
the shaded area of the phase plane leading to the
ultimate fixation of TFT in Fig. 3(a) is much smaller
than the one by the complete mixing calculation
(Fig. 1). This is puzzling because both the mean-field
approximation and the complete mixing calculation
assume perfectly randomized spatial configuration.
This difference can be explained by considering two
population processes in which mean-field dynamics
and the complete mixing model, respectively, are
exactly valid. First we consider a population in which
the location of TFT and AD are randomized. Players
interact with their neighbors, their mortality depends
on the score. After the death of a player before filling
the vacant site, we may recalculate the fraction of
TFT and AD and generate a new randomly
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distributed spatial pattern using this new fraction.
This stochastic process exactly follows the complete
mixing model.

We may imagine the second process in which each
vacant site produced by the death of a player is
immediately filled by a copy of randomly chosen
neighbors, then we randomize the spatial configur-
ation. This corresponds to the mean-field dynamics.
In this second process, any behavior to reduce the
score of its neighbors enhances the mortality of
neighbors, and can be advantageous to the player
who enjoys a higher opportunity to reproduce the
vacant sites produced by the death of the neighbor.
The major difference between the complete mixing
model and the mean-field dynamics lies in the possible
advantage of such ‘‘spiteful’’ behavior, which explains
why the spread of TFT is much more difficult under
mean-field dynamics [Fig. 3(a)] than in the complete
mixing dynamics (Fig. 1).

Now we compare the mean-field dynamics
[Fig. 3(a) for one-dimensional model, and Fig. 5(a)
for the two-dimensional model] and the lattice models
[Fig. 3(c) and Fig. 5(c), respectively]. Both allow some
advantage to spiteful behaviors. However, neighbors
are independently chosen in mean-field dynamics, but
are similar in lattice models. This difference in the
nearest-neighbor correlation explains why the shaded
area of the phase plane for the latter is larger than
that for the former.

The lattice models [Fig. 3(c) or Fig. 5(c)] are
different from the complete mixing model (Fig. 1) on
two points: the possible advantage of being spiteful
makes cooperation less likely to evolve and the
correlation between neighbors makes it more likely to
evolve. The possibility of spiteful behavior in the
lattice model discouraging the evolution of altruism
has been pointed out previously mostly from
computer simulation studies (Matsuda, 1987; Mat-
suda et al., 1987; Taylor, 1992; Wilson et al., 1992).
In a lattice population the movement of the boundary
between a TFT cluster and an AD cluster determines
the fate of evolution. The total fraction of TFT in the
whole population does not affect the relative
advantage of two strategies.

A biological example of spiteful behavior is toxin
production by bacteria. Some strains of the bacteria
E. coli produce a toxin, called colicin, but they
themselves are immune to it. However, colicin-pro-
ducing strains have a slower rate of population
growth than colicin-sensitive strains. Durrett & Levin
(manuscript in review) studied the coexistence of
colicin-producing and colicin-sensitive strains in a
lattice, as they cannot coexist in a perfectly mixed
population. The model is similar to the nearest-neigh-

bor-migration model for the evolution of altruism by
Matsuda (1987).

Matsuda (1987) and Matsuda et al. (1987) studied
the extinction-invasion lattice model in which the
dynamics of three states (sites occupied by the
cooperative type, those occupied by selfish type and
vacant sites) are examined. In the absence of
kin-recognition, cooperation with neighbors can
evolve if the migration range is small and the habitat
is not saturated (i.e. many sites are vacant). However,
this effect was not very strong if most sites are
occupied. The reason is that a high score for
cooperative individuals in the middle of tight clusters
would not contribute to their spread. Similarly, in our
model TFT forms tight clusters and vacant sites
within a cluster of AD would be filled by AD even if
they have low scores. What matters is the movement
of the boundary between a tight cluster of TFT and
a neighboring cluster of AD. However, the model
studied in the current paper is simpler than the one
studied by Matsuda, because we assumed only two
states (sites occupied by TFT and those occupied by
AD) neglecting the possibility that the site may be
vacant.

Wilson et al. (1992) studied a lattice model with
similar to our two states, but the mode of
reproduction was different. Wilson et al. assumed
that the death of an individual occurs randomly
and that the vacant site is subsequently filled by a
copy of neighbors chosen with scores (or fitnesses)
considered. Wilson et al. (1992) and Taylor (1992)
indicates that the local population regulation
limits the evolution of altruism in purely viscous
populations.

In the present paper, we assumed that the
survivorship of a player depends on its score but the
reproductive performance is independent of the score.
In contrast, in other models (e.g. Axelrod, 1984;
Nowak & May, 1992; Wilson et al., 1992), the score
affects the likelihood of being copied (i.e. reproduc-
tive rate), rather than the longevity. A biological
example of score-dependent mortality may be
‘‘allelopathy’’, the production of chemicals by
plants and bacteria that harm their neighboring
competitors, while an example of score-dependent
fertility may be the enhancement of seed production
of neighboring plants by attracting pollinators in
self-incompatible flowers. In general, many modes of
social interaction, such as competition for light
among plants, would affect both mortality and
fertility.

This difference in the assumption may cause
qualitative differences in the model’s behavior. For
example, Nowak & May (1992) observed the
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perpetual coexistence of cooperative and defective
players, forming constantly changing spatial patterns
for a particular set of parameters. Coexistence of the
two different strategies is not observed in models
studied in this paper. It would be an interesting theme
of future study to examine whether this difference
comes from the assumption of score-dependent
fertility in Nowak & May and score-dependent
mortality in the current model, or from the other
details such as synchronous vs asynchronous state
changes. Although Wilson et al. (1992) studied
score-dependent and random mortality, whether or
not the coexistence of two types was possible is not
very clear from their figures explaining computer
simulations.

Games played on the lattice may be usefully
extended. For example, an N-person Prisoner’s
Dilemma game has been intensively studied in social
psychology (Hamburger, 1973; Dawes, 1980), in
which more than two players interact. An N-person
game played in a lattice structured population is of
considerable interest.

Second, a recent study of the iterated Prisoner’s
Dilemma game reveals that if players make ‘‘errors’’
with a small probability, then strategies other than
TFT can be better, such as Pavlov (the strategy that
cooperates if and only if both players opted for the
same alternative in the previous move) (Nowak &
Sigmund, 1993) and GTFT (the strategy that always
cooperates when its partner cooperated in the
previous move and cooperates with probability 0.9
when its partner defected in the previous move)
(Nowak & Sigmund, 1992). These simulation results
were supported by analytical study (Stephens et al.,
1995). These studies on the effect of errors have been
carried out in the complete mixing populations. It
would also be interesting to examine the evolutionary
outcome of these diverse strategies in a lattice-struc-
tured population.
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APPENDIX A

The probability that a cluster consisting of n TFT
goes extinct ultimately is denoted by Qn . Let ln Dt be
the transition probability in a short time interval of
Dt from a cluster consisting of n TFT to a cluster with
(n+1) TFT. Let mn Dt be the transition probability
from n TFT to (n−1) TFT. Now the basic equation
of Random-Walk is:

Qn =Qn (1− ln Dt− mn Dt)+Qn+1ln Dt

+Qn−1mn Dt. (A.1)

We first consider the case in which the cluster will not
go extinct once the cluster reaches a sufficiently large
size k+1. Later we make k infinitely large. Then the
boundary conditions are:

Qn =0 (ne k−1) (A.2a)

Q0 =1. (A.2b)

From the definition of the processes, the transition
occurs when a site at the boundary between a run of
T-sites and a run of D-sites dies and subsequently
replaced by its neighbor. The transition rates, ln and
mn , can be rewritten as follows:

ln =6 0
MD,1

n=0
n=1, 2, 3, . . .

(A.3a)

where n=0 is an absorbing point

mn =6MT,0

MT,1

n=1
n=2, 3, 4, . . .

. (A.3b)

In the following we put l=MD,1, m=MT,1 and
m'=MT,0.

Using eqns (A.2a–A.3b), eqn (A.1) can be rewritten
as:

Qn =Qn (1− l Dt− m Dt)+Qn+1l Dt

+Qn−1m Dt 2E nE k (A.4a)

Q1 =Q1(1− l Dt− m' Dt)+Q2l Dt

+Q0m Dt n=1. (A.4b)

From eqns (A.2a) and (A.4a), we have

Qn+1 =Q1 + s
n

k=1

(m/l)k−1(Q2 −Q1). (A.5)

From eqns (A.2b) and (A.4b), we have

Q2 = −
m'
l

+
l+ m'

l
Q1. (A.6)

From eqns (A.2a), (A.5) and (A.6), Q1 is derived as:

Q1 =
m'(1− (m/l)k)

l− m+ m'(1− (m/l)k)
if l$ m (A.7a)

Q1 =
m'k

l+ m'k
if l= m. (A.7b)

l= m occurs when w=wb =(T−S−R+P)/
(T−S).

From eqns (A.7a) and (A.7b), when k 4a, Q1

converges to the following values:

Q104
k4a m'

m'+ l− m
=

1

1+ e−a(P+T−2S) − e−a0P−S+
R−P

1−w1

if mQ l(wqwb ), (A.8a)

Q104
k4a

1 if me l(wEwb ), (A.8b)

where we rewrote l, m and m' in terms of pay-offs.
Equation (A.8) indicates that if the rate of increase in
n is larger than the rate of decrease lq m, then there
is a positive probability for TFT not to go extinct
ultimately. The probability TFT survive in the lattice
starting from a single TFT is QT =1−Q1, which is
in Fig. 4.

In a similar way, the probability, Rn , that a colony
consisting of n AD goes extinct is also derived as
follows:

ln =6 0
MT,1

n=0
n=1, 2, 3, . . .

, (A.9a)

mn =6MD,2

MD,1

n=1
n=2, 3, 4, . . .

, (A.9b)

where l=MT,1, m'=MD,2 and m=MD,1. We have
recurrence formulae as:

Rn =Rn (1− l Dt− m Dt)+Rn+1l Dt

+Rn−1m Dt 2E nE k (A.10a)

R1 =R1(1− l Dt− m' Dt)+R2l Dt

+R0m Dt n=1. (A.10b)

Then

R104
k4a 1

1− ea(T−P) + ea0(2R−P−S)−
R−P

1−w1
if mQ l(wqwb ), (A.11a)

R104
k4a

1 if me l(wEwb ). (A.11b)



.  E T A L .80

The probability for a newly invading AD to
survive in the lattice is RD =1−R1, which is shown
in Fig. 4.

APPENDIX B

(i) The Model on a Two-dimensional Lattice

Equation (13) is rewritten as:

drT

dt
= − rT s

a−1

n=0 0zn1(qT/T )n(qD/T )z− nMT,n
(z− n)

z

+ rD s
z

n=1 0zn1(qT/D )n(qD/D )a− nMD,n
n
z
. (B.1)

If we adopt mean-field approximation, eqn (B.1) is
rewritten as:

drT

dt
=

1
8

rT (1− rT )

×6− s
7

n=0

×0zn1rn
T (1− rT )7− nMT,n (8− n)

+(1− rT )−7 s
8

n=1 0zn1(rT (1− rT ))n−1

×(1−2rT + r2
T )8− nMD,nn7. (B.2)

To derive the equations for local density based on
pair approximation, we first derive the dynamics of
doublet density as:

drTT

dt
=

2
z 6− rT s

z−1

n=1

n0zn1(qT/T )n(qD/T )z− nMT,n
(z− n)

z

+ rD s
z

n=1

n0zn1(qT/D )n(qD/D )z− nMD,n
n
z7 (B.3)

where the first term indicates a transition of
TFT indicating with n TFT and (z− n) AD to
AD, with the probability (z− n)/z (this transition
changes n pairs of TT to (n−1)pairs), and the second
term indicates a transition of AD interacting with
n TFT and (z− n) AD to TFT, with the probability
n/z (this transition changes n pairs of TT to (n+1)
pairs).

By adopting pair-approximation, we can construct
a closed dynamical system of rT and qT/T with z=8
as:

drT

dt
=

1
8

rT (1− qT/T )

×6− s
7

n=0 08n1qn
T/T (1− qT/T )7− nMT,n (8− n)

+(1− rT )−7 s
8

n=1 08n1(rT (1− qT/T ))n−1

×1(1−2rT + rTqT/T )8− nMD,nn7 (B.4a)

dqT/T

dt
=

1
8
(1− qT/T )

×6−
1
4

s
7

n=0 08n1qn
T/T (1− qT/T )7− nMT,nn(8− n)

+
1
4
(1− rT )−7 s

8

n 08n1(rT (1− qT/T ))n−1

×(1−2rT + rTqT/T )8− nMD,nn2

+qT/T s
7

n=0 08n1qn
T/T (1− qT/T )7− nMT,n (8− n)

−qT/T (1− rT )−7 s
8

n=1 08n1 (rT (1− qT/T ))n−1

×(1−2rT + rTqT/T )8− nMD,nn7. (B.4b)

(ii) The Complete Mixing Game with Fitness Given by

eqn (14)

The fitnesses for TFT and AD are:

WT =1−K exp[− aBT,n ] (B.5a)

WD =1−K exp[− aBD,n ] (B.5b)
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respectively. Then using eqn (1) and Table 2 for
scores, we have

WT = s
z

n=0 0zn1(1−K exp[− a(nV(T/T )

+(z− n)V(T/D))])rn
Tr

z− n
D

=1−K(e−aV(T/T)rT + e−aV(T/D)rD )z. (B.6a)

Similarly, we have

WD =1−K(e−aV(D/T)rT + e−aV(D/D)rD )z. (B.6b)

The system can be bistable. A curve on w− rT plane
separating two domains of attraction is given by
WT =WD , which is rewritten as

rT =
e−aV(D/D) − e−aV(T/D)

e−aV(T/T) − e−aV(T/D) + e−aV(D/D) − e−aV(T/D)

=
e−aS − e−aP

e−aS − e−aP + e−aT − e−a(T−wp)/(1−w). (B.7)

Note that the curve is independent of z, the number
of neighbors for each site, and hence the dimension-
ality of the lattice. In the limit when a is very small,
eqn (B.7) becomes eqn (2), for the complete mixing
model.


