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In the previous note, we developed a map for pulse coupled oscillators 
that were identical and had instantaneous coupling. If the frequencies are 
very different so that there is not 1:1 locking, it is much harder to develop 
a map. Instead, I just solve the ODE incrementing the appropriate 
variables each time one of the others crosses 2 pi. I then plot the value of 
the slow oscillator each time the fast oscillator "fires". 
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locking vs frequency of A
Note the various n:m locking regions. Between the large m:1 regions 
(oscillator A fires m times and B once), there are other more complex 
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Blow up of above
regimes.These are shown more clearly in the blowup depicted above. The 
3:2 is seen at the far right as well

 Now, we will consider smooth coupling using the PRC.  There is no 
simple rigorous way to justify the model, so we will consider it as an ad 
hoc equation.  



Let's first look at the general case of an equation on the torus:
                  x' = F(x,y)
                  y' = G(x,y)
(Note that we are now dealing with ODEs so the primes are 
derivatives...) We assume that F(x1+2 pi,x2)=F(x1,x2+2 pi)=F(x1,x2) 
and similarly for G so that the system is 2 pi-periodic in its arguments. 
If F,G are strictly positive, then we can also define a function h(x,y)=F/G 
and get
             d x/d y= h(x,y)
If h(x,y) is continuous, then there is a solution x=P(y;x0) which exists 
for all time and satisfies P(y;x0+2 pi)=P(y;x0). 
Consider  M(x0)=P(2 pi;x0). This defines a nice map on the circle
 x0 -> M(x0), and so we can define the rotation number, rho, for this 
map.  We can think of rho as the number of times that x goes around 
the circle compared to y.  

We can create equations on the torus using "pulse" coupling and the 
PRC. Let D(x) be the PRC for an oscillator. Consider
             x' = w1 + P(y) D(x)   (*)
             y' = w2 + P(x) D(y)
In absence of coupling P=0 and these guys flow around with a rotation 
number rho=w1/w2.  If this is irrational, they densely cover the torus. If 
it is rational, it generates a periodic solution.  If P(x) is the Dirac delta 
function, then  this set of equations reduces to our map-based ones. 
For, in this case P=0 except when  y (or x) hits 2 pi. When P is zero and 
w1=w2=1, then y is just y0 + t. If x hits 2 pi at t=0, then
 y -> y+D(y)=PTC(y), and so forth!  So, think of (*) as the 
generalization of our map.  It is also much easier to see how to make 
big networks in this case.  Suppose w2=1, P(x)=(1+cos(x)), and 
D(x)=-a sin(x).  Thus, D(x) is our usual PRC and P(x) has a peak when 
x=0 and is symmetric about x=0. It is a big fat pulse!



The picture on the left shows the 
dynamics of (*) for a=0.5. Note 
that trajectories are attracted to 
the diagonal (red arrow) which is 
the stable synchronous solution 
and that there is also an unstable 
(blue arrow) "anti-phase" solution 
where the two are a half cycle out 
of phase. Both of these solutions 
represent solutions with rotation X

Y

identical freq
number 1. If I change the frequency 
of x by a little, the rotation number 
stays the same, but the stable 
solution is no longer along the 
diagonal, is is offset slightly.  You can 
see that when  Y=0, X is a bit 
greater than 0 (red arrow) showing 
that X is a bit advanced from Y in 
keeping with the fact that it has a 
higher frequency.  Finally, the last w1=1.2
figure shows the dynamics when 
w1=2. There is a very clear 2:1 
locked stable solution (green 
dotted curve,green arrow) and an 
unstable solution (red) that is also 
2:1. Note how X goes through two 
cycles as Y goes through 1. 

HW: With this same model can you 
show a 3:1 locked solution? How 

2:1 locking
about a 3:2?  (Note that I am not saying these exist - they might not. In 
fact, you may have to put more Fourier coefficients in the P(x)! Try 
simulations with P(x)=exp(-(1-cos(x)) )  


