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In many cases, we will be able to reduce a system of differential equations to two independent
variables in which case we have a planar system. Such systems have many advantages over higher-
dimensional models. In particular, it is possible to qualtitatively sketch solutions without ever
computing them. We will introduce three main concepts: (i) fixed points, (ii) stability, and (iii)
nullclines. The latter are curves that enable one to break the plane into regions of different qual-
itative behavior. By phaseplane, I mean a sketch of the system in (x, y) coordinates. This is
different from a sketch against time which is the way you often see data. Phaseplanes can pro-
vide much more useful info such as a global way of looking at your system. The pair of curves
(x(t), y(t)) = (sin t, cos t) when plotted against time is not obviously a circle; however, if you plot
them parametrically in the plane, the geometry is clear. The same can be said for phaseplanes; they
give ”causal” information and provide a deeper understanding that time plots can ever produce.

We will assume the following system of equations must be solved:

x′ = f(x, y) (1)

y′ = g(x, y) (2)

where x′ means the time-derivative of x. As an example to keep in mind while we do this, I will
analyze the simple predator prey model

f(x, y) = x(2 − x − y) g(x, y) = y(−1 + x)

In addition, I will suggest some XPP commands to make it easier to do this type of analysis.

STEP 1. Find the fixed points. That is solve, f(x, y) = 0 and g(x, y) = 0 for values of x, y. For
the present model, it is easy to see that the following are the fixed points, {(0, 0), (2, 0), (1, 1).}
In general, the fixed points will not be so trivial to find, but that is what has to be done to
start with.

STEP 2. Establish the stability of the fixed points. This is done by forming the matrix of partial
derivatives evaluated at the fixed points:

A =

[

∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]

,
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evaluating the components at the fixed points and examining the eigenvalues of the resulting
matrix. (A theorem in ODEs says that linear stability implies nonlinear stability if none of
the eigenvalues have zero real parts. Thus, the fixed point will be stable if all eigenvalues have
negative real parts; is at least one eigenvalue has a positive real part, then the fixed point is
unstable.) For 2 × 2 systems, it is easy to show that the eigenvalues of A have negative real
parts if and only if, the determinant of A is positive and the trace of A is negative. (Recall
that the determinant of A = (aij) is detA = a11a22 − a12a21 and the trace, TrA = a11 + a22.)
Thus, it is trivial to determine stability. A few more obvious points: (a) if A is upper or
lower triangular, the eigenvalues are read off the diagonals; (b) the methods in these two
steps work in any dimension however the determination of the eigenvalues is more difficult in
higher dimensions. I point out the following somewhat simple criterion for n = 3. Suppose
the characteristic polynomial for A is p(λ) = λ3 + a2λ

2 + a1λ + a0. Then the roots of p have
negative real parts if and only if a2 > 0, a0 > 0, a1a2 > a0.

For the PP model, the matrix A is

APP =

[

2 − 2x − y −x
y −1 + x

]

At the fixed point (0, 0), we see the eigenvalues are 2 and -1 so this fixed point is unstable.
At the fixed point, (2, 0), we see that

A20 =

[

−2 −2
0 1

]

which is upper triangular. The eigenvalues are -2 and 1 so it, too, is unstable. Finally, at the
third fixed point we have:

A20 =

[

−1 −1
1 0

]

The trace of this is -1 and the determinant is 1, so this fixed point is stable.

STEP2b. If helpful, establish the nature of the fixed points. Let ∆ be the determinant of A and
T be the trace. The discriminant is D = T 2 − 4∆. There are three types of fixed points:

Nodes can be unstable or stable but have either two positive or two negative eigenvalues.
These occur when D > 0.

Spirals or vortices can be unstable or stable but have two complex eigenvalues with positive
or negative real parts and occur when D < 0. Solutions spiral into or out of these fixed
points.

Saddles consist of one positive and one negative eigenvalue. They are unstable and occur
when ∆ < 0. If a fixed point is a saddle then there are special solutions which merit
mention. Consider the positive eigenvalue. Associated with this is the corresponding
eigenvector. There exists a pair of solutions which leave the fixed point tangent to
this eigenvector and these are called the unstable manifold. Similarly, there is a unique
pair of solutions which come into the fixed point tangent to the eigenvector associ-
ated with the negative eigenvalue called the stable manifold. This is illustrated below:
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Here red (blue) trajectories are the stable (unstable) manifolds and the thick black ar-

rows are the eigenvectors. Thin green lines are typical trajectories near the fixed points.

Based on this definition, in out PP example, there are two saddle-points, (0, 0) and (2, 0). We
also have a stable vortex or spiral at the point (1, 1) since the discriminant is -3.

STEP 3 Draw the nullclines. Up to now, the phaseplane consists of a bunch of disjoint fixed points
and perhaps some simple trajectories based on the local behavior. Thus, we want to glue this
all together. Nullclines provide the skeleton that we can put the detailed meat onto. They pro-
vide a bulk picture of how things change at different points in the plane. The x−nullcline is the
set of points in the plane where f(x, y) = 0. This naturally divides the plane into regions where
f(x, y) > 0 and f(x, y) < 0. But recall that x′ = f(x, y) so that if f(x, y) > 0 that means x is
increasing which in turn means it is moving rightward in the plane. Similarly, the y−nullcline
is the set of points where g(x, y) = 0 and shows us where y is increasing, decreasing, and
remaining constant. Intersections of nullclines are places where f(x, y) = 0 = g(x, y) that is
fixed points! The following table shows the directions of trajectories once the nullclines are

known:

g(x,y)>0

f(x,y)>0 f(x,y)=0 f(x,y)<0

g(x,y)<0

g(x,y)=0

What I usually do is find an easily identifiable point in the plane which is not on one of the

nullclines. I evaluate (f, g) at this point and use this to draw a direction at that specific
point. Then the rest of the arrows are easy to fill in using pure logic.

For our little PP example, the x−nullclines are the lines x = 0 (y-axis) and y = 2−x while the
y−nullclines are the lines y = 0 (x-axis) and x = 1. Let’s complete our story and then compare
it to the computer. Pick the point (x, y) = (1/2, 1/2) and note that (f, g) = (1/2,−1/4) so
at this point the arrow points down and to the right. With this info and the nullclines I can
complete the phaseplane:
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STEP 4 If you want - use the computer to do most of the work. Let’s do the same thing using
XPPAUT. You could also do this with Maple, Mathematica, MatLab, or even your own code.
Here is the XPP file:

# pp.ode

# equations

x’=x*(2-x-y)

y’=y*(-1+x)

# set the screen dimensions

@ xlo=-.25,xhi=2.25,ylo=-.25,yhi=2.25

# set nullcline mesh

@ nmesh=200

# set plotting variables

@ xp=x,yp=y

# set the background

@ background=white

done

Most of the file is comments. It is set up to display solutions in the phaseplane. If you
click Nullcline; New you will see the nullclines drawn in green and red. Next click on
Dir.Fld/flow;Scaled and accept the default grid of 10 to see a bunch of arrows appear.
Now click on Initialconds;mIce and click in different places in the plane to see trajec-
tories. Click Esc when you are done. In MSWin, you can probably grab the screen to
make a printer dump. I usually do the following: Kinescope;Capture which does a screen
grab. Then Kinescope;Save in the GIF format to save the frame. You can view this
with Netscape or Explorer. I use XV and convert it to postscipt. Here is what I get:
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As you can see, our crude picture was pretty close.

Here is another example which we can qualitatively analyze:

x′ = 4x(1 − x2) − y y′ = x − y.

STEP 1. The fixed points satisfy, y = x so this means 4x(1 − x2) = x or that x = 0 = y or
4(1 − x2) = 1 implying x = y = ±

√
3/2 so there are 3 fixed points.

STEP 2. The linearized matrix is

A =

[

4 − 12x2 −1
1 −1

]

which for the (0, 0) fixed point yields

A0,0 =

[

4 −1
1 −1

]

Since the determinant is -3, this is a saddle point. For the other two points,

A∗,∗ =

[

−5 −1
1 −1

]

which has a determinant of 6 a trace of -6 and a discriminant of 12 so it is a stable node.

STEP 3. The x−nullcline is the curve, y = 4x(1 − x2) which is a cubic and the y−nullcline is
the line y = x. Pick a point, say, x = 0, y = 1 and find that (f, g) = (−1,−1) which points
down and to the left. The rest is easy to fill in:
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I have attempted to sketch the stable and unstable manifolds for the system in green lines.
The stable manifold breaks the plane into two parts to the left of it everything goes to the
lower fixed point and to the right, all solutions go to the upper point.

STEP 4. Here is what the computer yields:

Note that XPP allows you to compute the stable/unstable manifolds of saddle points. Click
on Sing.Pts.; Go to compute stability of fixed points and when appropriate, the invariant
sets. The blue (turquoise in XPP) curves are the stable manifolds (sm) and the brown (yellow
in XPP) are the unstable manifolds (um).

HOMEWORK

1. Fill in these phaseplanes as well as you can given the nullcline information and the arrows.
Point out where possible which points are stable and unstable.
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2. Many biological systems are what are called ”activator-inhibitors” and their linearized matrix
has the form:

A =

[

±a −b
−c −d

]

where a, b, c, d are all positive.

(a) Suppose we take the negative sign for a. Show that the fixed point is stable in this case.
Sketch the nullclines for the system x′ = −ax − by and y′ = cx − dy.

(b) Suppose that we take the positive sign for a. Then both the x− and y−nullclines have
positive slopes. Show that is the x−nullcline is steeper than the y−nullcline, the fixed
point is a saddle. Otherwise show that the position of the nullclines cannot tell you
definitive stability information.

3. Analyze the fixed points and their stability and draw the phaseplane and nullclines for the
following system which depends on a parameter, a:

x′ = x(x(1 − x) − y) y′ = y(x − a)

Note that a > 0 and that this is a predator prey model. Try a = .75, a = .4 and make sure
you integrate for a long time for the latter (say 100 time units).

4. Ditto for this system

S′ = −βSI + γ(1 − S − I) I ′ = βIS − δI

where β, γ, δ are all positive parameters.
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5. Study the fixed points and stability for the biochemical model:

x′ = a − xy +
x

x + 1
y′ = yx − y

Also for this model, write down a set of possible chemical reactions (allowing for fast enzymatic
reactions if needed) that will lead to this model.

6. Derive equations for the simple chemical model

A → v, v + 2u → 3u, u → ∗

and assume all rates are 1. You should get two ODEs for (u, v). Find all the fixed points as
a function of the parameter, A and study their stability. What happens if the fixed point
is unstable? Sketch the phaseplane in this case and numerically compute some orbits for
A = .95 for example.

7. Last but not least, let us return to the problem we defined in class for the biochemical
oscillator

x′ = y − µx +
cx2

d + x2
y′ = k(1 − bxy)

Choosing the parameters, µ = 1, d = 6.5, k = 0.01 look at the phase plane and numerically
compute some solutions for values of c between 4.5 and 4.8. Can you find periodic solutions
or multiple stable fixed points? You may have to integrate for a long time. Here is an XPP
file

x’=y-mu*x+c*x^2/(d+x^2)

y’=(1-b*x*y)*k

par mu=1,c=4.6,d=6.5,k=.01,b=2.7

@ xp=x,yp=y,xlo=-.1,ylo=-.1,xhi=5,yhi=2

# tell XPP to use an adaptive step integrator - better accuracy!

@ meth=qualrk,tol=1e-6,total=400,dt=.5

done
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