Homework 2

1. Consider the equations from class:

$$\begin{aligned} r'_1 &= r_1(1-r_1^2) + \mu(r_2\cos\phi - r_1) - \nu r_2\sin\phi \\ r'_2 &= r_2(1-r_2^2) + \mu(r_1\cos\phi - r_2) + \nu r_2\sin\phi \\ \phi' &= q(r_1^2 - r_2^2) - \mu\left(\frac{r_2}{r_1} + \frac{r_1}{r_2}\right) + \nu\left(\frac{r_1}{r_2} - \frac{r_2}{r_1}\right)\cos\phi \end{aligned}$$

There are simple solutions to this, $(r_1, r_2, \phi) = (1, 1, 0)$ and (ρ, ρ, π) where $\rho^2 = 1 - \mu$. The latter is called the anti-phase solution. Compute their stability. Note that you will get a 3×3 matrix that has the form

$$M = \left(\begin{array}{rrr} a & b & c \\ b & a & -c \\ d & e & f \end{array}\right)$$

If you let

$$P = \left(\begin{array}{rrrr} 1 & 1 & 0\\ 1 & -1 & 0\\ 0 & 0 & 1 \end{array}\right)$$

Then $P^{-1}MP$ will be a block diagonal matrix and you can pick off one eigenvalue immediately. Apply the determinant and trace rule to the remaining 2×2 block to figure out stability. (Recall that eigenvalues of a 2×2 matrix have negatibe real parts if the determinant is positive and the trace negative.) If you get stuck look at the 1990 paper by Aronson, Ermentrout, and Kopell, section 5.

- 2. Consider the above system where $\nu = 1, q = 2$. For what values of μ is synchrony stable? How about the antiphase solution? Numerically solve the ODEs for $\mu = 0.5, 0.3$ and describe what you see. You should not start at exactly the simple solutions.
- 3. Numerically solve the coupled Brusselator equations

$$\begin{aligned} x'_j &= A - (B+1)x_j + x_j^2 y_j + D_x (x_k - x_j) \\ y'_j &= B x_j - x_j^2 y_j + D_y (y_k - y_j) \end{aligned}$$

for $D_x = 0.05, A = 1, B = 2.5$ and $D_y = 0.2, 0.8, 1.2$ try several initial conditions to make sure you have found all the stable dynamics

- 4. Do exercises 1,3,4 in the PDF I gave you for chapter 8 of my book.
- 5. Consider the radial isochron clock in the figure. Use trig to compute ϕ_{new} as a function of ϕ where $0 < \alpha < 1$. This is called the phase transition curve. The phase resetting curve is

$$\phi_{new}(\phi) - \phi = G(\phi)$$

Compute the following limit

$$\lim_{\alpha \to 0} \frac{G(\phi)}{\alpha}$$

which is the infinitesimal phase-resetting curve.

