
Homework 1

1. Just because synchrony is stable does not mean it is the only attractor.
For example, if you consider the logistic map with, say, r = 3.5, then as we
saw in class, there is a period 4 solution. Let’s call the cycle, u1, u2, u3, u4

which then repeats. Suppose we start x(0) = u1 and y(0) = u2. If they
are not coupled then they will produce a pattern that is shifted by 1. This
is a stable pattern even when coupled. Thus, if the coupling is sufficiently
small, then the pattern will not be able to change much (this is a feature
of any smooth dynamical system that is “normally hyperbolic”). Thus,
we can expect to see a solution for very small coupling, that is close to the
shifted period-4 solution you see with no coupling. So, use simulations to
figure out the minimum value of coupling, c such that

x(t + 1) = (1 − c)f(x) + cf(y)

y(t + 1) = (1 − c)f(y) + cf(x)

synchronizes no matter what the initial conditions. You could start x(0) =
u1 and let y vary over a range of initial conditions between 0 and 1 and
then look at |x− y| after, say 100 iterations. If you cannot figure out how
to code this up, I can give you my XPP code.

2. The theory does not require that the coupling is symmetric; it just makes
it easier to decompose the eigenspace. Consider the following type of
coupling for N patches. Migration into patch i occurs from exactly k
other patches that are randomly chosen. Thus mij = (1 − c) for j = i

and c/k for j among the randomly chosen patches. Let M̂ be the N × N
connectivity matrix. That is m̂ij is 1 if patch j can visit patch i. Express

the eigenvalues of M in terms of M̂, k, c.

Suppose that we now consider

xi(t + 1) =
∑

j

mijf(xj(t))

and suppose that the synchronous solution, u(t) satisfies

u(t + 1) = f(u(t))

and has Lyapunov exponent

Create a 20 × 20 connection matrix such that each row has 5 1’s and
15 0’s and there are no diagonal elements. Divide each row by 5. Use
MatLab or Octave to compute the eigenvalues of your matrix. Compute
the magnitude of the eigenvalues. Consider the following equations:

xi(t + 1) = (1 − c) ∗ f(xi) + c

20
∑

j=1

mijf(xj).
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Suppose that λ is the maximal Lyapunov exponent for the system

u(t + 1) = f(u(t)),

Compute the Lyapunov exponents for the synchronous solution Now, use
this matrix to couple 20 logistic maps and start with initial condition,
xi = 0.2 + 0.01zi where zi is a random number between 0 and 1. This is
near synchrony. Use the following equations:

and f(x) = rx(1 − x) with r = 3.1, 3.5, 3.9. I will post XPP and MatLab
code for computing the matrices and the eigenvalues.

3. All of our analysis was for a system with one-dimensional dynamics. Sup-
pose that each patch obeys two-dimensional dynamics

x(t + 1) = f(x(t), y(t))

y(t + 1) = g(x(t), y(t))

Let (u(t), v(t)) be a steady state sequence u(t + 1) = f(u, v), v(t + 1) =
g(u, v). Form the Jacobian matrix

A(t) :=

[

fx(u(t), v(t)) fy(u(t), v(t))
gx(u(t), v(t)) gy(u(t), v(t))

]

where fx is the derivative of f with respect to x etc. For any matrix norm,
|A|, you want to use, we can compute a quantity

λ = lim
T→∞

1

T

T
∑

j=0

log |A(j)|

just like we did for the scalar case. (You may want to review matrix norms,
the simplest is just the maximum absolute row sum of the matrix.)

(a) Suppose that there are N patches and the equations are

xi(t + 1) =
∑

j

mijf(xj(t), yj(t))

yi(t + 1) =
∑

j

mijg(xj(t), yj(t)).

where mij is as in class Find conditions that make synchrony stable
given the eigenvalues of the matrix M = (mij).

(b) Now, in the above case, the migration of each of the species, x, y
is exactly the same. Suppose that the corridors or paths that are
avaliable to the two species are the same, but they move along them
at different rates. Lets write

xi(t + 1) =
∑

j

mijf(xj(t), yj(t))

yi(t + 1) =
∑

j

qijg(xj(t), yj(t)).
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Thus, there are two matrices, Q, M. We interpret the assumption
that they both use common corridors to mean that the eigenvectors

of the matrices Q, M are the same but that they have different eigen-
values. Note that the assumptions on M, Q imply that [1, 1, . . .]T is
an eigenvector of each with eigenvalue 1. Let ~v be another eigenvec-
tor and let µ, ν be the corresponding eigenvalues of M, Q. Can you
draw any conclusions about the stability of synchrony? I didn’t think
so. So, lets make it simpler. Suppose that the synchronous solution
is just a fixed point. That is u(t + 1) = u(t), v(t + 1) = v(t) for all t.
Then there is only one matrix, A(t), and since it is two by two, we
write it as

A =

[

a b
c d

.

]

The linearized for the synchronous solution are

xi(t + 1) =
∑

j

mij [axj(t) + byj(t)]

yi(t + 1) =
∑

j

qij [cxj(t) + dyj(t)].

Since mij , qij have the same eigenvector, ~v but different eigenvalues,
we write

~x(t) = w(t)~v

~y(t) = z(t)~v

Show

w(t + 1) = µ[aw(t) + bz(t)]

z(t + 1) = ν[cw(t) + dz(t)].

We have replaced the study of a 2N dimensional system to the study
of N 2 dimensional systems for each of the N eigenvalue pairs µ, ν.
That is, you replace the matrix A above with

A(µ, ν) :=

[

µa µb
νc νd

.

]

Given that µ, ν are between −1, 1, and real (we are making life easy),
can you conclude that synchrony is always stable? let me pose this in
an easier fashion. Suppose that A(1, 1) has all its eigenvalues inside
the unit circle. Then does this guarantee that A(µ, ν) has all its
eigenvalues inside the unit circle? The following may help you. A
2 × 2 real matrix has all its eigenvalues inside the unit circle iff

2 > 1 + det > |Tr|

where det is the determinant and Tr the trace of the matrix.
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(c) Suppose instead of a fixed point, the system has a synchronous period
two orbit, u(t + 2) = u(t), v(t + 2) = v(t). Then the matrix A(t) has
two values, A1, A2 and the period-2 orbit is stable if the eigenvalues
of B := A1A2 are in the unit circle. Try to find a matrix B(µ, ν) that
you need to study to determine stability of synchrony for the period-
2 case. (Hint: let D = diag(µ, ν). Then, show B(µ, ν) = DA1DA2.)
An open problem (as far as I know) would be to find conditions of
A1,2 that assure the eigenvalues of B(µ, ν) are inside the unit circle
whenever the eigenvalues of B(1, 1) are for |µ|, |ν| less than 1.

4. Consider a migration matrix formed as follows. Patch 1 is the “mother”
patch. c/(N − 1) is the migration rate in and out of this patch from
the other N − 1 patches, so m11 = 1 − c, m1j = c/(N − 1), mjj =
1 − c/(N − 1), j > 1, and mj1 = c/(N − 1). All other entries are zero.
Compute the eigenvalues for M. Does this foster synchrony better, worse,
or the same as the nearest-neighbor couplimng and the all-to=all coupling?
(Note that 0 ≤ c ≤ 1.)
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