Evolutionary Games

Game Terry was invented by Oskar Morgenstern & John von Neuman + matematically characterized by John Noyle (Nubel Prize) William Hamilton + Robert Trivers applied it to biology & John Maynard smith to crolation. Here Litness !! asomewhat

 $A_{\text{f}}(x) = \sum_{\substack{a \text{ f}}(x \text{ i})} \begin{cases} \frac{1}{a} & \text{if } a \text{ f}}(x \text{ i}) \leq \frac{1}{a} \end{cases}$

A fitnes of the same of the sam $\mathscr{O}_{\mathsf{A} \text{ fithes}^{1|1}}$ C_{ℓ} un pet it C_{ℓ} n takes over
more general idea. Let \vec{x} = (x_4 , x_5), + let $f_n(\vec{x})$ be fit ness or A, $f_6(\vec{x})$, f it ness of b. Suppose x_{4} , x_{8} are fraction of pop That y A, B vesp. Let $\phi = x_n f_n + x_g f_g$ be the average f if ness. Then we write: $X_A = X_A (f_A(\overline{x}) - \phi)$, $X_B = X_B (f_B(\overline{x}) - \phi)$. Since $X_A + X_B = 1$, clock: $X_A + X_B = X_A + A + X_B + B - \phi (X_A + X_B) = \phi (1 - (X_A + X_B)) =) X_A + X_B = 1$ Let $X_{A} = X_{J} X_{B} = I-X_{J}$ $\int a f A(\vec{x}) = f_{A}(x) f_{B}(\vec{x}) = f_{B}(x) =$ $X = X (f_{A}(X) - (X f_{A} + (1 - X) f_{B})) = X (f_{A}(1 - X) - (1 - X) f_{B}) = X(1 - X) (f_{A}(X) - f_{B}(X))$ S_0 : $X=0$, $X=1$, $f_n(x)=f_g(x)$ are all Te $f(xed)$ points $rac{f_{A}-f_{B}>0}{A \text{ wins a law}}$ $\begin{matrix} P_{A}-P_{B}>0 \\ P_{C}\end{matrix}$ $\begin{matrix} P_{A}+P_{B} & P_{C}\end{matrix}$ $\begin{matrix} P_{A}+P_{B} & P_{C}\end{matrix}$ $\begin{matrix} P_{A}+P_{B} & P_{C}\end{matrix}$ $\begin{matrix} P_{A}+P_{B} & P_{C}\end{matrix}$ $\begin{matrix} P_{C}\end{matrix}$ $\begin{matrix} P_{C}\end{matrix}$ $\begin{matrix} P_{C}\end{matrix}$ $\begin{matrix} P_{C}\end{matrix}$ $\begin{$ $\frac{C|C\alpha_1|_y}{C}$: $X = 0$ $1/f f g(0) - fg(0) < 0$ $X = 1$ stuble $1/f f g(1) > fg(1)$, indering point X^4 is stuble, if $f + f_n'(x^3) - f_n'(x^3) < 0$

Formal definition:

We say a point $\hat{x} \in S_n$ ($\hat{x}_i \geq \partial \left[\xi x_i = i \right]$ is a Nash equilibrium if $x \cdot A\hat{x} = \hat{X} \cdot A\hat{X}$ for all $x \in S_n + \alpha n$ Evolutionarily stable State (ESS) If $\hat{X} Ax > xAx$ for all $x \neq \hat{X}$ in a number of \hat{X} ASIDE Game Teory

Suppop Teve are N pure strategres, R, to RN + allow players to use mixed Strategies uswell, playing The pure strategies with probability Pinnen A strategy, $\vec{p} \in S_N$. Cornersot simplex are Te pure Strateging and The Interior is a completely mixed strategy. Let's supplies anly two plugers with utis being To pay off for a player wing pare R; against pure R; U= (ui) v Te payoff matrix. An Ristrategut obtains croceted payoff $(M_{\Phi})_i = \sum w_{ij} \rho_j$ against $\tilde{\phi}$ Stradey ist α \vec{p} is \vec{q} is then $\rho \cdot M$ $q = \sum_{i,j} p_i M_i y_j$, Let $\beta(q)$ be the set of " bestreaked" to q. That y, The value of p such that p Ulg, obtains maximum value. Thus we now see That a Nash Equility lum is a strategy that is The hest reply to itself. FND ASIDE

Before continuing with example games, I will show a relationship betway replicatator dynuller LV. In over your exertises, you prove That you can add a courtants to each column'without changing Te dynamics, so, eg. To last row of ail can be make zero with he loss ingenerality!

However Then
$$
ex_{1}b
$$
 a different table, invertible map $f(x)$ for $S_{n} = \{x \in S_{n} | x_{n} > 0\}$
and a Π_{t}^{n+} mapping $P_{0}a^{n+1} \cap f \cap x_{i} = x_{i} \cdot ((Ax)_{i} - x \cdot Ax) \text{ such } P_{0}a^{n+1} \cap f \cap L \cup$
 $y_{i} = y_{i} \cdot (r_{i} + \sum_{j=1}^{n-1} a_{i,j}^{i} y_{j})_{j} = 1, ..., n-1$
where $r_{i} = a_{in} - a_{mn}$, $a_{i,j}^{n+1} = a_{i,j} - a_{n,j}$

Proof: Let
$$
y_n \equiv 1 + i \omega x
$$
 for the transproxariant $y \rightarrow x$ given by $X_i = \frac{y_i}{\sum_{i=1}^{n} y_i} i \Rightarrow y_i = 0$

\nwhich map $\{y \in \mathbb{R}^n : y_n = 1\}$ onto \hat{S}_n . The inverse $x \mapsto y$ is $\frac{y_i}{\sum_{i=1}^{n} y_i} i \Rightarrow y_i = 0$

\nConsider $x_i = x_i((Ax_i) - x \cdot Ax) = \emptyset$

\nWith no list $\{x_i = x_i((Ax_i) - x \cdot Ax) = \emptyset$

\nWith no list $\{x_i = x_i \land x_i = \frac{x_i}{x_i} \}$, we shall find θ (see Exercise)

\n $\hat{S}_j = \left(\frac{x_j}{x_n}\right) = \frac{x_i}{x_n} \times \frac{x_i}{x_n} = \frac{x_i x_n (ax)_i - \emptyset}{x_n} = x_n x_i \cdot \left(\frac{x_i}{x_n}\right) = \left(\frac{x_i}{x_n}\right) \left[\frac{x_i}{x_i}\right] \cdot \left(\frac{Ax}{x_n}\right)$

\nbut $(\frac{x_i}{x_n}) = \frac{y_i}{x_n} \cdot \frac{x_i}{x_n} = \frac{x_i x_n (ax)_i - \emptyset}{x_n} = x_n x_i \cdot \left(\frac{x_i}{x_n}\right) = \left(\frac{x_i}{x_n}\right) \left[\frac{x_i}{x_i}\right] \cdot \left(\frac{Ax}{x_n}\right)$

\nbut $(\frac{x_i}{x_n}) = 0 \Rightarrow$

\n $\{y_i = y_i \cdot \left(\frac{x_i}{x_i}x_i\right) = y_i \cdot \left(\frac{x_i}{x_i}a_{ij}y_i\right) \times n$.

\nSince $x_n > 0$, we can rescale three (see $00 \in 1$) to $9e^{\frac{1}{2}x}$ and $y_n = 0$

\nThus, $y_i = y_i \cdot \left(\frac{x_i}{a_{i1}} + \frac{x_i}{a_{i2}} + \frac{x_i}{a_{i3}}\right) = \left(\frac{x_i}{a_{i2}} + \frac{x_i}{a_{i3}} + \frac{x_i}{a_{i3}}\right) = \left(\frac{x_i}{a_{$