Evolutionary Gamps

Game Teory was invented by Oskar Morgenstern + John von Neuman + matematically characterized by John Nash (Nobel Prize). William Hamilton + Robert Trivers applied it to biology - John Maynard smith to evolution. Here Hitnessine what

A fitness is under which we will abjornation formalize later. A fitness is under which we will abjornation formalize later. Example 1. Example 1. X=X(I-X) X=1 Now indroducey X=X(I-X-ay) y=y(1-y-bx) Suppose a>1, b<1, small amount of y more general idea. Let $\vec{x} = (x_A, x_B)$, + let $f_{n}(\vec{x})$ be fit ness of A, $f_B(\vec{x})$, fit ness of b. Suppose XA, XB are traition of POP That & A, Bresp. Let $\phi = x_n f_n + x_s f_s$ be teaverage fit ness. Then we write: $X_{A} = X_{A} \left(f_{A}(\vec{x}) - \phi \right), X_{B} = X_{B} \left(f_{B}(\vec{x}) - \phi \right)$ Since $X_{A} + X_{B} = 1$, check: $\dot{\chi}_{A} + \dot{\chi}_{B} = \chi_{A} f_{A} + \chi_{B} f_{B} - \phi (\chi_{A} + \chi_{B}) = \phi (I - (\chi_{A} + \chi_{B})) =) \chi_{A} + \chi_{B} = I$ Let $X_A = X$, $X_B = I - X$, so $f_A(\vec{x}) = f_B(x)$, $f_B(\vec{x}) = f_B(X) = J$ $\dot{X} = X \left(f_{\mathsf{R}}(\chi) - (X f_{\mathsf{R}} + (I - \chi) f_{\mathsf{G}}) \right) = X \left(f_{\mathsf{R}}(I - \chi) - (I - \chi) f_{\mathsf{G}} \right) = \chi(I - \chi) \left(f_{\mathsf{R}}(\chi) - f_{\mathsf{R}}(\chi) \right)$ So: X=0, X=1, fA(X)=fB(X) are all The fixed points FA-FB>0 Chough A will win else A could win, or could coexist A wins a lway ! $\frac{C[easily: X = 0 \quad iff f_{\mathcal{A}}(0) - f_{\mathcal{B}}(0) < 0 \quad X = 1 \quad stuble \quad iff \quad f_{\mathcal{A}}(1) > f_{\mathcal{B}}(1), \quad interior \quad point$ χ^{4} is stuble, iff $f_{A}(x^{*}) - f_{n}(x^{*}) < 0$

$$\begin{array}{c} (Fames + Payoff Matrices \\ A game with two strategies, A, B is Accribed by a gayoff matrix: \\ A \begin{pmatrix} a & b \\ c & d \end{pmatrix} \\ A + B are NOT. To Players, but To \\ B \begin{pmatrix} c & d \end{pmatrix} \\ Strategies \\ If each player playostrates h, fin both get "a" \\ (1 b) Th play "B", Top get "J" \\ H one plays A + The atter playe B, The one playing A, gets "b" \\ \hline The one playing B gets "c" \\ In evil a tionary game Theory The fitness is determined by The expected
Payoff. So, a player that takes strategy A, can expect
 $f_{A} = a X_{A} + b X_{B}$ (where $X_{A} \times B$ are fraction playing A, B)
 $f_{B} = c X_{A} + d X_{B}$. There are a linear fitness is determined by The expected
 $F_{A} = a X_{A} + b X_{B}$ (where $X_{A} \times B$ are fraction playing A, B)
 $f_{B} = c X_{A} + d X_{B}$. There are a linear fitness in del.
 $X = X_{A}, I - X = X_{B}, f = X(I - X)([a - b - c + d]X + b - d] = X(I - X)([a - ()x + (bid)(I - d)]) \\ X^{*} = \frac{b - d}{c - a + b - d} = \frac{d - 1}{a - b - c + d} \\ B domainands B a > c, b > d \\ If a - f_{B} > c \end{pmatrix}$

A dominant B a a box d > d \\ A = c, b = d Neutrice (in f # equ)
 $a = c, b = d Neutrice (in f # equ) \\ a = c, b = d Neutrice (in f # eq) \\ a = c, b = d Neutrice (in f # eq)$$$

Formel definitions:

We say a point $\hat{x} \in Sn$ $(x_i \ge \partial | \ge x_i = i)$ is a Nash equilibrium it $x \cdot A \hat{x} \le \hat{x} \cdot A \hat{x}$ for all $x \in Sn + an$ Evolutionarily stable state (ESS) if $\hat{x} A x > x A x$ for all $x \ne \hat{x}$ in an hold of \hat{x} ASIDE Game Theory

Suppoperture are N pure strategies, R_1 to $R_N \neq a$ llow players to use mixed strategies us well, playing the pure strategies with probability P_1 ... Pr A strategy, $\vec{P} \in S_N$. Cornersof simplex are the pure strategies and the interior is a completely mixed strategy. Let's support only two players with U_1 ; being the payoff for a player using pure R_1^* against pure R_2^* . $U = (U_1;)$ is the payoff matrix. An R_1^* strategist obtains expected payoff $(M_1^*)_1^* = Z_1^*$ using \vec{P} is $\vec{P} = U_1^*$, $\vec{P} = U_1^*$,

Before continuing with example games, I will show a relationship between replicatator dynamics + LV. In one of your exercises, you prove That you can add a constant to each column without changing The dynamics, so, eg. The last row of any can be made zero with he loss ingenerality!

Theorem There exists a differentiable, invertible map from
$$\hat{S}_n = \{x \in S_n | x_n > o\}$$

onto \mathbb{N}_{+}^{n+1} mapping the orbits of $\hat{X}_i = X_i'((Ax)_i - x \cdot Ax)$ onto the orbits of the LV
 $\hat{Y}_i = \hat{Y}_i (\Gamma_i + \sum_{j=1}^{n-1} a_{ij}' \hat{Y}_j)_j = 1_{j-1}n^{-1}$
where $\Gamma_i = a_{in} - a_{nn}$, $a_{ij}' = a_{ij} - a_{nj}$

Proof: Let
$$y_{h} = (+i)_{h}$$
, with the transformation $y \rightarrow x$ given by $X_{i} = \frac{y_{i}}{\sum_{i=1}^{n} y_{j}}$ is in the first formation $y \rightarrow x$ given by $X_{i} = \frac{y_{i}}{\sum_{i=1}^{n} y_{j}}$
where maps $\{y \in \mathbb{R}^{n}_{+} : y_{h} = 1\}$ onto \hat{S}_{h} . The inverse $x \mapsto y_{h}$
 $y_{i} = \frac{y_{i}}{y_{h}} = \frac{x_{i}}{x_{h}} \int i^{-1}y_{j}n$
consider $x_{i} = x_{i}((Ax)_{i} - x \cdot A_{x})$
With no loss in generality, we subtract the last row of A from every other vow of
A jso that The last row of A is now zero (see exercise)
 $\hat{y}_{i} = \left(\frac{x_{i}}{x_{h}}\right) = \frac{x_{i}x_{h}}{x_{h}} - \frac{x_{i}x_{h}}{x_{h}} = \frac{x_{i}x_{h}((Ax)_{i} - \phi] - x_{h}x_{i}((Ax)_{h} - \phi]}{x_{h}} = \left(\frac{x_{i}}{x_{h}}\right) [(Ax)_{i} - (Ax)_{h}]$
but $(Ax)_{h} = 0 \Rightarrow$
 $\hat{y}_{i} = y_{i}(\sum_{j=1}^{n} a_{ij}x_{j}) = y_{i}(\sum_{j=1}^{n} a_{ij}y_{j})x_{h}$.
Since $x_{h} > 0$, we can rescale time (see ODE 1) to get rid of x_{h} without changing
 T_{k} phase point (ath finally) recall that $y_{h} = 1$ so that
 $y_{i} = y_{i}(a_{in} + \sum_{j=1}^{n} a_{ij}y_{j})$ (onverse holds analogianly). M
So - 3 stratege Replicator they no kas it cycles $!!$