
Stochastic Homework

1. Run the Gillespie algorithm on the Brusselator. I have put an XPP file on
the web bruss gill.ode for you to try if you do not want to implement
it yourself. The ode file is well annotated. Note in the simulation, that
the limit cycle is quite regular. This is because there are many molecules.
Cut the num,ber of molecules by a factor of 100. (This will mean that
you may have to change the parameters, c1a,c2b,c3,c4; it is your job
to figure out which ones based on the scaling arguments from class.) You
should also change the initial conditions by a factor of 100. Go into the
Numerics menu and change the total number of reactions from 1000000 to
10000 and the output nOut from 1000 to 10. Rerun the simulation. You
should see a limit cycle but it is much noisier.

The Schnakenberg oscillator is another simple chemical model that have
the following form:

# u -> * (c1)

# A -> v (c2)

# 2 u + v -> 3u (c3)

# B -> u (c4)

Write the deterministic equations for this assuming rate constants that are
all 1. Next, how do the rate constants scale with the number of molecules.
Finally, implement it using the Gillespie algorithm. Here are parameters
that have worked for me c2a=90,c1=1,c3=.0001,c4b=10with initial data
u=100,v=100.

2. In this next rather lengthy problem, we will simulate and then analytically
solve for a membrane model with a stochastic channel. We considered a
stochastic model with a random sodium channel in class. Instead, we will
look at a simpler but essentially identical problem:

dx

dt
= −x + z(2 − x)

where z flips between 0 and 1. The rate 0 → 1 is α and the rate 1 → 0
is β. We will first simulate this for a long period of time and collect a
histogram of the variable x under the conditions that z = 1 and z = 0.
This will approximate the probability distribution of x when the channel
is open or closed. Here is an ODE file if you want to use XPP:

x’=-x+z*(2-x)

par a=4,b=4

markov z 2

{0} {a}

{b} {0}

@ total=5000,dt=.1,maxstor=100000,meth=euler

done
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Now, here is how to collect the histogram:

(a) Run the ODE file and integrate the equations. You have just collected
50000 points for the process.

(b) Click on nUmerics, stocHastic, Histogram. Fill in the numbers as
follows

• Number of bins: 100

• Lo: 0

• Hi: 1

• Variable: X

• Condition: z==1

and the histogram is computed.

(c) Click Escape to leave the numerics menu. Click on Xi-vs-t and you
will see a the histogram. This is the histogram for the open state.

(d) Click on Graphics, Freeze, Freeze, and change the color to 1, then
click OK to permanently store this curve.

(e) Click on nUmerics, stocHastic,Data to restore the data. Then Click
on stocHastic Histogram again and fill it in exactly as above, except
for the Condition, which should be set to z==0. Escape to the main
menu and click on Restore to get the distribution for the off state
z=0.

(f) Make a hard copy of this - you can save it as postscript if you want
– click on Graphics Postscript
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You have a nice stochastic approximation of the distributions. It will look
a little like the figure in the book but not as smooth. Repeat this same
procedure, but this time change α, β from 4 to 1. You will see quite a
different pair of histograms.
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Next we write probability distribution function, Pj(x, t) which is the prob-
ability for x at time t given channel state j = 0, 1. From the book, the
equations are

∂P0

∂t
= −

∂

∂x
(f0(x)P0) + βP1 − αP0

∂P1

∂t
= −

∂

∂x
(f1(x)P1) − βP1 + αP0

where
fz(x) = −x + z(2− x)

and z = 0, 1. Since 0 < x < 1, that is the variable x always lies between
the two equilibria, this equation is defined on the interval 0 < x < 1. In
addition to the equations there are two boundary conditions that must
be imposed. We point out that if the channel is open z = 1, then x = 0
can never be reached, so that P1(0, t) = 0 and if the channel is closed,
then x = 1 can never be reached, so P0(1, t) = 0. We could try to solve
these numerically and then let the solutions to evolve to a steady state,
but instead, I want you to compute the steady state distribution. This
satisfies the pair of ordinary differential equations:

d

dx
(f0P0(x)) = βP1 − αP0

d

dx
(f1P1(x)) = −βP1 + αP0

along with boundary conditions P0(1) = P1(0) = 0. How can we solve
these? Here is a hint. First add them together to obtain:

d

dx
(f0P0 + f1P1) = 0.

This implies that
f0P0 + f1P1 = C

where C is a constant. Use the definition of fj and the boundary conditions
to show that C = 0. This means

P1 = −(f0/f1)P0.

Thus, we get
d

dx
(f0P0(x)) = −(β

f0

f1

+ α)P0.

Evaluating the derivative of f0P0, we get

−x
dP0

dx
− P0 = −(β

f0

f1

+ α)P0

which then becomes
dP0

dx
=

β f0

f1

+ α − 1

x
P0
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This is a linear separable differential equation! Solve it for P0(x) up to a
normalization constant and use it to get P1(x). The normalization is just
so that the integral of P0(x) + P1(x) is 1 and does not change the shapes
of the functions. Graph Pj(x) for α = β = 4 and for α = β = 1 and
compare the shapes to the simulated histograms. Find the critical values
of the rates, α, β which lead to qualitatively different distributions. (For
example, peaks in the middle or singular at the end points).

3. Simulate the stochastic Morris-Lecar system for N = 10, 25, 50, 100, 500
channels to get the last figure in Chapter 11. I have included the file,
stoch ml.ode on the web for you. Here is the XPP code

v(0)=-40

w(0)=1

wiener b

par n=100

minf=.5*(1+tanh((v-v1)/v2))

winf=.5*(1+tanh((v-v3)/v4))+.05

tau=1/(phi*cosh((v-v3)/(2*v4)))

gam=((1-2*winf)*w+winf)/(n*tau)

dv/dt=(iapp-gl*(v-vl)-gk*max(w,0)*(V-Vk)-gca*minf*(v-vca))/c

dw/dt=(winf-w)/tau+sqrt(gam)*b

par iapp=10,vk=-70,c=1,gk=2,vca=100,gca=1.333,vl=-50,gl=.5,v1=-1,v2=15

par phi=.333,v3=10,v4=14.5

@ total=500,dt=.01,nout=10,meth=euler

@ xlo=0,xhi=500,ylo=-60,yhi=50,maxstor=10000

done

4. This last problem is a chemical reaction one and not really a stochastic
problem. However, it does have to do with the distribution of lengths of
a polymer. Suppose that we have a fixed amount of cellular free actin, A.
This can polymerize. The dimerization is different from the subsequent
polymerization. Here are the reaction steps:

A + A ⇀↽ D2

Dn + A ⇀↽ Dn+1 for n ≥ 2

Assume the forward and backward dimerization reaction rates are k+

d , k−

d

respectively and that the forward and backward rates for subsequent poly-
merization are k+, k− respectively. Write equations for the concentrations
of A, D2, D3, . . . , Dj . Make sure you note that the breakup of the dimer
produces two A’s and that the dimerization uses up two A’s. Let B be
the total actin both polymerized and free. Show that

A + 2D2 + 3D3 + . . . + nDn + . . . = B.

Note that this had better be the case since this is just the total monomer-
ized actin! Now we will look for a steady state solution to this. We can
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ignore the A equation since we have the above constraint on total actin.
Write down the steady state solution for the j−mer, Dj by showing it
satisfies (for j < 2):

k+ADj−1 + k−Dj+1 − (k− + k+A)Dj = 0

Show that Dj = Cλj is a solution to this problem and show that λ = 1, rA
are the roots where r = k+/k−. Since the total actin is the infinite sum
above, conclude that λ cannot be 1. Use the equation for the dimer D2 to
find the unknown constant C in terms of A and the parameters. Finally
use the following summation formula,

∞∑

j=1

jxj =
x

(1 − x)2

to show that the free actin satisfies an equation of the form:

f(A) = B

where f(A) is a function of A and the parameters. Show that rA < 1 so
that the infinite series converges. Plot f(A) given k+ = 2, k− = 1, k+

d =
.25, k−

d = .05.
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