
MATH 3375 - Assignment 4 – Due Nov 2

1. In this exercise, you simulate driving an integrate and fire neuron with a
train of alpha functions that are generated from a Poisson process. Here
is what you want to model:

τ
dV

dt
= −(V − Vl)−As(V − Vsyn)

where s is modeled as an alpha function:

s′′ + 2rs′ + r2s = 0

and each time a spike comes, ds/dt → ds/dt+r2. The Poisson rate is 1000
Hz which is 1/msec. Choose r = 0.25 (a 4 msec time constant), A = .5,
Vsyn = 0, Vl = −65, Vspike = −50, Vreset = −60, τ = 20 msec. You are
free to do this using whatever software you’d like. Simulate it for 1000
msec. If you need help, I can show you how to do it in XPP. If you manage
to get it working, try the following:

• Roughly, what is the average value of s(t). Can you show this analyti-
cally? What if the rate of the Poisson process is 250 Hz (0.25/msec)?
Does the mean of s depend on r?

• Do say, 100-500 trials and save the total spike count of the integrate
and fire model for each trial. Compute the Fano factor of the spike
count as well as the mean spike rate.

• Repeat the above for A = .35 and A = .25. What do you notice about
the Fano factor? At low firing rates, the neuron is more sensitive to
fluctuations so that you expect noisier statistics.

2. CV for balanced and unbalanced networks. Consider a LIF model that
is bombarded with synaptic input from excitatory and inhibitory neurons
which are firing at a constant Poisson generated rate.

τm
dV

dt
= −V + Iese − Iisi

where Ie, Ii are current synapses (instead of conductance-based), and τm =
10. Units are mV and msec. When V = 10, V is reset to −1. se, si are
driven by Ne, Ni Poisson generated spikes, with rates, re, ri. That is

dse

dt
= −se/τe +

∑
jk

δ(t− tejk)

dsi

dt
= −si/τi +

∑
jk

δ(t− tijk).

Here te,i
jk are the kth spike times of the jth. Your task is to simulate this

model as you vary the strength of inhibition, Ii between 0 to 1. Here is
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a simple way to simulate a synapse bombarded with Poisson generated
spikes. Suppose that N is the number of presynaptic neurons and r is the
rate of each one. Let h be the time step of interest. Then we can compute
ρ = Nrh as the impact to a Poisson random number generator, such as
poissrnd() in MatLab, or poisson() in XPP. This function returns a
non-negative integer corresponding to a random number of spikes in the
dimensionless interval ρ. Thus the effective model is

ds

dt
= −s/τ +

1
h

poissrnd(Nrh)

Division by h is necessary to approximate the delta function. The expected
value of s is just τrN.

So take Ne = 4000, Ni = 1000, τe = 5, τi = 8, re = 5 Hz, ri = 12 Hz, and
Ie = 1 mV. Vary Ii from 0 to 0.8 mV and compute the CV of the ISI for
the above LIF model as a function of Ii. With low values of Ii observe
that the CV is very low but rises above 1 as Ii increases. Why is this?
Simulate for 30 seconds. If you are stuck, I can supply an XPP file. What
is the expected value of se, si and Iese − Iisi? At what value of Ii does
the expected synaptic drive take you to threshold. What happens if Ii is
too high? (say, 1)

Consider now, a related problem. Set Ii = 0 and Ie = 0.15 Simulate for
30 seconds and observe that the mean firing rate is roughly 50 Hz. What
is the CV? Note that the expected value of Iese is 12 mV, which is 2
mV above threshold. Now choose Ie = 0.4, Ie = 1 and choose Ii so that
Iese−Iesi remains about 12 mV. Compute the CV in both cases and note
the mean firing rate (which should still be about 50 Hz). This shows that
scaling the E and I inputs together can maintain a constant firing rate but
cause a big change in variability.

3. Consider a renewal process with a hazard function given by the following.
H(τ) = h for τ < 1 and H(τ) = 1 for tau > 1. If h < 1, then right after
a spike the probability of firing is lower – you can think of this as some
kind of outward current like a potassium AHP. If h > 1, then this can be
though of as an afterdepolarization (ADP) for example due to a calcium
channel in the dendrite which causes the soma to be more depolarized
after a spike. Simulate this process for h = 0, h = 1, h = 2 up to t = 2000
to get a nice number of interspike intervals. Compute the CV. Use the
formula:

P (τ) = H(τ) exp(−
∫ τ

0

H(s) ds)

to analytically compute the mean spike time:

τ1 =
∫ ∞

0

τP (τ) dτ
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and the second moment:

τ2 =
∫ ∞

0

τ2P (τ) dτ

and thus the CV:

CV =

√
τ2
1 − τ2

τ1

and plot the CV as a function of h. Note that you can get a CV greater
than 1!

Simulate the process for even longer (say T = 10000) and collect the spike
times. Plot the autocorrelation of the spike times in the window [−5, 5]
divided into 100 bins. Do this for h = 0, 1, 2.

4. Simulate the random-dot discrimination experiment. Denote the stimulus
by plus or minus, corresponding to the two directions of motion. On
each trial, choose the stimulus randomly with equal probability for the
two cases. When the minus stimulus is chosen, generate the responses
of the neuron as 20 Hz plus a random Gaussian term with a standard
deviation of 10 Hz (set any rates that come out negative to zero). When
the plus stimulus is chosen, generate the responses as 20 + 10d Hz plus
a random Gaussian term with a standard deviation of 10 Hz, where d is
the discriminability (again, set any rates that come out negative to zero).
First, choose a threshold z = 20+5d , which is half-way between the means
of the two response distributions. Whenever r > z guess plus, otherwise
guess minus. Over a large number of trials (1000, for example) determine
how often you get the right answer for different d values. Plot the percent
correct as a function of d over the range 0 ≤ d ≤ 10.

Next, by allowing z to vary over a range, plot ROC curves for d =
0, 1, 2, 3, 4. To do this, determine how frequently the guess is plus when
the stimulus is, in fact, plus , (beta) and how often the guess is plus when
the real stimulus is minus (this is α). Then, plot α versus β for z over the
range 0 to 140.
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